# Lecture 1 Introduction and overview

- linear programming
- example
- course topics
- software
- integer linear programming

# Linear program (LP)

minimize 
$$\sum_{\substack{j=1\\n}}^{n} c_j x_j$$
  
subject to 
$$\sum_{\substack{j=1\\n}}^{n} a_{ij} x_j \le b_i, \quad i = 1, \dots, m$$
$$\sum_{\substack{j=1\\j=1}}^{n} c_{ij} x_j = d_i, \quad i = 1, \dots, p$$

variables:  $x_j$ problem data: the coefficients  $c_j$ ,  $a_{ij}$ ,  $b_i$ ,  $c_{ij}$ ,  $d_i$ 

- can be solved very efficiently (several 10,000 variables, constraints)
- widely available general-purpose software
- extensive, useful theory (optimality conditions, sensitivity analysis, ...)

### Example. Open-loop control problem

**single-input/single-output system** (with input u, output y)

$$y(t) = h_0 u(t) + h_1 u(t-1) + h_2 u(t-2) + h_3 u(t-3) + \cdots$$

output tracking problem: minimize deviation from desired output  $y_{des}(t)$ 

$$\max_{t=0,\ldots,N} |y(t) - y_{\rm des}(t)|$$

subject to input amplitude and slew rate constraints:

$$|u(t)| \le U, \qquad |u(t+1) - u(t)| \le S$$

variables:  $u(0), \ldots, u(M)$  (with u(t) = 0 for t < 0, t > M)

**solution:** can be formulated as an LP, hence easily solved (more later)

#### example

step response ( $s(t) = h_t + \cdots + h_0$ ) and desired output:



amplitude and slew rate constraint on u:

 $|u(t)| \le 1.1, \qquad |u(t) - u(t-1)| \le 0.25$ 

### optimal solution



# **Brief history**

- **1930s** (Kantorovich): economic applications
- 1940s (Dantzig): military logistics problems during WW2;
   1947: simplex algorithm
- **1950s–60s** discovery of applications in many other fields (structural optimization, control theory, filter design, . . . )
- **1979** (Khachiyan) ellipsoid algorithm: more efficient (polynomial-time) than simplex in worst case, but slower in practice
- **1984** (Karmarkar): projective (interior-point) algorithm: polynomial-time worst-case complexity, and efficient in practice
- **1984–today**. many variations of interior-point methods (improved complexity or efficiency in practice), software for large-scale problems

# **Course outline**

### the linear programming problem

linear inequalities, geometry of linear programming

### engineering applications

signal processing, control, structural optimization . . .

#### duality

#### algorithms

the simplex algorithm, interior-point algorithms

**large-scale linear programming and network optimization** techniques for LPs with special structure, network flow problems

### **integer linear programming** introduction, some basic techniques

# Software

solvers: solve LPs described in some standard form

**modeling tools**: accept a problem in a simpler, more intuitive, notation and convert it to the standard form required by solvers

**software for this course** (see class website)

- platforms: Matlab, Octave, Python
- solvers: linprog (Matlab Optimization Toolbox),
- modeling tools: CVX (Matlab), YALMIP (Matlab),
- Thanks to Lieven Vandenberghe at UCLA for his slides

### Integer linear program

integer linear program

subject to

$$\begin{array}{ll} \text{minimize} & \sum_{j=1}^{n} c_{j} x_{j} \\ \text{subject to} & \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \quad i = 1, \dots, m \\ & \sum_{j=1}^{n} c_{ij} x_{j} = d_{i}, \quad i = 1, \dots, p \\ & x_{j} \in \mathbf{Z} \end{array}$$

**Boolean linear program** 

minimize 
$$\sum_{j=1}^{n} c_j x_j$$
  
subject to 
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad i = 1, \dots, m$$
  
$$\sum_{j=1}^{n} c_{ij} x_j = d_i, \quad i = 1, \dots, p$$
  
$$x_j \in \{0, 1\}$$

- very general problems; can be extremely hard to solve
- can be solved as a sequence of linear programs

# **Example. Scheduling problem**

scheduling graph  $\mathcal{V}$ :



- nodes represent operations (*e.g.*, jobs in a manufacturing process, arithmetic operations in an algorithm)
- $(i, j) \in \mathcal{V}$  means operation j must wait for operation i to be finished
- M identical machines/processors; each operation takes unit time

problem: determine fastest schedule

#### **Boolean linear program formulation**

variables:  $x_{is}$ , i = 1, ..., n, s = 0, ..., T:

 $x_{is} = 1$  if job *i* starts at time *s*,  $x_{is} = 0$  otherwise

#### constraints:

- 1.  $x_{is} \in \{0, 1\}$
- 2. job *i* starts exactly once:

$$\sum_{s=0}^{T} x_{is} = 1$$

3. if there is an arc (i, j) in  $\mathcal{V}$ , then

$$\sum_{s=0}^{T} sx_{js} - \sum_{s=0}^{T} sx_{is} \ge 1$$

4. limit on capacity (M machines) at time s:

$$\sum_{i=1}^{n} x_{is} \le M$$

**cost function** (start time of job n):



**Boolean linear program** 

$$\begin{array}{lll} \text{minimize} & \sum_{s=0}^{T} s x_{ns} \\ \text{subject to} & \sum_{s=0}^{T} x_{is} = 1, \quad i = 1, \dots, n \\ & \sum_{s=0}^{T} s x_{js} - \sum_{s=0}^{T} s x_{is} \geq 1, \quad (i,j) \in \mathcal{V} \\ & \sum_{i=1}^{n} x_{is} \leq M, \quad s = 0, \dots, T \\ & x_{is} \in \{0,1\}, \quad i = 1, \dots, n, \quad s = 0, \dots, T \end{array}$$

# Lecture 2 Linear inequalities

- vectors
- inner products and norms
- linear equalities and hyperplanes
- linear inequalities and halfspaces
- polyhedra

## Vectors

(column) vector  $x \in \mathbf{R}^n$ :

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- $x_i \in \mathbf{R}$ : *i*th *component* or *element* of x
- also written as  $x = (x_1, x_2, \dots, x_n)$

some special vectors:

• x = 0 (zero vector):  $x_i = 0, i = 1, ..., n$ 

• 
$$x = 1$$
:  $x_i = 1, i = 1, ..., n$ 

•  $x = e_i$  (ith basis vector or ith unit vector):  $x_i = 1$ ,  $x_k = 0$  for  $k \neq i$ 

(n follows from context)

Linear inequalities

### **Vector operations**

multiplying a vector  $x \in \mathbf{R}^n$  with a scalar  $\alpha \in \mathbf{R}$ :

$$\alpha x = \begin{bmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{bmatrix}$$

adding and subtracting two vectors  $x, y \in \mathbf{R}^n$ :

### Inner product

$$x, y \in \mathbf{R}^n$$
  
 $\langle x, y \rangle := x_1 y_1 + x_2 y_2 + \dots + x_n y_n = x^T y$ 

#### important properties

- $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
- $\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle$
- $\langle x, y \rangle = \langle y, x \rangle$
- $\langle x, x \rangle \ge 0$
- $\langle x, x \rangle = 0 \iff x = 0$

**linear function**:  $f : \mathbf{R}^n \to \mathbf{R}$  is linear, *i.e.* 

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y),$$

if and only if  $f(x) = \langle a, x \rangle$  for some a

# **Euclidean norm**

for  $x \in \mathbf{R}^n$  we define the (Euclidean) norm as

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$$

||x|| measures *length* of vector (from origin)

important properties:

- $\|\alpha x\| = |\alpha| \|x\|$  (homogeneity)
- $||x + y|| \le ||x|| + ||y||$  (triangle inequality)
- $||x|| \ge 0$  (nonnegativity)
- $||x|| = 0 \iff x = 0$  (definiteness)

distance between vectors: dist(x, y) = ||x - y||

### Inner products and angles

angle between vectors in  $\mathbf{R}^n$ :

$$\theta = \angle (x, y) = \cos^{-1} \frac{x^T y}{\|x\| \|y\|}$$

*i.e.*,  $x^T y = ||x|| ||y|| \cos \theta$ 

- x and y aligned:  $\theta = 0$ ;  $x^T y = ||x|| ||y||$
- x and y opposed:  $\theta = \pi$ ;  $x^T y = -\|x\|\|y\|$
- x and y orthogonal:  $\theta = \pi/2$  or  $-\pi/2$ ;  $x^T y = 0$  (denoted  $x \perp y$ )
- $x^T y > 0$  means  $\angle(x, y)$  is acute;  $x^T y < 0$  means  $\angle(x, y)$  is obtuse



**Cauchy-Schwarz inequality:** 

 $|x^T y| \le ||x|| ||y||$ 

**projection** of x on y



projection is given by

$$\left(\frac{x^T y}{\|y\|^2}\right) y$$

# Hyperplanes

hyperplane in  $\mathbf{R}^n$ :

$$\{x \mid a^T x = b\} \quad (a \neq 0)$$

- solution set of one linear equation  $a_1x_1 + \cdots + a_nx_n = b$  with at least one  $a_i \neq 0$
- set of vectors that make a constant inner product with vector  $a = (a_1, \ldots, a_n)$  (the *normal* vector)



in  $\mathbf{R}^2$ : a line, in  $\mathbf{R}^3$ : a plane, . . .

# Halfspaces

(closed) halfspace in  $\mathbf{R}^n$ :

$$\{x \mid a^T x \le b\} \quad (a \ne 0)$$

- solution set of one linear inequality  $a_1x_1 + \cdots + a_nx_n \leq b$  with at least one  $a_i \neq 0$
- $a = (a_1, \ldots, a_n)$  is the (outward) normal



•  $\{x \mid a^T x < b\}$  is called an *open* halfspace

### Affine sets

solution set of a set of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
  

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_1$$
  

$$\vdots$$
  

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

intersection of *m* hyperplanes with normal vectors  $a_i = (a_{i1}, a_{i2}, \ldots, a_{in})$  (w.l.o.g., all  $a_i \neq 0$ )

in matrix notation:

$$Ax = b$$

with

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Linear inequalities

# Polyhedra

solution set of system of linear inequalities

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \leq b_1$$
  
:  
$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \leq b_m$$

intersection of m halfspaces, with normal vectors  $a_i = (a_{i1}, a_{i2}, \ldots, a_{in})$ (w.l.o.g., all  $a_i \neq 0$ )



matrix notation

 $Ax \leq b$ 

with

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

 $Ax \leq b$  stands for *componentwise* inequality, *i.e.*, for  $y, z \in \mathbf{R}^n$ ,

$$y \le z \quad \Longleftrightarrow \quad y_1 \le z_1, \dots, y_n \le z_n$$

## **Examples of polyhedra**

• a hyperplane 
$$\{x \mid a^T x = b\}$$
:

$$a^T x \le b, \qquad a^T x \ge b$$

• solution set of system of linear equations/inequalities

$$a_i^T x \leq b_i, \quad i = 1, \dots, m, \qquad c_i^T x = d_i, \quad i = 1, \dots, p$$

• a slab 
$$\{x \mid b_1 \leq a^T x \leq b_2\}$$

- the probability simplex  $\{x \in \mathbf{R}^n \mid \mathbf{1}^T x = 1, x_i \ge 0, i = 1, \dots, n\}$
- (hyper)rectangle  $\{x \in \mathbf{R}^n \mid l \leq x \leq u\}$  where l < u

# Lecture 3 Geometry of linear programming

- subspaces and affine sets, independent vectors
- matrices, range and nullspace, rank, inverse
- polyhedron in inequality form
- extreme points
- degeneracy
- the optimal set of a linear program

### **Subspaces**

 $\mathcal{S} \subseteq \mathbf{R}^n \ (\mathcal{S} 
eq \emptyset)$  is called a *subspace* if

$$x, y \in \mathcal{S}, \ \alpha, \beta \in \mathbf{R} \implies \alpha x + \beta y \in \mathcal{S}$$

 $\alpha x + \beta y$  is called a *linear combination* of x and y

examples (in  $\mathbb{R}^n$ )

• 
$$\mathcal{S} = \mathbf{R}^n$$
,  $\mathcal{S} = \{0\}$ 

- $S = \{ \alpha v \mid \alpha \in \mathbf{R} \}$  where  $v \in \mathbf{R}^n$  (*i.e.*, a line through the origin)
- $S = \operatorname{span}(v_1, v_2, \dots, v_k) = \{\alpha_1 v_1 + \dots + \alpha_k v_k \mid \alpha_i \in \mathbf{R}\}, \text{ where } v_i \in \mathbf{R}^n$
- set of vectors orthogonal to given vectors  $v_1, \ldots, v_k$ :

$$\mathcal{S} = \{ x \in \mathbf{R}^n \mid v_1^T x = 0, \dots, v_k^T x = 0 \}$$

### **Independent vectors**

vectors  $v_1, v_2, \ldots, v_k$  are *independent* if and only if

 $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = 0 \quad \Longrightarrow \quad \alpha_1 = \alpha_2 = \dots = 0$ 

some equivalent conditions:

• coefficients of  $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k$  are uniquely determined, *i.e.*,

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_k v_k$$

implies  $\alpha_1 = \beta_1, \alpha_2 = \beta_2, \ldots, \alpha_k = \beta_k$ 

 no vector v<sub>i</sub> can be expressed as a linear combination of the other vectors v<sub>1</sub>,..., v<sub>i-1</sub>, v<sub>i+1</sub>,..., v<sub>k</sub>

## **Basis and dimension**

 $\{v_1, v_2, \ldots, v_k\}$  is a *basis* for a subspace  $\mathcal{S}$  if

- $v_1, v_2, \ldots, v_k$  span S, *i.e.*,  $S = \text{span}(v_1, v_2, \ldots, v_k)$
- $v_1, v_2, \ldots, v_k$  are independent

equivalently: every  $v \in S$  can be uniquely expressed as

$$v = \alpha_1 v_1 + \dots + \alpha_k v_k$$

**fact:** for a given subspace S, the number of vectors in any basis is the same, and is called the *dimension* of S, denoted dim S

### Affine sets

 $\mathcal{V} \subseteq \mathbf{R}^n \ (\mathcal{V} \neq \emptyset)$  is called an *affine set* if

$$x, y \in \mathcal{V}, \ \alpha + \beta = 1 \implies \alpha x + \beta y \in \mathcal{V}$$

 $\alpha x + \beta y$  is called an *affine combination* of x and y

# examples (in $\mathbb{R}^n$ )

- subspaces
- $\mathcal{V} = b + \mathcal{S} = \{x + b \mid x \in \mathcal{S}\}$  where  $\mathcal{S}$  is a subspace

• 
$$\mathcal{V} = \{ \alpha_1 v_1 + \dots + \alpha_k v_k \mid \alpha_i \in \mathbf{R}, \sum_i \alpha_i = 1 \}$$

•  $\mathcal{V} = \{x \mid v_1^T x = b_1, \dots, v_k^T x = b_k\}$  (if  $\mathcal{V} \neq \emptyset$ )

every affine set  $\mathcal{V}$  can be written as  $\mathcal{V} = x_0 + \mathcal{S}$  where  $x_0 \in \mathbb{R}^n$ ,  $\mathcal{S}$  a subspace (*e.g.*, can take any  $x_0 \in \mathcal{V}$ ,  $\mathcal{S} = \mathcal{V} - x_0$ )

 $\dim(\mathcal{V} - x_0)$  is called the dimension of  $\mathcal{V}$ 

## Matrices

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \in \mathbf{R}^{m \times n}$$

some special matrices:

- A = 0 (zero matrix):  $a_{ij} = 0$
- A = I (identity matrix): m = n and  $A_{ii} = 1$  for  $i = 1, \ldots, n$ ,  $A_{ij} = 0$  for  $i \neq j$
- $A = \operatorname{diag}(x)$  where  $x \in \mathbf{R}^n$  (diagonal matrix): m = n and

$$A = \begin{bmatrix} x_1 & 0 & \cdots & 0 \\ 0 & x_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_n \end{bmatrix}$$

## **Matrix operations**

- addition, subtraction, scalar multiplication
- transpose:

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} \in \mathbf{R}^{n \times m}$$

• multiplication:  $A \in \mathbf{R}^{m \times n}$ ,  $B \in \mathbf{R}^{n \times q}$ ,  $AB \in \mathbf{R}^{m \times q}$ :

$$AB = \begin{bmatrix} \sum_{i=1}^{n} a_{1i}b_{i1} & \sum_{i=1}^{n} a_{1i}b_{i2} & \cdots & \sum_{i=1}^{n} a_{1i}b_{iq} \\ \sum_{i=1}^{n} a_{2i}b_{i1} & \sum_{i=1}^{n} a_{2i}b_{i2} & \cdots & \sum_{i=1}^{n} a_{2i}b_{iq} \\ \vdots & \vdots & \vdots \\ \sum_{i=1}^{n} a_{mi}b_{i1} & \sum_{i=1}^{n} a_{mi}b_{i2} & \cdots & \sum_{i=1}^{n} a_{mi}b_{iq} \end{bmatrix}$$

### **Rows and columns**

rows of  $A \in \mathbf{R}^{m \times n}$ :  $A = \begin{bmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_m^T \end{bmatrix}$ with  $a_i = (a_{i1}, a_{i2}, \dots, a_{in}) \in \mathbf{R}^n$ 

columns of  $B \in \mathbf{R}^{n \times q}$ :

$$B = \left[ \begin{array}{cccc} b_1 & b_2 & \cdots & b_q \end{array} \right]$$

with  $b_i = (b_{1i}, b_{2i}, \ldots, b_{ni}) \in \mathbf{R}^n$ 

for example, can write AB as

$$AB = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_q \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_q \\ \vdots & \vdots & & \vdots \\ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_q \end{bmatrix}$$

# Range of a matrix

the range of  $A \in \mathbf{R}^{m \times n}$  is defined as

$$\mathcal{R}(A) = \{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$$

- a subspace
- set of vectors that can be 'hit' by mapping y = Ax
- the span of the columns of  $A = [a_1 \cdots a_n]$

$$\mathcal{R}(A) = \{a_1 x_1 + \dots + a_n x_n \mid x \in \mathbf{R}^n\}$$

• the set of vectors y s.t. Ax = y has a solution

 $\mathcal{R}(A) = \mathbf{R}^m \Longleftrightarrow$ 

- Ax = y can be solved in x for any y
- the columns of A span  $\mathbf{R}^m$
- dim  $\mathcal{R}(A) = m$

# Interpretations

 $v\in \mathcal{R}(A)\text{, }w\not\in \mathcal{R}(A)$ 

- y = Ax represents output resulting from input x
  - $\boldsymbol{v}$  is a possible result or output
  - $\boldsymbol{w}$  cannot be a result or output

 $\mathcal{R}(A)$  characterizes the *achievable outputs* 

- y = Ax represents measurement of x
  - y = v is a *possible* or *consistent* sensor signal
  - y = w is *impossible* or *inconsistent*; sensors have failed or model is wrong

 $\mathcal{R}(A)$  characterizes the *possible results*
# Nullspace of a matrix

the *nullspace* of  $A \in \mathbf{R}^{m \times n}$  is defined as

$$\mathcal{N}(A) = \{ x \in \mathbf{R}^n \mid Ax = 0 \}$$

- a subspace
- the set of vectors mapped to zero by y = Ax
- the set of vectors orthogonal to all rows of A:

$$\mathcal{N}(A) = \left\{ x \in \mathbf{R}^n \mid a_1^T x = \dots = a_m^T x = 0 \right\}$$

where  $A = [a_1 \ \cdots \ a_m]^T$ 

zero nullspace:  $\mathcal{N}(A) = \{0\} \iff$ 

- x can always be uniquely determined from y = Ax(*i.e.*, the linear transformation y = Ax doesn't 'lose' information)
- columns of A are independent

# Interpretations

suppose  $z \in \mathcal{N}(A)$ 

- y = Ax represents output resulting from input x
  - -z is input with no result
  - x and x + z have same result

 $\mathcal{N}(A)$  characterizes *freedom of input choice* for given result

- y = Ax represents measurement of x
  - -z is undetectable get zero sensor readings
  - x and x + z are indistinguishable: Ax = A(x + z)

 $\mathcal{N}(A)$  characterizes *ambiguity* in x from y = Ax

### Inverse

 $A \in \mathbf{R}^{n \times n}$  is invertible or nonsingular if det  $A \neq 0$ 

equivalent conditions:

- columns of A are a basis for  $\mathbf{R}^n$
- rows of A are a basis for  ${\bf R}^n$
- $\mathcal{N}(A) = \{0\}$
- $\mathcal{R}(A) = \mathbf{R}^n$
- y = Ax has a unique solution x for every  $y \in \mathbf{R}^n$
- A has an inverse  $A^{-1} \in \mathbf{R}^{n \times n}$ , with  $AA^{-1} = A^{-1}A = I$

## Rank of a matrix

we define the *rank* of  $A \in \mathbf{R}^{m \times n}$  as

 $\operatorname{rank}(A) = \dim \mathcal{R}(A)$ 

(nontrivial) facts:

- $\operatorname{rank}(A) = \operatorname{rank}(A^T)$
- rank(A) is maximum number of independent columns (or rows) of A, hence

$$\operatorname{rank}(A) \le \min\{m, n\}$$

•  $\operatorname{rank}(A) + \dim \mathcal{N}(A) = n$ 

# **Full rank matrices**

for  $A \in \mathbf{R}^{m \times n}$  we have  $\operatorname{rank}(A) \le \min\{m, n\}$ 

we say A is full rank if  $rank(A) = min\{m, n\}$ 

- for *square* matrices, full rank means nonsingular
- for skinny matrices (m > n), full rank means columns are independent
- for fat matrices (m < n), full rank means rows are independent

### Sets of linear equations

Ax = y

given  $A \in \mathbf{R}^{m \times n}$ ,  $y \in \mathbf{R}^m$ 

- solvable if and only if  $y \in \mathcal{R}(A)$
- unique solution if  $y \in \mathcal{R}(A)$  and  $\operatorname{rank}(A) = n$
- general solution set:

$$\{x_0 + v \mid v \in \mathcal{N}(A)\}$$

where  $Ax_0 = y$ 

A square and invertible: unique solution for every y:

$$x = A^{-1}y$$

# **Polyhedron (inequality form)**



 $\mathcal{P}$  is convex:

 $x, y \in \mathcal{P}, \ 0 \le \lambda \le 1 \implies \lambda x + (1 - \lambda)y \in \mathcal{P}$ 

*i.e.*, the *line segment* between any two points in  $\mathcal{P}$  lies in  $\mathcal{P}$ 

### **Extreme points and vertices**

 $x \in \mathcal{P}$  is an **extreme point** if it cannot be written as

$$x = \lambda y + (1 - \lambda)z$$

with  $0 \leq \lambda \leq 1$ ,  $y, z \in \mathcal{P}$ ,  $y \neq x$ ,  $z \neq x$ 



 $x \in \mathcal{P}$  is a **vertex** if there is a c such that  $c^T x < c^T y$  for all  $y \in \mathcal{P}$ ,  $y \neq x$ **fact:** x is an extreme point  $\iff x$  is a vertex (proof later)

### **Basic feasible solution**

define I as the set of indices of the *active* or *binding* constraints (at  $x^*$ ):

$$a_i^T x^* = b_i, \quad i \in I, \qquad a_i^T x^* < b_i, \quad i \notin I$$

define  $\bar{A}$  as

$$\bar{A} = \begin{bmatrix} a_{i_1}^T \\ a_{i_2}^T \\ \vdots \\ a_{i_k}^T \end{bmatrix}, \qquad I = \{i_1, \dots, i_k\}$$

 $x^{\star}$  is called a *basic feasible solution* if

$$\operatorname{\mathbf{rank}}\overline{A} = n$$

**fact:**  $x^*$  is a vertex (extreme point)  $\iff x^*$  is a basic feasible solution (proof later)

# Example

$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} x \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

- (1,1) is an extreme point
- (1,1) is a vertex: unique minimum of  $c^T x$  with c = (-1, -1)
- (1,1) is a basic feasible solution:  $I = \{2,4\}$  and  $\operatorname{rank} \overline{A} = 2$ , where

$$\overline{A} = \left[ \begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

### **Equivalence of the three definitions**

vertex  $\implies$  extreme point

let  $x^{\star}$  be a vertex of  $\mathcal{P}$ , *i.e.*, there is a  $c \neq 0$  such that

$$c^T x^\star < c^T x$$
 for all  $x \in \mathcal{P}$ ,  $x \neq x^\star$ 

let  $y, z \in \mathcal{P}$ ,  $y \neq x^*$ ,  $z \neq x^*$ :

$$c^T x^\star < c^T y, \qquad c^T x^\star < c^T z$$

so, if  $0 \leq \lambda \leq 1$ , then

$$c^T x^* < c^T (\lambda y + (1 - \lambda)z)$$

hence  $x^{\star} \neq \lambda y + (1 - \lambda)z$ 

#### extreme point $\implies$ basic feasible solution

suppose  $x^{\star} \in \mathcal{P}$  is an extreme point with

$$a_i^T x^\star = b_i, \quad i \in I, \qquad a_i^T x^\star < b_i, \quad i \notin I$$

suppose  $x^*$  is not a basic feasible solution; then there exists a  $d \neq 0$  with

$$a_i^T d = 0, \quad i \in I$$

and for small enough  $\epsilon > 0$ ,

$$y = x^* + \epsilon d \in \mathcal{P}, \quad z = x^* - \epsilon d \in \mathcal{P}$$

we have

$$x^{\star} = 0.5y + 0.5z,$$

which contradicts the assumption that  $x^{\star}$  is an extreme point

#### basic feasible solution $\implies$ vertex

suppose  $x^{\star} \in \mathcal{P}$  is a basic feasible solution and

$$a_i^T x^\star = b_i \quad i \in I, \qquad a_i^T x^\star < b_i \quad i \notin I$$

define  $c = -\sum_{i \in I} a_i$ ; then

$$c^T x^\star = -\sum_{i \in I} b_i$$

and for all  $x \in \mathcal{P}$ ,

$$c^T x \ge -\sum_{i \in I} b_i$$

with equality only if  $a_i^T x = b_i$ ,  $i \in I$ 

however the only solution to  $a_i^T x = b_i$ ,  $i \in I$ , is  $x^*$ ; hence  $c^T x^* < c^T x$  for all  $x \in \mathcal{P}$ 

# Degeneracy

set of linear inequalities  $a_i^T x \leq b_i$ ,  $i = 1, \ldots, m$ 

a basic feasible solution  $x^\star$  with

$$a_i^T x^* = b_i, \quad i \in I, \qquad a_i^T x^* < b_i, \quad i \notin I$$

is degenerate if #indices in I is greater than n



- a property of the *description* of the polyhedron, not its geometry
- affects the performance of some algorithms
- disappears with small perturbations of b

### **Unbounded directions**

 ${\mathcal P}$  contains a **half-line** if there exists  $d \neq 0$ ,  $x_0$  such that

 $x_0 + td \in \mathcal{P}$  for all  $t \ge 0$ 

equivalent condition for  $\mathcal{P} = \{x \mid Ax \leq b\}$ :

 $Ax_0 \le b, \quad Ad \le 0$ 

fact:  $\mathcal P$  unbounded  $\Longleftrightarrow \mathcal P$  contains a half-line

 $\mathcal{P}$  contains a **line** if there exists  $d \neq 0$ ,  $x_0$  such that

 $x_0 + td \in \mathcal{P}$  for all t

equivalent condition for  $\mathcal{P} = \{x \mid Ax \leq b\}$ :

$$Ax_0 \le b, \quad Ad = 0$$

**fact:**  $\mathcal{P}$  has no extreme points  $\iff \mathcal{P}$  contains a line

### **Optimal set of an LP**

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \leq b \end{array}$ 

- optimal value:  $p^* = \min\{c^T x \mid Ax \leq b\}$  ( $p^* = \pm \infty$  is possible)
- optimal point:  $x^{\star}$  with  $Ax^{\star} \leq b$  and  $c^{T}x^{\star} = p^{\star}$
- optimal set:  $X_{\text{opt}} = \{x \mid Ax \leq b, \ c^T x = p^*\}$

#### example

minimize 
$$c_1x_1 + c_2x_2$$
  
subject to  $-2x_1 + x_2 \le 1$   
 $x_1 \ge 0, \quad x_2 \ge 0$ 

• 
$$c = (1, 1)$$
:  $X_{opt} = \{(0, 0)\}, p^* = 0$ 

• 
$$c = (1,0)$$
:  $X_{\text{opt}} = \{(0, x_2) \mid 0 \le x_2 \le 1\}, p^* = 0$ 

• c = (-1, -1):  $X_{\text{opt}} = \emptyset$ ,  $p^{\star} = -\infty$ 

Geometry of linear programming

### **Existence of optimal points**

•  $p^{\star} = -\infty$  if and only if there exists a feasible half-line

 $\{x_0 + td \mid t \ge 0\}$ 

with  $c^T d < 0$ 



•  $p^{\star} = +\infty$  if and only if  $\mathcal{P} = \emptyset$ 

•  $p^*$  is finite if and only if  $X_{\text{opt}} \neq \emptyset$ 

**property:** if  $\mathcal{P}$  has at least one extreme point and  $p^{\star}$  is finite, then there exists an extreme point that is optimal



- variants of the linear programming problem
- LP feasibility problem
- examples and some general applications
- linear-fractional programming

# Variants of the linear programming problem

#### general form

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & a_i^T x \leq b_i, \quad i = 1, \dots, m\\ & g_i^T x = h_i, \quad i = 1, \dots, p \end{array}$$

in matrix notation:

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \leq b\\ & Gx = h \end{array}$$

where

$$A = \begin{bmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_m^T \end{bmatrix} \in \mathbf{R}^{m \times n}, \qquad G = \begin{bmatrix} g_1^T \\ g_2^T \\ \vdots \\ g_p^T \end{bmatrix} \in \mathbf{R}^{p \times n}$$

#### inequality form LP

minimize 
$$c^T x$$
  
subject to  $a_i^T x \leq b_i, \quad i = 1, \dots, m$ 

in matrix notation:

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax \leq b \end{array}$ 

standard form LP

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & g_i^T x = h_i, \quad i = 1, \dots, m \\ & x \geq 0 \end{array}$$

in matrix notation:

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & G x = h \\ & x \geq 0 \end{array}$$

### Reduction of general LP to inequality/standard form

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & a_i^T x \leq b_i, \quad i = 1, \dots, m\\ & g_i^T x = h_i, \quad i = 1, \dots, p \end{array}$$

reduction to inequality form:

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & a_i^T x \leq b_i, \quad i = 1, \dots, m \\ & g_i^T x \geq h_i, \quad i = 1, \dots, p \\ & g_i^T x \leq h_i, \quad i = 1, \dots, p \end{array}$$

in matrix notation (where A has rows  $a_i^T$ , G has rows  $g_i^T$ )

minimize 
$$c^T x$$
  
subject to  $\begin{bmatrix} A \\ -G \\ G \end{bmatrix} x \leq \begin{bmatrix} b \\ -h \\ h \end{bmatrix}$ 

reduction to standard form:

$$\begin{array}{ll} \text{minimize} & c^T x^+ - c^T x^- \\ \text{subject to} & a_i^T x^+ - a_i^T x^- + s_i = b_i, \quad i = 1, \dots, m \\ & g_i^T x^+ - g_i^T x^- = h_i, \quad i = 1, \dots, p \\ & x^+, x^-, s \ge 0 \end{array}$$

• variables 
$$x^+$$
,  $x^-$ ,  $s$ 

- recover x as  $x = x^+ x^-$
- $s \in \mathbf{R}^m$  is called a *slack* variable

in matrix notation:

$$\begin{array}{ll} \text{minimize} & \widetilde{c}^T \, \widetilde{x} \\ \text{subject to} & \widetilde{G} \widetilde{x} = \widetilde{h} \\ & \widetilde{x} \geq 0 \end{array}$$

where

$$\widetilde{x} = \begin{bmatrix} x^+ \\ x^- \\ s \end{bmatrix}, \qquad \widetilde{c} = \begin{bmatrix} c \\ -c \\ 0 \end{bmatrix}, \qquad \widetilde{G} = \begin{bmatrix} A & -A & I \\ G & -G & 0 \end{bmatrix}, \qquad \widetilde{h} = \begin{bmatrix} b \\ h \end{bmatrix}$$

# LP feasibility problem

feasibility problem: find x that satisfies  $a_i^T x \le b_i$ , i = 1, ..., msolution via LP (with variables t, x)

minimize 
$$t$$
  
subject to  $a_i^T x \leq b_i + t, \quad i = 1, \dots, m$ 

- variables t, x
- if minimizer  $x^*$ ,  $t^*$  satisfies  $t^* \leq 0$ , then  $x^*$  satisfies the inequalities

LP in matrix notation:

$$\begin{array}{ll} \text{minimize} & \widetilde{c}^T \widetilde{x} \\ \text{subject to} & \widetilde{A} \widetilde{x} \leq \widetilde{b} \end{array} \\ \widetilde{x} = \left[ \begin{array}{c} x \\ t \end{array} \right], \qquad \widetilde{c} = \left[ \begin{array}{c} 0 \\ 1 \end{array} \right], \qquad \widetilde{A} = \left[ \begin{array}{c} A & -\mathbf{1} \end{array} \right], \qquad \widetilde{b} = b \end{array}$$

### **Piecewise-linear minimization**

piecewise-linear minimization: minimize  $\max_{i=1,...,m} (c_i^T x + d_i)$  $\max_i (c_i^T x + d_i)$  $c_i^T x + d_i$ 

equivalent LP (with variables  $x \in \mathbf{R}^n$ ,  $t \in \mathbf{R}$ ):

minimize 
$$t$$
  
subject to  $c_i^T x + d_i \leq t, \quad i = 1, \dots, m$ 

in matrix notation:

$$\begin{array}{ccc} \text{minimize} & \widetilde{c}^T \widetilde{x} \\ \text{subject to} & \widetilde{A} \widetilde{x} \leq \widetilde{b} \end{array} \\ \widetilde{x} = \left[ \begin{array}{c} x \\ t \end{array} \right], \qquad \widetilde{c} = \left[ \begin{array}{c} 0 \\ 1 \end{array} \right], \qquad \widetilde{A} = \left[ \begin{array}{c} C & -\mathbf{1} \end{array} \right], \qquad \widetilde{b} = \left[ \begin{array}{c} -d \end{array} \right] \end{array}$$

# **Convex functions**

 $f: \mathbf{R}^n \to \mathbf{R}$  is convex if for  $0 \le \lambda \le 1$ 

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$



### **Piecewise-linear approximation**

assume  $f : \mathbf{R}^n \to \mathbf{R}$  differentiable and convex

• 1st-order approximation at  $x^1$  is a global lower bound on f:



• evaluating f,  $\nabla f$  at several  $x^i$  yields a *piecewise-linear* lower bound:

$$f(x) \ge \max_{i=1,...,K} \left( f(x^i) + \nabla f(x^i)^T (x - x^i) \right)$$

# **Convex optimization problem**

minimize  $f_0(x)$ 

 $(f_i \text{ convex and differentiable})$ 

LP approximation (choose points  $x^j$ , j = 1, ..., K):

minimize tsubject to  $f_0(x^j) + \nabla f_0(x^j)^T (x - x^j) \le t, \quad j = 1, \dots, K$ 

(variables x, t)

- yields lower bound on optimal value
- can be extended to nondifferentiable convex functions
- more sophisticated variation: cutting-plane algorithm (solves convex optimization problem via sequence of LP approximations)

# Norms

norms on  $\mathbf{R}^n$ :

- Euclidean norm ||x|| (or  $||x||_2$ ) =  $\sqrt{x_1^2 + \dots + x_n^2}$
- $\ell_1$ -norm:  $||x||_1 = |x_1| + \dots + |x_n|$
- $\ell_{\infty}$  (or Chebyshev-) norm:  $\|x\|_{\infty} = \max_i |x_i|$



# Norm approximation problems

minimize  $||Ax - b||_p$ 

- $x \in \mathbf{R}^n$  is variable;  $A \in \mathbf{R}^{m \times n}$  and  $b \in \mathbf{R}^m$  are problem data
- $p = 1, 2, \infty$
- r = Ax b is called *residual*
- $r_i = a_i^T x b_i$  is *i*th residual  $(a_i^T \text{ is } i \text{th row of } A)$
- usually overdetermined, *i.e.*,  $b \notin \mathcal{R}(A)$  (*e.g.*, m > n, A full rank)

#### interpretations:

- approximate or fit b with linear combination of columns of A
- *b* is corrupted measurement of *Ax*; find 'least inconsistent' value of *x* for given measurements

#### examples:

- $||r|| = \sqrt{r^T r}$ : least-squares or  $\ell_2$ -approximation (a.k.a. regression)
- $||r|| = \max_i |r_i|$ : Chebyshev,  $\ell_{\infty}$ , or minimax approximation
- $||r|| = \sum_i |r_i|$ : absolute-sum or  $\ell_1$ -approximation

#### solution:

•  $\ell_2$ : closed form expression

$$x_{\rm opt} = (A^T A)^{-1} A^T b$$

(assume  $\operatorname{rank}(A) = n$ )

•  $\ell_1$ ,  $\ell_\infty$ : no closed form expression, but readily solved via LP

# $\ell_1\text{-approximation}$ via LP

 $\ell_1$ -approximation problem

minimize  $||Ax - b||_1$ 

write as

minimize 
$$\sum_{i=1}^{m} y_i$$
  
subject to  $-y \le Ax - b \le y$ 

an LP with variables y, x:

 $\begin{array}{ll} \mbox{minimize} & \widetilde{c}^T \widetilde{x} \\ \mbox{subject to} & \widetilde{A} \widetilde{x} \leq \widetilde{b} \end{array}$ 

with

$$\widetilde{x} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \widetilde{c} = \begin{bmatrix} 0 \\ \mathbf{1} \end{bmatrix}, \quad \widetilde{A} = \begin{bmatrix} A & -I \\ -A & -I \end{bmatrix}, \quad \widetilde{b} = \begin{bmatrix} b \\ -b \end{bmatrix}$$

# $\ell_\infty\text{-approximation}$ via LP

 $\ell_\infty\text{-approximation problem}$ 

minimize 
$$||Ax - b||_{\infty}$$

write as

 $\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & -t\mathbf{1} \leq Ax - b \leq t\mathbf{1} \end{array}$ 

an LP with variables t, x:

 $\begin{array}{ll} \mbox{minimize} & \widetilde{c}^T \widetilde{x} \\ \mbox{subject to} & \widetilde{A} \widetilde{x} \leq \widetilde{b} \end{array}$ 

with

$$\widetilde{x} = \begin{bmatrix} x \\ t \end{bmatrix}, \quad \widetilde{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \widetilde{A} = \begin{bmatrix} A & -\mathbf{1} \\ -A & -\mathbf{1} \end{bmatrix}, \quad \widetilde{b} = \begin{bmatrix} b \\ -b \end{bmatrix}$$

### Example

minimize  $||Ax - b||_p$  for  $p = 1, 2, \infty$  ( $A \in \mathbb{R}^{100 \times 30}$ ) resulting residuals:



#### histogram of residuals:



- $p = \infty$  gives 'thinnest' distribution; p = 1 gives widest distribution
- $p = 1 \mod \text{very small}$  (or even zero)  $r_i$

### Interpretation: maximum likelihood estimation

m linear measurements  $y_1, \ldots, y_m$  of  $x \in \mathbf{R}^n$ :

$$y_i = a_i^T x + v_i, \quad i = 1, \dots, m$$

- $v_i$ : measurement noise, IID with density p
- y is a random variable with density  $p_x(y) = \prod_{i=1}^m p(y_i a_i^T x)$

log-likelihood function is defined as

$$\log p_x(y) = \sum_{i=1}^m \log p(y_i - a_i^T x)$$

maximum likelihood (ML) estimate of x is

$$\hat{x} = \operatorname*{argmax}_{x} \sum_{i=1}^{m} \log p(y_i - a_i^T x)$$
#### examples

v<sub>i</sub> double-sided exponential: p(z) = (1/2a)e<sup>-|z|/a</sup>
 ML estimate is l<sub>1</sub>-estimate x̂ = argmin<sub>x</sub> ||Ax - y||<sub>1</sub>

• 
$$v_i$$
 is one-sided exponential:  $p(z) = \begin{cases} (1/a)e^{-z/a} & z \ge 0 \\ 0 & z < 0 \end{cases}$ 

ML estimate is found by solving LP

minimize 
$$\mathbf{1}^T (y - Ax)$$
  
subject to  $y - Ax \ge 0$ 

•  $v_i$  are uniform on [-a, a]:  $p(z) = \begin{cases} 1/(2a) & -a \le z \le a \\ 0 & \text{otherwise} \end{cases}$ 

ML estimate is any x satisfying  $\|Ax - y\|_{\infty} \leq a$ 

## Linear-fractional programming

$$\begin{array}{ll} \mbox{minimize} & \frac{c^T x + d}{f^T x + g} \\ \mbox{subject to} & Ax \leq b \\ f^T x + g \geq 0 \\ \mbox{(asume } a/0 = +\infty \mbox{ if } a > 0, \ a/0 = -\infty \mbox{ if } a \leq 0) \end{array}$$

- nonlinear objective function
- like LP, can be solved very efficiently

equivalent form with linear objective (vars. x,  $\gamma$ ):

$$\begin{array}{ll} \mbox{minimize} & \gamma \\ \mbox{subject to} & c^T x + d \leq \gamma (f^T x + g) \\ & f^T x + g \geq 0 \\ & A x < b \end{array}$$

# **Bisection algorithm for linear-fractional programming**

given: interval [l,u] that contains optimal  $\gamma$  repeat: solve feasibility problem for  $\gamma=(u+l)/2$ 

$$c^T x + d \le \gamma(f^T x + g)$$
  

$$f^T x + g \ge 0$$
  

$$Ax < b$$

if feasible  $u := \gamma$ ; if infeasible  $l := \gamma$ until  $u - l \le \epsilon$ 

- each iteration is an LP feasibility problem
- accuracy doubles at each iteration
- number of iterations to reach accuracy  $\epsilon$  starting with initial interval of width  $u l = \epsilon_0$ :

$$k = \lceil \log_2(\epsilon_0/\epsilon) \rceil$$

## **Generalized linear-fractional programming**

$$\begin{array}{ll} \text{minimize} & \max_{i=1,\ldots,K} \frac{c_i^T x + d_i}{f_i^T x + g_i} \\ \text{subject to} & Ax \leq b \\ & f_i^T x + g_i \geq 0, \quad i = 1,\ldots,K \end{array}$$

equivalent formulation:

$$\begin{array}{ll} \text{minimize} & \gamma \\ \text{subject to} & Ax \leq b \\ & c_i^T x + d_i \leq \gamma(f_i^T x + g_i), \quad i = 1, \dots, K \\ & f_i^T x + g_i \geq 0, \quad i = 1, \dots, K \end{array}$$

- efficiently solved via bisection on  $\gamma$
- each iteration is an LP feasibility problem

# Von Neumann economic growth problem

simple model of an economy: m goods, n economic sectors

- $x_i(t)$ : 'activity' of sector i in current period t
- $a_i^T x(t)$ : amount of good *i* consumed in period *t*
- $b_i^T x(t)$ : amount of good i produced in period t

choose x(t) to maximize growth rate  $\min_i x_i(t+1)/x_i(t)$ :

$$\begin{array}{ll} \text{maximize} & \gamma \\ \text{subject to} & Ax(t+1) \leq Bx(t), \quad x(t+1) \geq \gamma x(t), \quad x(t) \geq \mathbf{1} \end{array}$$

or equivalently (since  $a_{ij} \ge 0$ ):

$$\begin{array}{ll} \text{maximize} & \gamma \\ \text{subject to} & \gamma A x(t) \leq B x(t), \quad x(t) \geq \mathbf{1} \end{array}$$

(linear-fractional problem with variables x(0),  $\gamma$ )

The linear programming problem: variants and examples

# **Optimal transmitter power allocation**

- m transmitters, mn receivers all at same frequency
- transmitter i wants to transmit to n receivers labeled (i, j),  $j = 1, \ldots, n$



- $A_{ijk}$  is path gain from transmitter k to receiver (i, j)
- $N_{ij}$  is (self) noise power of receiver (i, j)
- variables: transmitter powers  $p_k$ ,  $k = 1, \ldots, m$

at receiver (i, j):

- signal power:  $S_{ij} = A_{iji}p_i$
- noise plus interference power:  $I_{ij} = \sum_{k \neq i} A_{ijk} p_k + N_{ij}$
- signal to interference/noise ratio (SINR):  $S_{ij}/I_{ij}$

**problem:** choose  $p_i$  to maximize smallest SINR:

maximize 
$$\min_{i,j} \frac{A_{iji}p_i}{\sum_{k \neq i} A_{ijk}p_k + N_{ij}}$$
subject to  $0 \le p_i \le p_{\max}$ 

- a (generalized) linear-fractional program
- special case with analytical solution: m = 1, no upper bound on  $p_i$  (see exercises)

# Lecture 5 Structural optimization

- minimum weight truss design
- truss topology design
- limit analysis
- design with minimum number of bars



- m bars with lengths  $l_i$  and cross-sectional areas  $x_i$
- N nodes; nodes  $1,\ldots,n$  are free, nodes  $n+1,\ldots,N$  are anchored
- external load: forces  $f_i \in \mathbf{R}^2$  at nodes  $i = 1, \ldots, n$

#### design problems:

- given the topology (*i.e.*, location of bars and nodes), find the lightest truss that can carry a given load (vars: bar sizes  $x_k$ , cost: total weight)
- same problem, where cost  $\propto \# \text{bars}$  used
- find best topology
- find lightest truss that can carry several given loads

analysis problem: for a given truss, what is the largest load it can carry?

### **Material characteristics**

- $u_i \in \mathbf{R}$  is force in bar i ( $u_i > 0$ : tension,  $u_i < 0$ : compression)
- $s_i \in \mathbf{R}$  is deformation of bar i ( $s_i > 0$ : lengthening,  $s_i < 0$ : shortening)

we assume the material is *rigid/perfectly plastic*:



#### Minimum weight truss for given load

force equilibrium for (free) node *i*:  $\sum_{j=1}^{m} u_j \begin{bmatrix} n_{ij,x} \\ n_{ij,y} \end{bmatrix} + \begin{bmatrix} f_{i,x} \\ f_{i,y} \end{bmatrix} = 0$ 



minimum weight truss design via LP:

minimize 
$$\sum_{i=1}^{m} l_i x_i$$
  
subject to 
$$\sum_{j=1}^{m} u_j n_{ij} + f_i = 0, \quad i = 1, \dots, n$$
  
$$-\alpha x_j \le u_j \le \alpha x_j, \quad j = 1, \dots, m$$

(variables  $x_i$ ,  $u_j$ )

Structural optimization

#### example



$$\begin{array}{ll} \text{minimize} & l_1 x_1 + l_2 x_2 + l_3 x_3 \\ \text{subject to} & -u_1 / \sqrt{2} - u_2 / \sqrt{2} - u_3 + f_x = 0 \\ & u_1 / \sqrt{2} - u_2 / \sqrt{2} + f_y = 0 \\ & -\alpha x_1 \le u_1 \le \alpha x_1 \\ & -\alpha x_2 \le u_2 \le \alpha x_2 \\ & -\alpha x_3 \le u_3 \le \alpha x_3 \end{array}$$

# **Truss topology design**

- grid of nodes; bars between any pair of nodes
- design minimum weight truss:  $u_i = 0$  for most bars
- optimal topology: only use bars with  $u_i \neq 0$

#### example:

- $20 \times 11$  grid, *i.e.*, 220 (potential) nodes, 24,090 (potential) bars
- nodes a, b, c are fixed; unit vertical force at node d
- optimal topology has 289 bars



#### **Multiple loading scenarios**

minimum weight truss that can carry M possible loads  $f_i^1, \ldots, f_i^M$ :

minimize 
$$\sum_{i=1}^{m} l_i x_i$$
  
subject to 
$$\sum_{j=1}^{m} u_j^k n_{ij} + f_i^k = 0, \quad i = 1, \dots, n, \quad k = 1, \dots, M$$
$$-\alpha x_j \le u_j^k \le \alpha x_j, \quad j = 1, \dots, m, \quad k = 1, \dots, M$$

(variables 
$$x_j$$
,  $u_j^1$ , ...,  $u_j^M$ )

adds robustness: truss can carry any load

$$f_i = \lambda_1 f_i^1 + \dots + \lambda_M f_i^M$$

with  $\lambda_k \geq 0$ ,  $\sum_k \lambda_k \leq 1$ 

# Limit analysis

- truss with given geometry (including given cross-sectional areas  $x_i$ )
- load  $f_i$  is given up to a constant multiple:  $f_i = \gamma g_i$ , with given  $g_i \in \mathbf{R}^2$ and  $\gamma > 0$

find largest load that the truss can carry:

$$\begin{array}{ll} \text{maximize} & \gamma \\ \text{subject to} & \sum_{j=1}^{m} u_j n_{ij} + \gamma g_i = 0, \quad i = 1, \dots, n \\ & -\alpha x_j \leq u_j \leq \alpha x_j, \quad j = 1, \dots, m \end{array}$$

an LP in  $\gamma$ ,  $u_j$ 

maximum allowable  $\gamma$  is called the safety factor

## Design with smallest number of bars

integer LP formulation (assume wlog  $x_i \leq 1$ ):

$$\begin{array}{ll} \text{minimize} & \sum_{j=1}^{m} z_j \\ \text{subject to} & \sum_{j=1}^{m} u_j n_{ij} + f_i = 0, \quad i = 1, \dots, n \\ & -\alpha x_j \leq u_j \leq \alpha x_j, \quad j = 1, \dots, m \\ & x_j \leq z_j, \quad j = 1, \dots, m \\ & z_j \in \{0, 1\}, \quad j = 1, \dots, m \end{array}$$

- variables  $z_j$ ,  $x_j$ ,  $u_j$
- extremely hard to solve; we may have to enumerate all  $2^m$  possible values of  $\boldsymbol{z}$

**heuristic**: replace  $z_j \in \{0, 1\}$  by  $0 \le z_j \le 1$ 

- yields an LP; at the optimum many (but not all)  $z_j$ 's will be 0 or 1
- called *LP relaxation* of the integer LP

# Lecture 6 FIR filter design

- FIR filters
- linear phase filter design
- magnitude filter design
- equalizer design

# **FIR filters**

finite impulse response (FIR) filter:

$$y(t) = \sum_{\tau=0}^{n-1} h_{\tau} u(t-\tau), \quad t \in \mathbf{Z}$$

- $u : \mathbf{Z} \to \mathbf{R}$  is input signal;  $y : \mathbf{Z} \to \mathbf{R}$  is output signal
- $h_i \in \mathbf{R}$  are called *filter coefficients*; n is filter *order* or *length*

filter frequency response:  $H : \mathbf{R} \rightarrow \mathbf{C}$ 

$$H(\omega) = h_0 + h_1 e^{-j\omega} + \dots + h_{n-1} e^{-j(n-1)\omega}$$
  
=  $\sum_{t=0}^{n-1} h_t \cos t\omega - j \sum_{t=0}^{n-1} h_t \sin t\omega$   $(j = \sqrt{-1})$ 

periodic, conjugate symmetric, so only need to know/specify for  $0 \le \omega \le \pi$ FIR filter design problem: choose h so H and h satisfy/optimize specs **example:** (lowpass) FIR filter, order n = 21

impulse response *h*:



frequency response magnitude  $|H(\omega)|$  and phase  $\angle H(\omega)$ :



## Linear phase filters

suppose n = 2N + 1 is odd and impulse response is symmetric about midpoint:

$$h_t = h_{n-1-t}, \quad t = 0, \dots, n-1$$

then

$$H(\omega) = h_0 + h_1 e^{-j\omega} + \dots + h_{n-1} e^{-j(n-1)\omega}$$
  
=  $e^{-jN\omega} (2h_0 \cos N\omega + 2h_1 \cos(N-1)\omega + \dots + h_N)$   
=  $e^{-jN\omega} \widetilde{H}(\omega)$ 

- term  $e^{-jN\omega}$  represents N-sample delay
- $\widetilde{H}(\omega)$  is real
- $|H(\omega)| = |\widetilde{H}(\omega)|$

called **linear phase** filter  $(\angle H(\omega))$  is linear except for jumps of  $\pm \pi$ )

# Lowpass filter specifications



#### specifications:

• maximum passband ripple ( $\pm 20 \log_{10} \delta_1$  in dB):

$$1/\delta_1 \le |H(\omega)| \le \delta_1, \quad 0 \le \omega \le \omega_p$$

• minimum stopband attenuation  $(-20 \log_{10} \delta_2 \text{ in dB})$ :

$$|H(\omega)| \le \delta_2, \quad \omega_{\rm s} \le \omega \le \pi$$

### Linear phase lowpass filter design

- sample frequency ( $\omega_k = k\pi/K$ ,  $k = 1, \ldots, K$ )
- can assume wlog  $\widetilde{H}(0) > 0$ , so ripple spec is

$$1/\delta_1 \le \widetilde{H}(\omega_k) \le \delta_1$$

design for maximum stopband attenuation:

$$\begin{array}{ll} \text{minimize} & \delta_2 \\ \text{subject to} & 1/\delta_1 \leq \widetilde{H}(\omega_k) \leq \delta_1, & 0 \leq \omega_k \leq \omega_p \\ & -\delta_2 \leq \widetilde{H}(\omega_k) \leq \delta_2, & \omega_s \leq \omega_k \leq \pi \end{array}$$

- passband ripple  $\delta_1$  is given
- an LP in variables h,  $\delta_2$
- known (and used) since 1960's
- can add other constraints, e.g.,  $|h_i| \leq \alpha$

#### example

- linear phase filter, n = 31
- passband  $[0, 0.12\pi]$ ; stopband  $[0.24\pi, \pi]$
- max ripple  $\delta_1 = 1.059 \ (\pm 0.5 \text{dB})$
- design for maximum stopband attenuation

impulse response h and frequency response magnitude  $|H(\omega)|$ 



## **Some variations**

$$\widetilde{H}(\omega) = 2h_0 \cos N\omega + 2h_1 \cos(N-1)\omega + \dots + h_N$$

minimize passband ripple (given  $\delta_2$ ,  $\omega_s$ ,  $\omega_p$ , N)

$$\begin{array}{ll} \text{minimize} & \delta_1 \\ \text{subject to} & 1/\delta_1 \leq \widetilde{H}(\omega_k) \leq \delta_1, & 0 \leq \omega_k \leq \omega_p \\ & -\delta_2 \leq \widetilde{H}(\omega_k) \leq \delta_2, & \omega_s \leq \omega_k \leq \pi \end{array}$$

minimize transition bandwidth (given  $\delta_1, \delta_2, \omega_p, N$ )

$$\begin{array}{ll} \text{minimize} & \omega_s \\ \text{subject to} & 1/\delta_1 \leq \widetilde{H}(\omega_k) \leq \delta_1, & 0 \leq \omega_k \leq \omega_p \\ & -\delta_2 \leq \widetilde{H}(\omega_k) \leq \delta_2, & \omega_s \leq \omega_k \leq \pi \end{array}$$

minimize filter order (given  $\delta_1$ ,  $\delta_2$ ,  $\omega_s$ ,  $\omega_p$ )

$$\begin{array}{ll} \text{minimize} & N\\ \text{subject to} & 1/\delta_1 \leq \widetilde{H}(\omega_k) \leq \delta_1, & 0 \leq \omega_k \leq \omega_p\\ & -\delta_2 \leq \widetilde{H}(\omega_k) \leq \delta_2, & \omega_s \leq \omega_k \leq \pi \end{array}$$

- can be solved using bisection
- each iteration is an LP feasibility problem

## Filter magnitude specifications

transfer function *magnitude spec* has form

$$L(\omega) \le |H(\omega)| \le U(\omega), \quad \omega \in [0,\pi]$$

where  $L, U : \mathbf{R} \to \mathbf{R}_+$  are given and

$$H(\omega) = \sum_{t=0}^{n-1} h_t \cos t\omega - j \sum_{t=0}^{n-1} h_t \sin t\omega$$

- arises in many applications, *e.g.*, audio, spectrum shaping
- not equivalent to a set of linear inequalities in h (lower bound is not even convex)
- can change variables and convert to set of linear inequalities

### **Autocorrelation coefficients**

autocorrelation coefficients associated with impulse response  $h = (h_0, \ldots, h_{n-1}) \in \mathbf{R}^n$  are

$$r_t = \sum_{\tau=0}^{n-1-t} h_\tau h_{\tau+t} \quad \text{(with } h_k = 0 \text{ for } k < 0 \text{ or } k \ge n\text{)}$$

 $r_t = r_{-t}$  and  $r_t = 0$  for  $|t| \ge n$ ; hence suffices to specify  $r = (r_0, \ldots, r_{n-1})$ 

Fourier transform of autocorrelation coefficients is

$$R(\omega) = \sum_{\tau} e^{-j\omega\tau} r_{\tau} = r_0 + \sum_{t=1}^{n-1} 2r_t \cos \omega t = |H(\omega)|^2$$

can express magnitude specification as

$$L(\omega)^2 \le R(\omega) \le U(\omega)^2, \quad \omega \in [0,\pi]$$

 $\ldots$  linear inequalities in r

FIR filter design

# **Spectral factorization**

**question:** when is  $r \in \mathbf{R}^n$  the autocorrelation coefficients of some  $h \in \mathbf{R}^n$ ?

**answer** (spectral factorization theorem): if and only if  $R(\omega) \ge 0$  for all  $\omega$ 

- spectral factorization condition is convex in r (a linear inequality for each  $\omega)$
- many algorithms for spectral factorization, i.e., finding an h such that  $R(\omega)=|H(\omega)|^2$

magnitude design via autocorrelation coefficients:

- use r as variable (instead of h)
- add spectral factorization condition  $R(\omega) \geq 0$  for all  $\omega$
- optimize over r
- $\bullet\,$  use spectral factorization to recover h

## Magnitude lowpass filter design

maximum stopband attenuation design with variables r becomes

$$\begin{array}{ll} \mbox{minimize} & \tilde{\delta}_2 \\ \mbox{subject to} & 1/\tilde{\delta}_1 \leq R(\omega) \leq \tilde{\delta}_1, \quad \omega \in [0, \omega_{\rm p}] \\ & R(\omega) \leq \tilde{\delta}_2, \quad \omega \in [\omega_{\rm s}, \pi] \\ & R(\omega) \geq 0, \quad \omega \in [0, \pi] \end{array}$$

 $(\tilde{\delta}_i \text{ corresponds to } \delta_i^2 \text{ in original problem})$ 

now discretize frequency:

$$\begin{array}{ll} \text{minimize} & \tilde{\delta}_2 \\ \text{subject to} & 1/\tilde{\delta}_1 \leq R(\omega_k) \leq \tilde{\delta}_1, \quad 0 \leq \omega_k \leq \omega_p \\ & R(\omega_k) \leq \tilde{\delta}_2, \quad \omega_s \leq \omega_k \leq \pi \\ & R(\omega_k) \geq 0, \quad 0 \leq \omega_k \leq \pi \end{array}$$

... an LP in r,  $\tilde{\delta}_2$ 

# **Equalizer design**



#### (time-domain) equalization: given

- g (unequalized impulse response)
- $g_{\rm des}$  (desired impulse response)

design (FIR equalizer) h so that  $\widetilde{g} = h * g \approx g_{\rm des}$ 

common choice: pure delay 
$$D$$
:  $g_{des}(t) = \begin{cases} 1 & t = D \\ 0 & t \neq D \end{cases}$ 

as an LP:

minimize 
$$\max_{t \neq D} |\tilde{g}(t)|$$
  
subject to  $\tilde{g}(D) = 1$ 

#### example

unequalized system G is 10th order FIR:





design  $30 {\rm th}$  order FIR equalizer with  $\widetilde{G}(\omega) \approx e^{-j10\omega}$ 

minimize  $\max_{t \neq 10} |\tilde{g}(t)|$ 

equalized system impulse response  $\tilde{g}$ 



equalized frequency response magnitude  $|\widetilde{G}|$  and phase  $\angle\widetilde{G}$ 



# Magnitude equalizer design



- given system frequency response  $G: [0, \pi] \to \mathbf{C}$
- design FIR equalizer H so that  $|G(\omega)H(\omega)|\approx 1$ :

minimize 
$$\max_{\omega \in [0,\pi]} \left| |G(\omega)H(\omega)|^2 - 1 \right|$$

use autocorrelation coefficients as variables:

$$\begin{array}{ll} \mbox{minimize} & \alpha \\ \mbox{subject to} & \left| \ |G(\omega)|^2 R(\omega) - 1 \ \right| \leq \alpha, \quad \omega \in [0,\pi] \\ & R(\omega) \geq 0, \quad \omega \in [0,\pi] \end{array}$$

when discretized, an LP in r,  $\alpha$ , . . .

FIR filter design

## Multi-system magnitude equalization

- given M frequency responses  $G_k: [0,\pi] \to \mathbf{C}$
- design FIR equalizer H so that  $|G_k(\omega)H(\omega)| \approx \text{constant}$ :

minimize 
$$\max_{k=1,\dots,M} \max_{\omega \in [0,\pi]} \left| |G_k(\omega)H(\omega)|^2 - \gamma_k \right|$$
  
subject to  $\gamma_k \ge 1, \quad k = 1,\dots,M$ 

use autocorrelation coefficients as variables:

$$\begin{array}{ll} \text{minimize} & \alpha \\ \text{subject to} & \left| |G_k(\omega)|^2 R(\omega) - \gamma_k \right| \leq \alpha, \quad \omega \in [0,\pi], \quad k = 1, \dots, M \\ & R(\omega) \geq 0, \quad \omega \in [0,\pi] \\ & \gamma_k \geq 1, \quad k = 1, \dots, M \end{array}$$

. . . when discretized, an LP in  $\gamma_k$ , r, lpha
example. M = 2, n = 25,  $\gamma_k \ge 1$ 

### unequalized and equalized frequency responses



# Lecture 7 Applications in control

- optimal input design
- robust optimal input design
- pole placement (with low-authority control)

# Linear dynamical system

$$y(t) = h_0 u(t) + h_1 u(t-1) + h_2 u(t-2) + \cdots$$

- single input/single output: input  $u(t) \in \mathbf{R}$ , output  $y(t) \in \mathbf{R}$
- $h_i$  are called *impulse response* coefficients
- finite impulse response (FIR) system of order k:  $h_i = 0$  for i > k

$$\begin{bmatrix} y(0) \\ y(1) \\ y(2) \\ \vdots \\ y(N) \end{bmatrix} = \begin{bmatrix} h_0 & 0 & 0 & \cdots & 0 \\ h_1 & h_0 & 0 & \cdots & 0 \\ h_2 & h_1 & h_0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_N & h_{N-1} & h_{N-2} & \cdots & h_0 \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ u(2) \\ \vdots \\ u(N) \end{bmatrix}$$

a linear mapping from input to output sequence

# **Output tracking problem**

choose inputs u(t),  $t = 0, \ldots, M$  (M < N) that

- minimize peak deviation between y(t) and a desired output  $y_{\rm des}(t)$ ,  $t=0,\ldots,N$ ,

$$\max_{t=0,\dots,N} |y(t) - y_{\rm des}(t)|$$

• satisfy amplitude and slew rate constraints:

$$|u(t)| \le U, |u(t+1) - u(t)| \le S$$

as a linear program (variables: w, u(0), . . . , u(N)):

$$\begin{array}{ll} \text{minimize.} & w \\ \text{subject to} & -w \leq \sum_{i=0}^{t} h_i u(t-i) - y_{\text{des}}(t) \leq w, \quad t = 0, \dots, N \\ & u(t) = 0, \quad t = M+1, \dots, N \\ & -U \leq u(t) \leq U, \quad t = 0, \dots, M \\ & -S \leq u(t+1) - u(t) \leq S, \quad t = 0, \dots, M+1 \end{array}$$

### example. single input/output, N = 200



constraints on u:

- input horizon M = 150
- amplitude constraint  $|u(t)| \le 1.1$
- slew rate constraint  $|u(t)-u(t-1)| \leq 0.25$

output and desired output:



optimal input sequence u:



# Robust output tracking (1)

• impulse response is not exactly known; it can take two values:

$$(h_0^{(1)}, h_1^{(1)}, \dots, h_k^{(1)}), \qquad (h_0^{(2)}, h_1^{(2)}, \dots, h_k^{(2)})$$

• design an input sequence that minimizes the worst-case peak tracking error

$$\begin{array}{ll} \text{minimize} & w \\ \text{subject to} & -w \leq \sum_{i=0}^{t} h_i^{(1)} u(t-i) - y_{\text{des}}(t) \leq w, \quad t = 0, \dots, N \\ & -w \leq \sum_{i=0}^{t} h_i^{(2)} u(t-i) - y_{\text{des}}(t) \leq w, \quad t = 0, \dots, N \\ & u(t) = 0, \quad t = M + 1, \dots, N \\ & -U \leq u(t) \leq U, \quad t = 0, \dots, M \\ & -S \leq u(t+1) - u(t) \leq S, \quad t = 0, \dots, M + 1 \\ \end{array}$$

an LP in the variables w, u(0), . . . , u(N)

### example



# Robust output tracking (2)

$$\begin{bmatrix} h_0(s) \\ h_1(s) \\ \vdots \\ h_k(s) \end{bmatrix} = \begin{bmatrix} \bar{h}_0 \\ \bar{h}_1 \\ \vdots \\ \bar{h}_k \end{bmatrix} + s_1 \begin{bmatrix} v_0^{(1)} \\ v_1^{(1)} \\ \vdots \\ v_k^{(1)} \end{bmatrix} + \dots + s_K \begin{bmatrix} v_0^{(K)} \\ v_1^{(K)} \\ \vdots \\ v_k^{(K)} \end{bmatrix}$$
$$\bar{h}_i \text{ and } v_i^{(j)} \text{ are given; } s_i \in [-1, +1] \text{ is unknown}$$

robust output tracking problem (variables w, u(t)):

$$\begin{array}{ll} \text{min.} & w \\ \text{s.t.} & -w \leq \sum_{i=0}^{t} h_i(s) u(t-i) - y_{\text{des}}(t) \leq w, \quad t = 0, \dots, N, \quad \forall s \in [-1,1]^K \\ & u(t) = 0, \quad t = M+1, \dots, N \\ & -U \leq u(t) \leq U, \quad t = 0, \dots, M \\ & -S \leq u(t+1) - u(t) \leq S, \quad t = 0, \dots, M+1 \end{array}$$

straightforward (and very inefficient) solution: enumerate all  $2^K$  extreme values of  $\boldsymbol{s}$ 

**simplification:** we can express the  $2^{K+1}$  linear inequalities

$$-w \le \sum_{i=0}^{t} h_i(s)u(t-i) - y_{des}(t) \le w \text{ for all } s \in \{-1,1\}^K$$

as two nonlinear inequalities

$$\sum_{i=0}^{t} \bar{h}_{i} u(t-i) + \sum_{j=1}^{K} \left| \sum_{i=0}^{t} v_{i}^{(j)} u(t-i) \right| \le y_{\text{des}}(t) + w$$
$$\sum_{i=0}^{t} \bar{h}_{i} u(t-i) - \sum_{j=1}^{K} \left| \sum_{i=0}^{t} v_{i}^{(j)} u(t-i) \right| \ge y_{\text{des}}(t) - w$$

proof:

$$\max_{s \in \{-1,1\}^{K}} \sum_{i=0}^{t} h_{i}(s)u(t-i)$$

$$= \sum_{i=0}^{t} \bar{h}_{i}u(t-i) + \sum_{j=1}^{K} \max_{s_{j} \in \{-1,+1\}} s_{j} \sum_{i=0}^{t} v_{i}^{(j)}u(t-i)$$

$$= \sum_{i=0}^{t} \bar{h}_{i}u(t-i) + \sum_{j=1}^{K} \left| \sum_{i=0}^{t} v_{i}^{(j)}u(t-i) \right|$$

and similarly for the lower bound

robust output tracking problem reduces to:

$$\begin{array}{ll} \text{min.} & w \\ \text{s.t.} & \sum_{i=0}^{t} \bar{h}_{i} u(t-i) + \sum_{j=1}^{K} \left| \sum_{i=0}^{t} v_{i}^{(j)} u(t-i) \right| \leq y_{\text{des}}(t) + w, \quad t = 0, \dots, N \\ & \sum_{i=0}^{t} \bar{h}_{i} u(t-i) - \sum_{j=1}^{K} \left| \sum_{i=0}^{t} v_{i}^{(j)} u(t-i) \right| \geq y_{\text{des}}(t) - w, \quad t = 0, \dots, N \\ & u(t) = 0, \quad t = M + 1, \dots, N \\ & -U \leq u(t) \leq U, \quad t = 0, \dots, M \\ & -S \leq u(t+1) - u(t) \leq S, \quad t = 0, \dots, M + 1 \end{array}$$

(variables u(t), w)

to express as an LP:

• for  $t = 0, \ldots, N$ ,  $j = 1, \ldots, K$ , introduce new variables  $p^{(j)}(t)$  and constraints

$$-p^{(j)}(t) \le \sum_{i=0}^{l} v_i^{(j)} u(t-i) \le p^{(j)}(t)$$

• replace  $|\sum_i v_i^{(j)} u(t-i)|$  by  $p^{(j)}(t)$ 

# example (K = 6)



### design for nominal system



## robust design



# State space description

input-output description:

$$y(t) = H_0 u(t) + H_1 u(t-1) + H_2 u(t-2) + \cdots$$

$$\begin{bmatrix} y(0) \\ y(1) \\ y(2) \\ \vdots \\ y(N) \end{bmatrix} = \begin{bmatrix} H_0 & 0 & 0 & \cdots & 0 \\ H_1 & H_0 & 0 & \cdots & 0 \\ H_2 & H_1 & H_0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ H_N & H_{N-1} & H_{N-2} & \cdots & H_0 \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ u(2) \\ \vdots \\ u(N) \end{bmatrix}$$

block Toeplitz structure (constant along diagonals)

#### state space model:

$$x(t+1) = Ax(t) + Bu(t),$$
  $y(t) = Cx(t) + Du(t)$   
with  $H_0 = D$ ,  $H_i = CA^{i-1}B$   $(i > 0)$ 

 $x(t) \in \mathbf{R}^n$  is state sequence

alternative description:



- we don't eliminate the intermediate variables x(t)
- matrix is larger, but very sparse (interesting when using general-purpose LP solvers)

# **Pole placement**

linear system

$$\dot{z}(t) = A(x)z(t), \qquad z(0) = z_0$$

where  $A(x) = A_0 + x_1 A_1 + \dots + x_p A_p \in \mathbf{R}^{n \times n}$ 

• solutions have the form

$$z_i(t) = \sum_k \beta_{ik} e^{\sigma_k t} \cos(\omega_k t - \phi_{ik})$$

where  $\lambda_k = \sigma_k \pm j\omega_k$  are the eigenvalues of A(x)

- $x \in \mathbf{R}^p$  is the design parameter
- goal: place eigenvalues of A(x) in a desired region by choosing x

# Low-authority control

eigenvalues of A(x) are very complicated (nonlinear, nondifferentiable) functions of x

first-order perturbation: if  $\lambda_i(A_0)$  is *simple*, then

$$\lambda_i(A(x)) = \lambda_i(A_0) + \sum_{k=1}^p \frac{w_i^* A_k v_i}{w_i^* v_i} x_k + o(||x||)$$

where  $w_i$ ,  $v_i$  are the left and right eigenvectors:

$$w_i^* A_0 = \lambda_i (A_0) w_i^*, \quad A_0 v_i = \lambda_i (A_0) v_i$$

### 'low-authority' control:

- use linear first-order approximations for  $\lambda_i$
- can place  $\lambda_i$  in a polyhedral region by imposing linear inequalities on x
- we expect this to work only for small shifts in eigenvalues

# Example

truss with 30 nodes, 83 bars



 $M\ddot{d}(t) + D\dot{d}(t) + Kd(t) = 0$ 

- d(t): vector of horizontal and vertical node displacements
- $M = M^T > 0$  (mass matrix): masses at the nodes
- $D = D^T > 0$  (damping matrix);  $K = K^T > 0$  (stiffness matrix)

to increase damping, we attach dampers to the bars:

$$D(x) = D_0 + x_1 D_1 + \dots + x_p D_p$$

 $x_i > 0$ : amount of external damping at bar i

eigenvalue placement problem

minimize 
$$\sum_{i=1}^{p} x_i$$
  
subject to  $\lambda_i(M, D(x), K) \in \mathcal{C}, \quad i = 1, \dots, n$   
 $x \ge 0$ 

an LP if  $\mathcal C$  is polyhedral and we use the 1st order approximation for  $\lambda_i$ 



## location of dampers



# Lecture 8 Duality (part 1)

- the dual of an LP in inequality form
- weak duality
- examples
- optimality conditions and complementary slackness
- Farkas' lemma and theorems of alternatives
- proof of strong duality

# The dual of an LP in inequality form

LP in inequality form:

minimize 
$$c^T x$$
  
subject to  $a_i^T x \leq b_i, \quad i=1,\ldots,m$ 

- n variables, m inequality constraints, optimal value  $p^{\star}$
- called *primal problem* (in context of duality)

the dual LP (with  $A = [a_1 \ a_2 \ \dots \ a_m]^T$ ):

$$\begin{array}{ll} \mbox{maximize} & -b^Tz\\ \mbox{subject to} & A^Tz+c=0\\ & z\geq 0 \end{array}$$

- $\bullet\,$  an LP in standard form with m variables, n equality constraints
- optimal value denoted  $d^{\star}$

**main property**:  $p^* = d^*$  (if primal or dual is feasible)

# Weak duality

#### lower bound property:

if x is primal feasible and z is dual feasible, then

$$c^T x \ge -b^T z$$

proof: 
$$c^T x \ge c^T x + \sum_{i=1}^m z_i (a_i^T x - b_i) = -b^T z$$

 $c^T x + b^T z$  is called the *duality gap* associated with x and z

weak duality: minimize over x, maximize over z:

$$p^{\star} \ge d^{\star}$$

always true (even when  $p^{\star}=+\infty$  and/or  $d^{\star}=-\infty$ )

example

### primal problem

minimize 
$$-4x_1 - 5x_2$$
  
subject to 
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

optimal point:  $x^{\star} = (1, 1)$ , optimal value  $p^{\star} = -9$ 

### dual problem

$$\begin{array}{ll} \text{maximize} & -3z_2 - 3z_4 \\ \text{subject to} & \begin{bmatrix} -1 & 2 & 0 & 1 \\ 0 & 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} + \begin{bmatrix} -4 \\ -5 \end{bmatrix} = 0 \\ z_1 \ge 0, \ z_2 \ge 0, \ z_3 \ge 0, \ z_4 \ge 0 \end{array}$$

z = (0, 1, 0, 2) is dual feasible with objective value -9

### **conclusion** (by weak duality):

- z is a certificate that  $x^*$  is (primal) optimal
- $x^*$  is a certificate that z is (dual) optimal

## **Piecewise-linear minimization**

minimize  $\max_{i=1,...,m} (a_i^T x - b_i)$ lower bounds for optimal value  $p^*$ ?

**LP formulation** (variables x, t)

minimize 
$$t$$
  
subject to  $\begin{bmatrix} A & -1 \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \le b$ 

dual LP

$$\begin{array}{ll} \text{maximize} & -b^T z\\ \text{subject to} & \left[ \begin{array}{c} A^T\\ -\mathbf{1}^T \end{array} \right] z + \left[ \begin{array}{c} 0\\ 1 \end{array} \right] = 0\\ z \geq 0 \end{array}$$

(same optimal value)

### Interpretation

**lemma:** if  $z \ge 0$ ,  $\sum_i z_i = 1$ , then for all y,

$$\max_i y_i \ge \sum_i z_i y_i$$

hence,  $\max_i(a_i^T x - b_i) \ge z^T (Ax - b)$ 

this yields a lower bound on  $p^*$ :

$$p^{\star} = \min_{x} \max_{i} (a_{i}^{T}x - b_{i}) \ge \min_{x} z^{T} (Ax - b) = \begin{cases} -b^{T}z & \text{if } A^{T}z = 0\\ -\infty & \text{otherwise} \end{cases}$$

to get best lower bound:

maximize 
$$-b^T z$$
  
subject to  $A^T z = 0$   
 $\mathbf{1}^T z = 1$   
 $z \ge 0$ 

# $\ell_\infty$ -approximation

minimize  $||Ax - b||_{\infty}$ 

LP formulation

minimize 
$$t$$
  
subject to  $\begin{bmatrix} A & -\mathbf{1} \\ -A & -\mathbf{1} \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \leq \begin{bmatrix} b \\ -b \end{bmatrix}$ 

### LP dual

maximize 
$$-b^T w + b^T v$$
  
subject to  $A^T w - A^T v = 0$   
 $\mathbf{1}^T w + \mathbf{1}^T v = 1$   
 $w, v \ge 0$ 
(1)

can be expressed as

maximize 
$$b^T z$$
  
subject to  $A^T z = 0$  (2)  
 $\|z\|_1 \le 1$ 

proof of equivalence of (1) and (2)

- assume w, v feasible in (1), *i.e.*,  $w \ge 0$ ,  $v \ge 0$ ,  $\mathbf{1}^T(w+v) = 1$ 
  - -z = v w is feasible in (2):

$$||z||_1 = \sum_i |v_i - w_i| \le \mathbf{1}^T v + \mathbf{1}^T w = 1$$

- same objective value:  $b^T z = b^T v - b^T w$ 

• assume z is feasible in (2), *i.e.*,  $A^T z = 0$ ,  $||z||_1 \le 1$ 

- 
$$w_i = \max\{z_i, 0\} + \alpha$$
,  $v_i = \max\{-z_i, 0\} + \alpha$ , with  $\alpha = (1 - ||z||_1)/(2m)$ , are feasible in (1):

$$v, w \ge 0, \qquad \mathbf{1}^T w + \mathbf{1}^T v = 1$$

- same objective value:  $b^T v - b^T w = b^T z$ 

## Interpretation

lemma:  $u^T v \le ||u||_1 ||v||_{\infty}$ 

hence, for every z with  $||z||_1 \leq 1$ , we have a lower bound on  $||Ax - b||_{\infty}$ :

$$||Ax - b||_{\infty} \ge z^T (Ax - b)$$

$$p^{\star} = \min_{x} \|Ax - b\|_{\infty} \ge \min_{x} z^{T} (Ax - b) = \begin{cases} -b^{T} z & \text{if } A^{T} z = 0\\ -\infty & \text{otherwise} \end{cases}$$

to get best lower bound

$$\begin{array}{ll} \text{maximize} & -b^T z\\ \text{subject to} & A^T z = 0\\ \|z\|_1 \leq 1 \end{array}$$

# **Optimality conditions**

primal feasible x is optimal if and only if there is a dual feasible z with

$$c^T x = -b^T z$$

*i.e.*, associated duality gap is zero

**complementary slackness**: for x, z optimal,

$$c^T x + b^T z = \sum_{i=1}^m z_i (b_i - a_i^T x) = 0$$

hence for each i,  $a_i^T x = b_i$  or  $z_i = 0$ :

- $z_i > 0 \Longrightarrow a_i^T x = b_i$  (*i*th inequality is active at x)
- $a_i^T x < b_i \Longrightarrow z_i = 0$

# **Geometric interpretation**



- two active constraints at optimum  $(a_1^T x^{\star} = b_1, a_2^T x^{\star} = b_2)$
- optimal dual solution satisfies

$$-c = A^T z, \qquad z \ge 0, \qquad z_i = 0 \text{ for } i \ne 1, 2,$$

*i.e.*,  $-c = a_1 z_1 + a_2 z_2$ 

• geometrically, -c lies in the cone generated by  $a_1$  and  $a_2$ 

Duality (part 1)

example in  $\mathbf{R}^2$ :

## Separating hyperplane theorem

if  $S \subseteq \mathbf{R}^n$  is a nonempty, closed, convex set, and  $x^\star \notin S$ , then there exists  $c \neq 0$  such that

 $c^T x^* < c^T x$  for all  $x \in S$ ,

*i.e.*, for some value of d, the hyperplane  $c^T x = d$  separates  $x^*$  from S



idea of proof: use  $c=p_S(x^\star)-x^\star$  , where  $p_S(x^\star)$  is the projection of  $x^\star$  on S,~i.e.,

$$p_S(x^\star) = \operatorname*{argmin}_{x \in S} \|x^\star - x\|$$

## Farkas' lemma

given A, b, exactly one of the following two statements is true:

- 1. there is an  $x \ge 0$  such that Ax = b
- 2. there is a y such that  $A^T y \ge 0$ ,  $b^T y < 0$

very useful in practice: any y in 2 is a *certificate* or *proof* that Ax = b,  $x \ge 0$  is infeasible, and vice-versa

**proof** (easy part): we have a contradiction if 1 and 2 are both true:

$$0 = y^T (Ax - b) \ge -b^T y > 0$$
**proof** (difficult part):  $\neg 1 \Longrightarrow 2$ 

- $\neg 1 \text{ means } b \notin S = \{Ax \mid x \ge 0\}$
- S is nonempty, closed, and convex (the image of the nonnegative orthant under a linear mapping)
- hence there exists a y s.t.

$$y^T b < y^T A x$$
 for all  $x \ge 0$ 

implies:

- 
$$y^T b < 0$$
 (choose  $x = 0$ )  
-  $A^T y \ge 0$  (if  $(A^T y)_k < 0$  for some  $k$ , we can choose  $x_i = 0$  for  $i \ne k$ ,  
and  $x_k \rightarrow +\infty$ ; then  $y^T A x \rightarrow -\infty$ )

*i.e.*, 2 is true

## **Theorems of alternatives**

many variations on Farkas' lemma: *e.g.*, for given  $A \in \mathbb{R}^{m \times n}$   $b \in \mathbb{R}^{m}$ , exactly one of the following statements is true:

- 1. there is an x with  $Ax \leq b$
- 2. there is a  $y \ge 0$  with  $A^T y = 0$ ,  $b^T y < 0$

#### proof

(easy half): 1 and 2 together imply  $0 \le (b - Ax)^T y = b^T y < 0$ (difficult half): if 1 does not hold, then

$$b \notin S = \{Ax + s \mid x \in \mathbf{R}^n, s \in \mathbf{R}^m, s \ge 0\}$$

hence, there is a separating hyperplane, *i.e.*,  $y \neq 0$  subject to

 $y^T b < y^T (Ax + s)$  for all x and all  $s \ge 0$ 

equivalent to  $b^T y < 0$ ,  $A^T y = 0$ ,  $y \ge 0$  (*i.e.*, 2 is true)

Duality (part 1)

### **Proof of strong duality**

strong duality:  $p^{\star} = d^{\star}$  (except possibly when  $p^{\star} = +\infty$ ,  $d^{\star} = -\infty$ )

suppose  $p^{\star}$  is finite, and  $x^{\star}$  is optimal with

$$a_i^T x^* = b_i, \quad i \in I, \qquad a_i^T x^* < b_i, \quad i \notin I$$

we'll show there is a dual feasible z with  $-b^T z = c^T x^\star$ 

•  $x^{\star}$  optimal implies that the set of inequalities

$$a_i^T d \le 0, \quad i \in I, \qquad c^T d < 0 \tag{1}$$

is infeasible; otherwise we would have for small t > 0

$$a_i^T(x^* + td) \le b_i, \quad i = 1, \dots, m, \qquad c^T(x^* + td) < c^T x^*$$

Duality (part 1)

• from Farkas' lemma: (1) is infeasible if and only if there exists  $\lambda_i$ ,  $i \in I$ ,

$$\lambda_i \ge 0, \qquad \sum_{i \in I} \lambda_i a_i = -c$$

this yields a dual feasible z:

$$z_i = \lambda_i, \quad i \in I, \qquad z_i = 0, \quad i \notin I$$

• z is dual optimal:

$$-b^{T}z = -\sum_{i \in I} b_{i}z_{i} = -\sum_{i \in I} (a_{i}^{T}x^{\star})z_{i} = -z^{T}Ax^{\star} = c^{T}x^{\star}$$

this proves:  $p^{\star}$  finite  $\Longrightarrow d^{\star} = p^{\star}$ 

exercise:  $p^{\star}=+\infty \Longrightarrow d^{\star}=+\infty$  or  $d^{\star}=-\infty$ 

# Summary

#### possible cases:

- $p^{\star} = d^{\star}$  and finite: primal and dual optima are attained
- $p^{\star} = d^{\star} = +\infty$ : primal is infeasible; dual is feasible and unbounded
- $p^{\star} = d^{\star} = -\infty$ : primal is feasible and unbounded; dual is infeasible
- $p^{\star} = +\infty$ ,  $d^{\star} = -\infty$ : primal and dual are infeasible

#### uses of duality:

- dual optimal z provides a proof of optimality for primal feasible x
- dual feasible z provides a lower bound on  $p^*$  (useful for stopping criteria)
- sometimes it is easier to solve the dual
- modern interior-point methods solve primal and dual simultaneously

Duality (part 1)

# Lecture 9 Duality (part 2)

- duality in algorithms
- sensitivity analysis via duality
- duality for general LPs
- examples
- mechanics interpretation
- circuits interpretation
- two-person zero-sum games

# **Duality in algorithms**

many algorithms produce at iteration k

- a primal feasible  $x^{(k)}$
- and a dual feasible  $z^{(k)}$

with  $c^T x^{(k)} + b^T z^{(k)} \to 0$  as  $k \to \infty$ 

hence at iteration k we **know**  $p^{\star} \in \left[-b^T z^{(k)}, c^T x^{(k)}\right]$ 

- useful for stopping criteria
- algorithms that use dual solution are often more efficient

## Nonheuristic stopping criteria

• (absolute error)  $c^T x^{(k)} - p^{\star}$  is less than  $\epsilon$  if

$$c^T x^{(k)}) + b^T z^{(k)} < \epsilon$$

• (relative error)  $(c^T x^{(k)} - p^{\star})/|p^{\star}|$  is less than  $\epsilon$  if

$$-b^T z^{(k)} > 0 \quad \& \quad \frac{c^T x^{(k)} + b^T z^{(k)}}{-b^T z^{(k)}} \le \epsilon$$

or

$$c^T x^{(k)} < 0 \quad \& \quad \frac{c^T x^{(k)}) + b^T z^{(k)}}{-c^T x^{(k)}} \le \epsilon$$

• target value  $\ell$  is achievable  $(p^* \leq \ell)$  if

$$c^T x^{(k)}) \le \ell$$

• target value  $\ell$  is unachievable  $(p^{\star} > \ell)$  if

 $-b^T z^{(k)} > \ell$ 

## Sensitivity analysis via duality

perturbed problem:

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax \leq b + \epsilon d \end{array}$ 

 $A \in \mathbf{R}^{m \times n}$ ;  $d \in \mathbf{R}^m$  given; optimal value  $p^*(\epsilon)$ 

**global sensitivity result**: if  $z^*$  is (any) dual optimal solution for the unperturbed problem, then for all  $\epsilon$ 

$$p^{\star}(\epsilon) \ge p^{\star} - \epsilon d^T z^{\star}$$

**proof.**  $z^*$  is dual feasible for all  $\epsilon$ ; by weak duality,

$$p^{\star}(\epsilon) \ge -(b+\epsilon d)^T z^{\star} = p^{\star} - \epsilon d^T z^{\star}$$

#### interpretation



- $d^T z^* > 0$ :  $\epsilon < 0$  increases  $p^*$
- $d^T z^* > 0$  and large:  $\epsilon < 0$  greatly increases  $p^*$
- $d^T z^* > 0$  and small:  $\epsilon > 0$  does not decrease  $p^*$  too much
- $d^T z^{\star} < 0$ :  $\epsilon > 0$  increases  $p^{\star}$
- $d^T z^{\star} < 0$  and large:  $\epsilon > 0$  greatly increases  $p^{\star}$
- $d^T z^{\star} < 0$  and small:  $\epsilon > 0$  does not decrease  $p^{\star}$  too much

## Local sensitivity analysis

**assumption:** there is a nondegenerate optimal vertex  $x^*$ , *i.e.*,

•  $x^*$  is an optimal vertex:  $\operatorname{rank} \overline{A} = n$ , where

$$\bar{A} = \begin{bmatrix} a_{i_1} & a_{i_2} & \cdots & a_{i_K} \end{bmatrix}^T$$

and  $I = \{i_1, \ldots, i_K\}$  is the set of active constraints at  $x^{\star}$ 

•  $x^{\star}$  is nondegenerate:  $\bar{A} \in \mathbf{R}^{n \times n}$ 

w.l.o.g. we assume  $I = \{1, 2, \ldots, n\}$ 

#### consequence: dual optimal $z^*$ is unique

proof: by complementary slackness,  $z_i^{\star} = 0$  for i > n

by dual feasibility,

$$\sum_{i=1,\dots,n} a_i z_i^{\star} = \bar{A}^T \begin{bmatrix} z_1^{\star} \\ \vdots \\ z_n^{\star} \end{bmatrix} = -c \implies z^{\star} = \begin{bmatrix} -\bar{A}^{-T}c \\ 0 \end{bmatrix}$$

Duality (part 2)

**optimal solution** of the perturbed problem (for small  $\epsilon$ ):

$$x^{\star}(\epsilon) = x^{\star} + \epsilon \overline{A}^{-1} \overline{d}$$
 (with  $\overline{d} = (d_1, \dots, d_n)$ )

•  $x^{\star}(\epsilon)$  is feasible for small  $\epsilon$ :

$$a_i^T x^{\star}(\epsilon) = b_i + \epsilon d_i, \quad i = 1, \dots, n, \qquad a_i^T x^{\star}(\epsilon) < b_i + \epsilon d_i, \quad i = n+1, \dots, m$$

•  $z^*$  is dual feasible and satisfies complementary slackness:

$$(b + \epsilon d - Ax^{\star}(\epsilon))^T z^{\star} = 0$$

**optimal value** of perturbed problem (for small  $\epsilon$ ):

$$p^{\star}(\epsilon) = c^T x^{\star}(\epsilon) = p^{\star} + \epsilon c^T \bar{A}^{-1} \bar{d} = p^{\star} - \epsilon d^T z^{\star}$$

- $z_i^{\star}$  is sensitivity of cost w.r.t. righthand side of *i*th constraint
- $z_i^{\star}$  is called marginal cost or shadow price associated with *i*th constraint

## **Dual of a general LP**

**method 1**: express as LP in inequality form and take its dual example: standard form LP

minimize 
$$c^T x$$
  
subject to  $\begin{bmatrix} -I \\ A \\ -A \end{bmatrix} x \leq \begin{bmatrix} 0 \\ b \\ -b \end{bmatrix}$ 

dual:

$$\begin{array}{ll} \mbox{maximize} & -b^T(v-w) \\ \mbox{subject to} & -u+A^T(v-w)+c=0 \\ & u \geq 0, \quad v \geq 0, \quad w \geq 0 \end{array}$$

**method 2**: apply Lagrange duality (this lecture)

# Lagrangian

 $\begin{array}{ll} \mbox{minimize} & c^T x\\ \mbox{subject to} & a_i^T x \leq b_i, \quad i=1,\ldots,m\\ \mbox{Lagrangian } L: {\bf R}^{n+m} \to {\bf R} \end{array}$ 

$$L(x,\lambda) = c^T x + \sum_{i=1}^m \lambda_i (a_i^T x - b_i)$$

- $\lambda_i$  are called *Lagrange multipliers*
- objective is *augmented* with weighted sum of constraint functions

**lower bound property:** if  $Ax \leq b$  and  $\lambda \geq 0$ , then

$$c^T x \ge L(x,\lambda) \ge \min_{\tilde{x}} L(\tilde{x},\lambda)$$

hence,  $p^{\star} \geq \min_{\tilde{x}} L(\tilde{x}, \lambda)$  for  $\lambda \geq 0$ 

## Lagrange dual problem

Lagrange dual function  $g : \mathbb{R}^m \to \mathbb{R} \cup \{-\infty\}$ 

$$g(\lambda) = \min_{x} L(x, \lambda) = \min_{x} \left( -b^{T}\lambda + (A^{T}\lambda + c)^{T}x \right)$$
$$= \begin{cases} -b^{T}\lambda & \text{if } A^{T}\lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

(Lagrange) dual problem

 $\begin{array}{ll} \mbox{maximize} & g(\lambda) \\ \mbox{subject to} & \lambda \geq 0 \end{array}$ 

yields the dual LP:

$$\begin{array}{ll} \text{maximize} & -b^T\lambda\\ \text{subject to} & A^T\lambda+c=0, \quad \lambda\geq 0 \end{array}$$

finds best lower bound  $g(\lambda)$ 

Duality (part 2)

## Lagrangian of a general LP

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & a_i^T x \leq b_i, \quad i=1,\ldots,m\\ & g_i^T x=h_i, \quad i=1,\ldots,p \end{array}$$

define Lagrangian  $L: \mathbb{R}^{n+m+p} \to \mathbb{R}$  as

$$L(x,\lambda,\nu) = c^{T}x + \sum_{i=1}^{m} \lambda_{i}(a_{i}^{T}x - b_{i}) + \sum_{i=1}^{p} \nu_{i}(g_{i}^{T}x - h_{i})$$

**lower bound property**: if x is feasible and  $\lambda \ge 0$ ,

$$c^T x \ge L(x,\lambda,\nu) \ge \min_{\tilde{x}} L(\tilde{x},\lambda,\nu)$$

hence,  $p^{\star} \geq \min_{x} L(x, \lambda, \nu)$  if  $\lambda \geq 0$ 

multipliers associated with equality constraints can have either sign

Duality (part 2)

#### Lagrange dual function:

$$g(\lambda,\nu) = \min_{x} L(x,\lambda,\nu) = \min_{x} \left( c^{T}x + \lambda^{T}(Ax-b) + \nu^{T}(Gx-h) \right)$$
$$= \min_{x} \left( -b^{T}\lambda - h^{T}\nu + x^{T}(c+A^{T}\lambda + G^{T}\nu) \right)$$
$$= \begin{cases} -b^{T}\lambda - h^{T}\nu & \text{if } A^{T}\lambda + G^{T}\nu + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

Lagrange dual problem:

$$\begin{array}{ll} \mbox{maximize} & -b^T\lambda - h^T\nu\\ \mbox{subject to} & A^T\lambda + G^T\nu + c = 0\\ & \lambda \geq 0 \end{array}$$

variables  $\lambda$ ,  $\nu$ ; optimal value  $d^{\star}$ 

- an LP (in general form)
- weak duality  $p^{\star} \geq d^{\star}$
- strong duality holds:  $p^* = d^*$  (except when both problems are infeasible)

## **Example: standard form LP**

$$\begin{array}{ll} \mbox{minimize} & c^T x\\ \mbox{subject to} & Ax = b, \quad x \geq 0\\ \mbox{Lagrangian:} & L(x,\nu,\lambda) = c^T x + \nu^T (Ax - b) - \lambda^T x \end{array}$$

dual function

$$g(\lambda,\nu) = \min_{x} L(x,\nu,\lambda) = \begin{cases} -b^T\nu & \text{if } A^T\nu - \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

dual problem

$$\begin{array}{ll} \text{maximize} & -b^T\nu\\ \text{subject to} & A^T\nu-\lambda+c=0, \quad \lambda\geq 0 \end{array}$$

equivalent to dual on page 9–9

maximize 
$$b^T z$$
  
subject to  $A^T z \leq c$ 

# **Price or tax interpretation**

- x: describes how an enterprise operates;  $c^T x$ : cost of operating at x
- $a_i^T x \leq b_i$ : limits on resources, regulatory limits

optimal operating point is solution of

minimize 
$$c^T x$$
  
subject to  $a_i^T x \leq b_i$ ,  $i = 1, \dots, m$ 

optimal cost:  $p^{\star}$ 

**scenario 2**: constraint violations can be bought or sold at unit cost  $\lambda_i \ge 0$ 

minimize 
$$c^T x + \sum_{i=1}^m \lambda_i (a_i^T x - b_i)$$

optimal cost:  $g(\lambda)$ 

interpretation of strong duality: there exist prices  $\lambda_i^*$  s.t.  $g(\lambda^*) = p^*$ , *i.e.*, there is no advantage in selling/buying constraint violations

## **Mechanics interpretation**



- mass subject to gravity, can move freely between walls described by  $a_i^T \boldsymbol{x} = b_i$
- equilibrium position minimizes potential energy, *i.e.*, solves

minimize 
$$c^T x$$
  
subject  $a_i^T x \leq b_i, \quad i=1,\ldots,m$ 

optimality conditions:

1. 
$$a_i^T x^* \le b_i, \ i = 1, \dots, m$$

2. 
$$\sum_{i=1}^{m} z_i^{\star} a_i + c = 0, \ z^{\star} \ge 0$$

3. 
$$z_i^{\star}(b_i - a_i^T x^{\star}) = 0, \ i = 1, \dots, m$$

**interpretation**:  $-z_i a_i$  is contact force with wall *i*; nonzero only if the ball touches the *i*th wall

# **Circuits interpretation**



ideal multiterminal transformer ( $A \in \mathbf{R}^{m \times n}$ )



$$\widehat{v} = A \widetilde{v} \\ \widetilde{\imath} = -A^T \widehat{\imath}$$

#### example



circuit equations:

$$\widehat{v} = Av \le b, \qquad i \ge 0, \qquad \widetilde{i} + c = A^T i + c = 0$$
  
 $i_k(b_k - a_k^T v) = 0, \quad k = 1, \dots, m$ 

i.e., optimality conditions for LP

$$\begin{array}{lll} \mbox{minimize} & c^T v & \mbox{maximize} & -b^T i \\ \mbox{subject to} & A v \leq b & \mbox{subject to} & A^T i + c = 0 \\ & & i \geq 0 \end{array}$$

Duality (part 2)

#### interpretation: two 'potential functions'

- content (a function of the voltages)
- *co-content* (a function of the currents)

contribution of each component (notation of page 9–18)

- content of current source is Ivco-content is 0 if i = I,  $-\infty$  otherwise
- content of voltage source is 0 if v = E,  $\infty$  otherwise co-content is -Ei
- content of diode is 0 if  $v \ge 0$ ,  $+\infty$  otherwise co-content is 0 if  $i \le 0$  and  $-\infty$  otherwise
- content of transformer is 0 if  $\hat{v} = A\tilde{v}$ ,  $\infty$  otherwise co-content is 0 if  $\tilde{i} = -A^T \hat{i}$ ,  $-\infty$  otherwise

primal problem: voltages minimize total content

dual problem: currents maximize total co-content

#### example

primal problem

$$\begin{array}{ll} \mbox{minimize} & c^T v \\ \mbox{subject to} & Av \leq b \\ & v \geq 0 \end{array}$$

circuit equivalent:



dual problem:

$$\begin{array}{ll} \mathsf{maximize} & -b^T i \\ \mathsf{subject to} & A^T i + c \geq 0 \\ & i \geq 0 \end{array}$$

Duality (part 2)

# Two-person zero-sum games (matrix games)

described by a **payoff matrix** 

 $A \in \mathbf{R}^{m \times n}$ 

- player 1 chooses a number in  $\{1, \ldots, m\}$  (corresponding to m possible actions or strategies)
- player 2 chooses a number in  $\{1, \ldots, n\}$
- players make their choice simultaneously and independently
- if P1's choice is i and P2's choice is j, then P1 pays  $a_{ij}$  to P2 (negative  $a_{ij}$  means P2 pays  $-a_{ij}$  to P1)

# Mixed (randomized) strategies

players make random choices according to some probability distribution

• player 1 chooses randomly according to distribution  $x \in \mathbf{R}^m$ :

$$\mathbf{1}^T x = 1, \qquad x \ge 0$$

 $(x_i \text{ is probability of choosing } i)$ 

• player 2 chooses randomly (and independently from 1) according to distribution  $y \in \mathbf{R}^n$ :

$$\mathbf{1}^T y = 1, \qquad y \ge 0$$

 $(y_j \text{ is probability of choosing } j)$ 

**expected payoff** from player 1 to 2, if they use mixed stragies x and y:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j a_{ij} = x^T A y$$

## **Optimal mixed strategies**

optimal strategy for player 1:

minimize<sub>x</sub> 
$$\max_{\mathbf{1}^T y=1, y \ge 0} x^T A y$$
  
subject to  $\mathbf{1}^T x = 1, x \ge 0$ 

note:

$$\max_{\mathbf{1}^T y=1, y \ge 0} x^T A y = \max_{j=1,\dots,n} (A^T x)_j$$

optimal strategy  $x^\star$  can be computed by solving an LP

minimize 
$$t$$
  
subject to  $A^T x \le t \mathbf{1}$   
 $\mathbf{1}^T x = 1, \quad x \ge 0$  (1)

(variables x, t)

Duality (part 2)

#### optimal strategy for player 2:

$$\begin{array}{ll} \text{maximize}_y & \min_{\mathbf{1}^T x = 1, x \ge 0} x^T A y \\ \text{subject to} & \mathbf{1}^T y = 1, \quad y \ge 0 \end{array}$$

note:

$$\min_{\mathbf{1}^T x = 1, x \ge 0} x^T A y = \min_{i=1,\dots,m} (Ay)_i$$

optimal strategy  $y^{\star}$  can be computed by solving an LP

maximize 
$$w$$
  
subject to  $Ay \ge w\mathbf{1}$   
 $\mathbf{1}^T y = 1, \quad y \ge 0$ 

(variables y, w)

(2)

## The minimax theorem

for all mixed strategies x, y,

$$x^{\star T}Ay \le x^{\star T}Ay^{\star} \le x^{T}Ay^{\star}$$

proof: the LPs (1) and (2) are duals, so they have the same optimal value

#### example

$$A = \begin{bmatrix} 4 & 2 & 0 & -3 \\ -2 & -4 & -3 & 3 \\ -2 & -3 & 4 & 1 \end{bmatrix}$$

optimal strategies

$$x^{\star} = (0.37, 0.33, 0.3), \qquad y^{\star} = (0.4, 0, 0.13, 0.47)$$

expected payoff:  $x^{\star T}Ay^{\star} = 0.2$ 

# Lecture 10 The simplex method

- extreme points
- adjacent extreme points
- one iteration of the simplex method
- degeneracy
- initialization
- numerical implementation

# Idea of the simplex method

move from one extreme point to an adjacent extreme point with lower cost until an optimal extreme point is reached

- invented in 1947 (George Dantzig)
- usually developed and implemented for LPs in standard form

#### questions

- 1. how do we characterize extreme points? (answered in lecture 3)
- 2. how do we move from an extreme point to an adjacent one?
- 3. how do we select an adjacent extreme point with a lower cost?
- 4. how do we find an initial extreme point?
#### **Extreme points**

to check whether x is an extreme point of a polyhedron defined by

$$a_i^T x \le b_i, \quad i = 1, \dots, m$$

- check that  $Ax \leq b$
- define

$$A_{I} = \begin{bmatrix} a_{i_{1}}^{T} \\ a_{i_{2}}^{T} \\ \vdots \\ a_{i_{K}}^{T} \end{bmatrix}, \qquad I = \{i_{1}, \dots, i_{K}\}$$

where I is the set of active constraints at x:

$$a_k^T x = b_k, \quad k \in I, \qquad a_k^T x < b_k, \quad k \notin I$$

• x is an extreme point if and only if  $\operatorname{rank}(A_I) = n$ 

## Degeneracy

an extreme point is **nondegenerate** if exactly n constraints are active at x

- $A_I$  is square and nonsingular (K = n)
- $x = A_I^{-1} b_I$ , where  $b_I = (b_{i_1}, b_{i_2}, \dots, b_{i_n})$

an extreme point is **degenerate** if more than n constraints are active at x

- extremality is a geometric property (depends on  $\mathcal{P}$ )
- degeneracy/nondegeneracy depend on the representation of  $\mathcal{P}$  (i.e., A and b)

## Assumptions

we will develop the simplex algorithm for an LP in inequality form

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax \leq b \end{array}$ 

with  $A \in \mathbf{R}^{m \times n}$ 

we assume throughout the lecture that  $\operatorname{rank}(A) = n$ 

- if  $\operatorname{rank}(A) < n$ , we can reduce the number of variables
- implies that the polyhedron has at least one extreme point (page 3–25)
- implies that if the LP is solvable, it has an optimal extreme point (page 3–28)

until page 10-20 we assume that all the extreme points are nondegenerate

## **Adjacent extreme points**

extreme points are **adjacent** if they have n-1 common active constraints

#### moving to an adjacent extreme point

given extreme point x with active index set I and an index  $k \in I$ , find an extreme point  $\hat{x}$  that has the active constraints  $I \setminus \{k\}$  in common with x

1. solve the n equations

$$a_i^T \Delta x = 0, \quad i \in I \setminus \{k\}, \qquad a_k^T \Delta x = -1$$

2. if  $A\Delta x \leq 0$ , then  $\{\hat{x} + \alpha \Delta x \mid \alpha \geq 0\}$  is a feasible half-line:

$$A(x + \alpha \Delta x) \le b \quad \forall \alpha \ge 0$$

3. otherwise,  $\hat{x} = x + \alpha \Delta x$  , where

$$\alpha = \min_{i:a_i^T \Delta x > 0} \frac{b_i - a_i^T x}{a_i^T \Delta x}$$

#### comments

- step 1: equations are solvable because  $A_I$  is nonsingular
- step 3: α > 0 because a<sup>T</sup><sub>i</sub> Δx > 0 means i ∉ I, hence a<sup>T</sup><sub>i</sub> x < b<sub>i</sub> (for nondegenerate x)
- new active set is  $\hat{I} = I \setminus \{k\} \cup \{j\}$  where

$$j = \underset{i:a_i^T \Delta x > 0}{\operatorname{argmin}} \frac{b_i - a_i^T x}{a_i^T \Delta x}$$

•  $A_{\hat{I}}$  is nonsingular because

$$a_i^T \Delta x = 0, \quad i \in I \setminus \{k\}, \qquad a_j^T \Delta x > 0$$

implies that  $a_j$  is linearly independent of the vectors  $a_i$ ,  $i \in I \setminus \{k\}$ 

#### Example



#### extreme points

| x      | b - Ax       | Ι          |
|--------|--------------|------------|
| (1, 0) | (0, 0, 1, 3) | $\{1, 2\}$ |
| (0,1)  | (1, 0, 0, 1) | $\{2,3\}$  |
| (0,2)  | (2, 1, 0, 0) | $\{3, 4\}$ |

compute extreme points adjacent to x = (1, 0)

- 1. try to remove k = 1 from active set  $I = \{1, 2\}$ 
  - compute  $\Delta x$

$$\begin{bmatrix} 0 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \implies \Delta x = (-1, 1)$$

• minimum ratio test:  $A\Delta x = (-1, 0, 1, 2)$ 

$$\alpha = \min\{\frac{b_3 - a_3^T x}{a_3^T \Delta x}, \frac{b_4 - a_4^T x}{a_4^T \Delta x}\} = \min\{1/1, 3/2\} = 1$$

new extreme point:  $\hat{x} = (0, 1)$  with active set  $\hat{I} = \{2, 3\}$ 

- 2. try to remove k = 2 from active set  $I = \{1, 2\}$ 
  - compute  $\Delta x$

$$\begin{bmatrix} 0 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \implies \Delta x = (1,0)$$

• 
$$A\Delta x = (0, -1, -1, -1)$$
:

$$\{(1,0) + \alpha(1,0) \mid \alpha \ge 0\}$$

is an unbounded edge of the feasible set

#### Finding an adjacent extreme point with lower cost

given extreme point x with active index set I

1. define  $z \in \mathbf{R}^m$  with

$$A_I^T z_I + c = 0, \qquad z_j = 0, \quad j \notin I$$

- 2. if  $z \ge 0$ , then x, z are primal and dual optimal
- 3. otherwise select k with  $z_k < 0$  and determine  $\Delta x$  as on page 10–6:

$$c^{T}(x + \alpha \Delta x) = c^{T}x - \alpha z_{I}^{T}A_{I}\Delta x$$
$$= c^{T}x + \alpha z_{k}$$

cost decreases in the direction  $\Delta x$ 

#### One iteration of the simplex method

given an extreme point x with active set I

1. compute  $z \in \mathbf{R}^m$  with

$$A_I^T z_I + c = 0, \qquad z_j = 0, \quad j \notin I$$

if  $z \ge 0$ , terminate (x is optimal)

2. choose k such that  $z_k < 0$ , compute  $\Delta x \in \mathbf{R}^n$  with

$$a_i^T \Delta x = 0, \quad i \in I \setminus \{k\}, \qquad a_k^T \Delta x = -1$$
  
if  $A \Delta x \leq 0$ , terminate  $(p^* = -\infty)$ 

3. set  $I:=I\setminus\{k\}\cup\{j\}$ ,  $x:=x+\alpha\Delta x$  where

$$j = \underset{i:a_i^T \Delta x > 0}{\operatorname{argmin}} \frac{b_i - a_i^T x}{a_i^T \Delta x}, \qquad \alpha = \frac{b_j - a_j^T x}{a_j^T \Delta x}$$

## **Pivot selection and convergence**

**step 2:** which k do we choose if  $z_k$  has several negative components? many variants, *e.g.*,

- choose most negative  $z_k$
- choose maximum decrease in cost  $\alpha z_k$
- choose smallest k

all three variants work (if all extreme points are nondegenerate)

**step 3:** *j* is unique and  $\alpha > 0$  (if all extreme points are nondegenerate)

**convergence** follows from:

- number of extreme points is finite
- cost strictly decreases at each step

# Example

$$\min x_{1} + x_{2} - x_{3} \quad \text{s.t.} \quad \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \leq \begin{bmatrix} 0 \\ 0 \\ 2 \\ 2 \\ 2 \\ 5 \end{bmatrix}$$

$$(2, 0, 2) \quad (1, 2, 2) \quad (0, 0, 2) \quad (0, 0, 0) \quad (1, 2, 2) \quad (1, 2)$$

0

0

iteration 1: x = (2, 2, 0), b - Ax = (2, 2, 0, 0, 0, 2, 1),  $I = \{3, 4, 5\}$ 

1. compute z:

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} z_3 \\ z_4 \\ z_5 \end{bmatrix} = -\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \implies z = (0, 0, -1, -1, -1, 0, 0)$$

not optimal; remove k = 3 from active set

2. compute  $\Delta x$ 

$$\begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \implies \Delta x = (0, 0, 1)$$

3. minimum ratio test:  $A\Delta x = (0, 0, -1, 0, 0, 1, 1)$ 

$$\alpha = \operatorname{argmin}\{2/1, 1/1\} = 1, \qquad j = 7$$

iteration 2: x = (2, 2, 1), b - Ax = (2, 2, 1, 0, 0, 1, 0),  $I = \{4, 5, 7\}$ 

1. compute z:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z_4 \\ z_5 \\ z_7 \end{bmatrix} = -\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \implies z = (0, 0, 0, -2, -2, 0, 1)$$

not optimal; remove k = 5 from active set

2. compute  $\Delta x$ 

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \implies \Delta x = (0, -1, 1)$$

3. minimum ratio test:  $A\Delta x = (0, 1, -1, 0, -1, 1, 0)$ 

$$\alpha = \operatorname{argmin}\{2/1, 1/1\} = 1, \qquad j = 6$$

iteration 3: x = (2, 1, 2), b - Ax = (2, 1, 2, 0, 1, 0, 0),  $I = \{4, 6, 7\}$ 

1. compute z:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} z_4 \\ z_6 \\ z_7 \end{bmatrix} = -\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \implies z = (0, 0, 0, 0, 0, 2, -1)$$

not optimal; remove k = 7 from active set

2. compute  $\Delta x$ 

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \implies \Delta x = (0, -1, 0)$$

3. minimum ratio test:  $A\Delta x = (0, 1, 0, 0, -1, 0, -1)$ 

$$\alpha = \operatorname{argmin}\{1/1\} = 1, \qquad j = 2$$

iteration 4: x = (2, 0, 2), b - Ax = (2, 0, 2, 0, 2, 0, 1),  $I = \{2, 4, 6\}$ 

1. compute z:

$$\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z_2 \\ z_4 \\ z_6 \end{bmatrix} = -\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \implies z = (0, 1, 0, -1, 0, 1, 0)$$

not optimal; remove k = 4 from active set

2. compute  $\Delta x$ 

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \implies \Delta x = (-1, 0, 0)$$

3. minimum ratio test:  $A\Delta x = (1, 0, 0, -1, 0, 0, -1)$ 

$$\alpha = \operatorname{argmin}\{2/1\} = 2, \qquad j = 1$$

iteration 5: x = (0, 0, 2), b - Ax = (0, 0, 2, 2, 2, 0, 3),  $I = \{1, 2, 6\}$ 

1. compute z:

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_6 \end{bmatrix} = -\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \implies z = (1, 1, 0, 0, 0, 1, 0)$$

optimal

# Degeneracy

- if x is degenerate,  $A_I$  has rank n but is not square
- if next point is degenerate, we have a tie in the argmin of step 3

#### solution

- define I to be a subset of n linearly independent active constraints
- $A_I$  is square; steps 1 and 2 work as in the nondegenerate case
- in step 3, break ties arbitrarily

#### does it work?

- in step 3 we can have  $\alpha = 0$  (*i.e.*, x does not change)
- $\bullet\,$  maybe this does not hurt, as long as I keeps changing

#### Example

$$\begin{array}{ll} \text{minimize} & -3x_1 + 5x_2 - x_3 + 2x_4 \\ \\ \text{subject to} & \begin{bmatrix} 1 & -2 & -2 & 3 \\ 2 & -3 & -1 & 1 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leq \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

• x = (0, 0, 0, 0) is a degenerate extreme point with

$$b - Ax = (0, 0, 1, 0, 0, 0, 0)$$

• start simplex with  $I = \{4, 5, 6, 7\}$ 

iteration 1: 
$$I = \{4, 5, 6, 7\}$$
  
1.  $z = (0, 0, 0, -3, 5, -1, 2)$ : remove 4 from active set  
2.  $\Delta x = (1, 0, 0, 0)$   
3.  $A\Delta x = (1, 2, 0, -1, 0, 0, 0)$ :  $\alpha = 0$ , add 1 to active set  
iteration 2:  $I = \{1, 5, 6, 7\}$   
1.  $z = (3, 0, 0, 0, -1, -7, 11)$ : remove 5 from active set  
2.  $\Delta x = (2, 1, 0, 0)$   
3.  $A\Delta x = (0, 1, 0, -2, -1, 0, 0)$ :  $\alpha = 0$ , add 2 to active set  
iteration 3:  $I = \{1, 2, 6, 7\}$   
1.  $z = (1, 1, 0, 0, 0, -4, 6)$ : remove 6 from active set  
2.  $\Delta x = (-4, -3, 1, 0)$   
3.  $A\Delta x = (0, 0, 1, 4, 3, -1, 0)$ :  $\alpha = 0$ , add 4 to active set

The simplex method

iteration 4:  $I = \{1, 2, 4, 7\}$ 1. z = (-2, 3, 0, 1, 0, 0, -1): remove 7 from active set 2.  $\Delta x = (0, -1/4, 7/4, 1)$ 3.  $A\Delta x = (0, 0, 7/4, 0, 1/4, -7/4, -1)$ :  $\alpha = 0$ , add 5 to active set iteration 5:  $I = \{1, 2, 4, 5\}$ 1. z = (-1, 1, 0, -2, 4, 0, 0): remove 1 from active set 2.  $\Delta x = (0, 0, -1, -1)$ 3.  $A\Delta x = (-1, 0, -1, 0, 0, 1, 1)$ :  $\alpha = 0$ , add 6 to active set iteration 6:  $I = \{2, 4, 5, 6\}$ 1. z = (0, -2, 0, -7, 11, 1, 0): remove 2 from active set 2.  $\Delta x = (0, 0, 0, -1)$ 3.  $A\Delta x = (-3, -1, 0, 0, 0, 0, 1)$ :  $\alpha = 0$ , add 7 to active set

iteration 7:  $I = \{4, 5, 6, 7\}$ , the initial active set

The simplex method

#### Bland's pivoting rule

no cycling will occur if we follow the following rule

- in step 2, always choose the smallest k for which  $z_k < 0$
- if there is a tie in step 3, always choose the smallest j

**proof** (by contradiction) suppose there is a cycle *i.e.*, for some q > p

$$x^{(p)} = x^{(p+1)} = \dots = x^{(q)}, \qquad I^{(p)} \neq I^{(p+1)} \neq \dots \neq I^{(q)} = I^{(p)}$$

where  $x^{(s)}$  ( $I^{(s)}$ ,  $z^{(s)}$ ,  $\Delta x^{(s)}$ ) is the value of x (I, z,  $\Delta x$ ) at iteration s we also define

- $k_s$ : index removed from I in iteration s;  $j_s$ : index added in iteration s
- $\bar{k} = \max_{p \le s \le q-1} k_s$
- r: the iteration  $(p \le r \le q 1)$  in which  $\overline{k}$  is removed  $(\overline{k} = k_r)$
- t: the iteration  $(r < t \le q)$  in which  $\overline{k}$  is added back again  $(\overline{k} = j_t)$

at iteration r we remove index  $\overline{k}$  from  $I^{(r)}$ ; therefore

- $z_{\overline{k}}^{(r)} < 0$
- $z_i^{(r)} \ge 0$  for  $i \in I^{(r)}$ ,  $i < \overline{k}$  (otherwise we should have removed i)
- $z_i^{(r)} = 0$  for  $i \notin I^{(r)}$  (by definition of  $z^{(r)}$ )

at iteration t we add index  $\bar{k}$  to  $I^{(t)};$  therefore

• 
$$a_{\bar{k}}^T \Delta x^{(t)} > 0$$

• 
$$a_i^T \Delta x^{(t)} \leq 0$$
 for  $i \in I^{(r)}$ ,  $i < \bar{k}$ 

(otherwise we should have added *i*, since  $b_i - a_i^T x = 0$  for all  $i \in I^{(r)}$ )

•  $a_i^T \Delta x^{(t)} = 0$ , for  $i \in I^{(r)}$ ,  $i > \overline{k}$ 

(if  $i > \overline{k}$  and  $i \in I^{(r)}$  then it is never removed, so  $i \in I^{(t)} \setminus \{k_t\}$ )

conclusion:  $z^{(r)}{}^T A \Delta x^{(t)} < 0$ 

a contradiction, because  $-{z^{(r)}}^T A \Delta x^{(t)} = c^T \Delta x^{(t)} \leq 0$ 

### Example

LP of page 10-21, same starting point but applying Bland's rule

iteration 1: 
$$I = \{4, 5, 6, 7\}$$

1. z = (0, 0, 0, -3, 5, -1, 2): remove 4 from active set

2. 
$$\Delta x = (1, 0, 0, 0)$$

3.  $A\Delta x = (1, 2, 0, -1, 0, 0, 0)$ :  $\alpha = 0$ , add 1 to active set

iteration 2:  $I = \{1, 5, 6, 7\}$ 

1. z = (3, 0, 0, 0, -1, -7, 11): remove 5 from active set

2.  $\Delta x = (2, 1, 0, 0)$ 

3.  $A\Delta x = (0, 1, 0, -2, -1, 0, 0)$ :  $\alpha = 0$ , add 2 to active set

iteration 3: 
$$I = \{1, 2, 6, 7\}$$
  
1.  $z = (1, 1, 0, 0, 0, -4, 6)$ : remove 6 from active set  
2.  $\Delta x = (-4, -3, 1, 0)$   
3.  $A\Delta x = (0, 0, 1, 4, 3, -1, 0)$ :  $\alpha = 0$ , add 4 to active set  
iteration 4:  $I = \{1, 2, 4, 7\}$   
1.  $z = (-2, 3, 0, 1, 0, 0, -1)$ : remove 1 from active set  
2.  $\Delta x = (0, -1/4, 3/4, 1)$   
3.  $A\Delta x = (-1, 0, 3/4, 0, 1/4, -3/4, 0)$ :  $\alpha = 0$ , add 5 to active set  
iteration 5:  $I = \{2, 4, 5, 7\}$   
1.  $z = (0, -1, 0, -5, 8, 0, 1)$ : remove 2 from active set  
2.  $\Delta x = (0, 0, 1, 0)$   
3.  $A\Delta x = (-2, -1, 1, 0, 0, -1, 0)$ :  $\alpha = 1$ , add 3 to active set

The simplex method

new x = (0, 0, 1, 0), b - Ax = (2, 1, 0, 0, 0, 1, 0)iteration 6:  $I = \{3, 4, 5, 7\}$ 1. z = (0, 0, 1, -3, 5, 0, 2): remove 4 from active set 2.  $\Delta x = (1, 0, 0, 0)$ 3.  $A\Delta x = (1, 2, 0, -1, 0, 0, 0)$ :  $\alpha = 1/2$ , add 2 to active set new x = (1/2, 0, 1, 0), b - Ax = (3/2, 0, 0, 1/2, 0, 1, 0)iteration 7:  $I = \{1, 3, 5, 7\}$ 1. z = (3, 0, 7, 0, -1, 0, 11): remove 5 from active set 2.  $\Delta x = (2, 1, 0, 0)$ 3.  $A\Delta x = (0, 1, 0, -2, -1, 0, 0)$ :  $\alpha = 0$ , add 2 to active set iteration 8:  $I = \{1, 2, 3, 7\}$ 

1. z = (1, 1, 4, 0, 0, 0, 6): optimal

# Initialization via phase I

linear program with variable bounds

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax \leq b, \quad x \geq 0 \end{array}$ 

general; can split free  $x_k$  as  $x_k = x_k^+ - x_k^-$ ,  $x_k \ge 0$ ,  $x_k^- \ge 0$ phase I problem

minimize 
$$t$$
  
subject to  $Ax \leq (1-t)b$ ,  $x \geq 0$ ,  $0 \leq t \leq 1$ 

- x = 0, t = 1 is an extreme point of phase I LP
- can compute an optimal extreme point  $x^{\star}$ ,  $t^{\star}$  of phase I LP via simplex
- if  $t^* > 0$ , original problem is infeasible
- if  $t^* = 0$ , then  $x^*$  is an extreme point of original problem

## Numerical implementation

• most expensive step: solution of two sets of linear equations

$$A_I^T z_I = -c, \qquad A_I \Delta x = (e_k)_I$$

where  $e_k$  is kth unit vector

• one row of  $A_I$  changes at each iteration

#### efficient implementation: propagate LU factorization of $A_I$

- given the factorization, can solve the equations in  $O(n^2)$  operations
- updating LU factorization after changing a row costs  ${\cal O}(n^2)$  operations

total cost is  $O(n^2)$  per iteration ( $\ll O(n^2)$  if A is sparse)

# **Complexity of the simplex method**

in practice: very efficient (#iterations grows linearly with m, n)

#### worst-case:

- for most pivoting rules, there exist examples where the number of iterations grows exponentially with n and m
- it is an open question whether there exists a pivoting rule for which the number of iterations is bounded by a polynomial of n and m

# Lecture 11 The barrier method

- brief history of interior-point methods
- Newton's method for smooth unconstrained minimization
- logarithmic barrier function
- central points, the central path
- the barrier method

# The ellipsoid method

- 1972: ellipsoid method for (nonlinear) convex nondifferentiable optimization (Nemirovsky, Yudin, Shor)
- 1979: Khachiyan proves that the ellipsoid method applied to LP has polynomial worst-case complexity

- much slower in practice than simplex
- very different approach from simplex method; extends gracefully to nonlinear convex problems
- solved important open theoretical problem (polynomial-time algorithm for LP)

# **Interior-point methods**

#### early methods (1950s-1960s)

- methods for solving convex optimization problems via sequence of smooth unconstrained problems
- Iogarithmic barrier method (Frisch), sequential unconstrained minimization (Fiacco & McCormick), affine scaling method (Dikin), method of centers (Huard & Lieu)
- no worst-case complexity theory; (often) worked well in practice
- fell out of favor in 1970s

#### new methods (1984–)

- 1984 Karmarkar: new polynomial-time method for LP (projective algorithm)
- later recognized as closely related to earlier interior-point methods
- many variations since 1984; widely believed to be faster than simplex for very large problems (over 10,000 variables/constraints)

#### **Gradient and Hessian**

differentiable function  $f : \mathbf{R}^n \to \mathbf{R}$ 

gradient and Hessian (evaluated at x):

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}, \qquad \nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

2nd order Taylor series expansion around x:

$$f(y) \simeq f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(x) (y - x)$$

#### **Positive semidefinite matrices**

a quadratic form is a function  $f: \mathbf{R}^n \to \mathbf{R}$  with

$$f(x) = x^T A x = \sum_{i,j=1}^n A_{ij} x_i x_j$$

may as well assume  $A=A^T$  since  $x^TAx=x^T((A+A^T)/2)x$ 

 $A = A^T$  is positive semidefinite if

 $x^T A x \ge 0$  for all x

 $A = A^T$  is positive definite if

$$x^T A x > 0$$
 for all  $x \neq 0$ 

#### **Convex differentiable functions**

 $f: \mathbf{R}^n \to \mathbf{R}$  is *convex* if for all x and y

$$0 \le \lambda \le 1 \implies f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

 $f: \mathbf{R}^n \to \mathbf{R}$  is strictly convex if for all x and y

$$0 < \lambda < 1 \implies f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

• for differentiable *f*:

 $abla^2 f(x)$  positive semidefinite  $\iff f$  convex  $abla^2 f(x)$  positive definite  $\implies f$  strictly convex

• for convex differentiable f:

$$\nabla f(x) = 0 \quad \Longleftrightarrow \quad x = \operatorname{argmin} f$$

f strictly convex  $\Rightarrow \operatorname{argmin} f$  is unique (if it exists)

#### **Pure Newton method**

algorithm for minimizing convex differentiable f:

$$x^{+} = x - \nabla^{2} f(x)^{-1} \nabla f(x)$$

•  $x^+$  minimizes 2nd order expansion of f(y) at x:

$$f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}(y-x)^{T} \nabla^{2} f(x)(y-x)$$


•  $x^+$  solves linearized optimality condition:



intepretations suggest method works very well near optimum

### **Global behavior**

pure Newton method can diverge



## Newton method with exact line search



- globally convergent
- very fast local convergence

(more later)

## Logarithmic barrier function

$$\begin{array}{ll} \mbox{minimize} & c^T x\\ \mbox{subject to} & a_i^T x \leq b_i, \quad i=1,\ldots,m\\ \mbox{assume strictly feasible:} & \{x \mid Ax < b\} \neq \emptyset \end{array}$$

define **logarithmic barrier** 
$$\phi(x) = \begin{cases} \sum_{i=1}^{m} -\log(b_i - a_i^T x) & Ax < b \\ +\infty & \text{otherwise} \end{cases}$$



 $\phi \to \infty$  as x approaches boundary of  $\{x \mid Ax < b\}$ 

### **Derivatives of barrier function**

$$\nabla \phi(x) = \sum_{i=0}^{m} \frac{1}{b_i - a_i^T x} a_i = A^T d$$
$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{(b_i - a_i^T x)^2} a_i a_i^T = A^T \operatorname{diag}(d)^2 A$$

where  $d = (1/(b_1 - a_1^T x), \dots, 1/(b_m - a_m^T x))$ 

- $\phi$  is smooth on  $C = \{x \mid Ax < b\}$
- $\phi$  is convex on C: for all  $y \in \mathbf{R}^n$ ,

$$y^T \nabla^2 \phi(x) y = y^T A \operatorname{diag}(d)^2 A y = \|\operatorname{diag}(d) A y\|^2 \ge 0$$

• strictly convex if  $\operatorname{\mathbf{rank}} A = n$ 

## The analytic center

 $\operatorname{argmin} \phi$  (if it exists) is called **analytic center** of inequalities optimality conditions:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{b_i - a_i^T x} a_i = 0$$

- exists if and only if  $C = \{x \mid Ax < b\}$  is bounded
- unique if A has rank  $\boldsymbol{n}$
- different descriptions of the same polyhedron may have different analytic centers (*e.g.*, adding redundant inequalities moves analytic center)
- efficiently computed via Newton's method (given strictly feasible starting point)

## **Force field interpretation**

• associate with constraint  $a_i^T x \leq b_i$ , at point x, the force

$$F_i = \frac{-a_i}{b_i - a_i^T x}$$

- $F_i$  points away from constraint plane -  $||F_i|| = 1/\text{dist}(x, \text{constraint plane})$
- $\phi$  is potential of 1/r force field associated with each constraint plane



forces balance at analytic center

## **Central path**

$$x^*(t) = \operatorname{argmin}(tc^T x + \phi(x))$$
 for  $t > 0$ 

(we assume minimizer exists and is unique)

- curve  $x^*(t)$  for  $t \ge 0$  called **central path**
- can compute  $x^*(t)$  by solving smooth unconstrained minimization problem (given a strictly feasible starting point)
- t gives relative weight of objective and barrier
- barrier 'traps'  $x^*(t)$  in strictly feasible set
- intuition suggests  $x^*(t)$  converges to optimal as  $t \to \infty$

 $x^*(t)$  characterized by

$$tc + \sum_{i=1}^{m} \frac{1}{b_i - a_i^T x^*(t)} a_i = 0$$

### example



## **Force field interpretation**

imagine a particle in C, subject to forces

 $i {\rm th}$  constraint generates constraint force field

$$F_i(x) = -\frac{1}{b_i - a_i^T x} a_i$$

- $\phi$  is *potential* associated with constraint forces
- constraint forces push particle away from boundary of feasible set

superimpose objective force field  $F_0(x) = -tc$ 

- pulls particle toward small  $c^T x$
- t scales objective force

at  $x^*(t)$ , constraint forces balance objective force; as t increases, particle is pulled towards optimal point, trapped in C by barrier potential

### Central points and duality

recall  $x^* = x^*(t)$  satisfies

$$c + \sum_{i=1}^{m} z_i a_i = 0, \qquad z_i = \frac{1}{t(b_i - a_i^T x^*)} > 0$$

i.e., z is dual feasible and

$$p^* \ge -b^T z = c^T x^* + \sum_i z_i (a_i^T x^* - b_i) = c^T x^* - m/t$$

**summary:** a point on central path yields dual feasible point and lower bound:

$$c^T x^*(t) \ge p^* \ge c^T x^*(t) - m/t$$

(which proves  $x^*(t)$  becomes optimal as  $t \to \infty$ )

### Central path and complementary slackness

optimality conditions: x optimal  $\iff Ax \leq b$  and  $\exists z$  s.t.

$$z \ge 0, \qquad A^T z + c = 0, \qquad z_i (b_i - a_i^T x) = 0$$

centrality conditions: x is on central path  $\iff Ax < b$  and  $\exists z, t > 0$  s.t.

$$z \ge 0,$$
  $A^T z + c = 0,$   $z_i(b_i - a_i^T x) = 1/t$ 

- for t large,  $x^*(t)$  'almost' satisfies complementary slackness
- central path is continuous deformation of complementary slackness condition

## **Unconstrained minimization method**

given strictly feasible x, desired accuracy  $\epsilon > 0$ 1.  $t := m/\epsilon$ 2. compute  $x^*(t)$  starting from x3.  $x := x^*(t)$ 

- computes  $\epsilon$ -suboptimal point on central path (and dual feasible z)
- solve constrained problem via Newton's method
- works, but can be slow

## **Barrier method**

given strictly feasible x, t > 0, tolerance  $\epsilon > 0$ repeat 1. compute  $x^*(t)$  starting from x, using Newton's method 2.  $x := x^*(t)$ 3. if  $m/t \le \epsilon$ , return(x)4. increase t

- also known as SUMT (Sequential Unconstrained Minimization Technique)
- generates sequence of points on central path
- simple updating rule for  $t: t^+ = \mu t$  (typical values  $\mu \approx 10 \sim 100$ )

steps 1–4 above called **outer iteration**; step 1 involves **inner iterations** (e.g., Newton steps)

**tradeoff:** small  $\mu \implies$  few inner iters to compute  $x^{(k+1)}$  from  $x^{(k)}$ , but more outer iters

## Example

 $\begin{array}{lll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax \leq b \end{array}$ 

 $A \in \mathbf{R}^{100 \times 50}$ , Newton with exact line search



- width of 'steps' shows #Nt. iters per outer iter; height of 'steps' shows reduction in dual. gap  $(1/\mu)$
- gap reduced by 10<sup>5</sup> in few tens of Newton iters
- gap decreases geometrically
- can see trade-off in choice of  $\boldsymbol{\mu}$

example continued . . .

trade-off in choice of  $\mu:$   $\# {\rm Newton}$  iters required to reduce duality gap by  $10^6$ 



works very well for wide range of  $\boldsymbol{\mu}$ 

## Phase I

to compute strictly feasible point (or determine none exists) set up auxiliary problem:

```
\begin{array}{ll} \mbox{minimize} & w \\ \mbox{subject to} & Ax \leq b + w \mathbf{1} \end{array}
```

- easy to find strictly feasible point (hence barrier method can be used)
- can use stopping criterion with target value 0

if we include constraint on  $\boldsymbol{c}^T\boldsymbol{x}$  ,

 $\begin{array}{ll} \mbox{minimize} & w \\ \mbox{subject to} & Ax \leq b + w \mathbf{1} \\ & c^T x \leq M \end{array}$ 

phase I method yields point on central path of original problem many other methods for finding initial primal (& dual) strictly feasible points

# Lecture 12 Convergence analysis of the barrier method

- complexity analysis of the barrier method
  - convergence analysis of Newton's method
  - choice of update parameter  $\boldsymbol{\mu}$
  - bound on the total number of Newton iterations
- initialization

## **Complexity analysis**

we'll analyze the method of page 11-21 with

- update  $t^+ = \mu t$
- starting point  $x^*(t^{(0)})$  on the central path

main result: #Newton iters is bounded by

$$O(\sqrt{m}\log(\epsilon^{(0)}/\epsilon))$$
 (where  $\epsilon^{(0)} = m/t^{(0)}$ )

#### caveats:

- methods with good worst-case complexity don't necessarily work better in practice
- we're not interested in the numerical values for the bound—only in the exponent of  $m \ {\rm and} \ n$
- doesn't include initialization
- insights obtained from analysis are more valuable than the bound itself

## Outline

1. convergence analysis of Newton's method for

$$\varphi(x) = tc^T x - \sum_{i=1}^m \log(b_i - a_i^T x)$$

(will give us a bound on the number of Newton steps per outer iteration)

- 2. effect of  $\mu$  on total number of Newton iterations to compute  $x^*(\mu t)$  from  $x^*(t)$
- 3. combine 1 and 2 to obtain the total number of Newton steps, starting at  $x^{\ast}(t^{(0)})$

### The Newton decrement

**Newton step** at *x*:

$$v = -\nabla^2 \varphi(x)^{-1} \nabla \varphi(x)$$
  
=  $-(A^T \operatorname{diag}(d)^2 A)^{-1} (tc + A^T d)$ 

where 
$$d = (1/(b_1 - a_1^T x), \dots, 1/(b_m - a_m^T x))$$

**Newton decrement** at *x*:

$$\begin{split} \lambda(x) &= \sqrt{\nabla \varphi(x)^T \nabla^2 \varphi(x)^{-1} \nabla \varphi(x)} \\ &= \sqrt{v^T \nabla^2 \varphi(x) v} \\ &= \left( \sum_{i=1}^m \left( \frac{a_i^T v}{b_i - a_i^T x} \right)^2 \right)^{1/2} \\ &= \| \mathbf{diag}(d) A v \| \end{split}$$

**theorem.** if  $\lambda = \lambda(x) < 1$ , then  $\varphi$  is bounded below and

$$\varphi(x) \le \varphi(x^*(t)) - \lambda - \log(1 - \lambda)$$



• if 
$$\lambda \leq 0.81$$
, then  $\varphi(x) \leq \varphi(x^*(t)) + \lambda$ 

• useful as stopping criterion for Newton's method

**proof:** w.l.o.g. assume b - Ax = 1; let  $x^* = x^*(t)$ , z = 1 + Av

$$\lambda = \|Av\| < 1 \implies z = \mathbf{1} + Av \ge 0$$
$$\nabla^2 \varphi(x)v = A^T Av = -\nabla \varphi(x) = -tc - A^T \mathbf{1} \implies A^T z = -tc$$

$$\begin{aligned} tc^{T}x^{*} - \sum_{i=1}^{m} \log(b_{i} - a_{i}^{T}x^{*}) &= -z^{T}Ax^{*} - \sum_{i=1}^{m} \log(b_{i} - a_{i}^{T}x^{*}) \\ &\geq -z^{T}Ax^{*} + \sum_{i=1}^{m} \log z_{i} - z^{T}(b - Ax^{*}) + m \\ &= -(1 + Ax)^{T}z + \sum_{i=1}^{m} \log z_{i} + m \\ &= tc^{T}x + \sum_{i}(-a_{i}^{T}v + \log(1 + a_{i}^{T}v)) \\ &\geq tc^{T}x + \lambda + \log(1 - \lambda) \end{aligned}$$

inequalities follow from:

1. 
$$\log y \le -\log z + zy - 1$$
 for  $y, z > 0$ 

2. 
$$\sum_{i=1}^{m} (y_i - \log(1+y_i)) \le -\|y\| - \log(1-\|y\|)$$
 if  $\|y\| < 1$ 

### Local convergence analysis

$$x^{+} = x - \nabla^{2}\varphi(x)^{-1}\nabla\varphi(x)$$

**theorem:** if  $\lambda < 1$ , then  $Ax^+ < b$  and  $\lambda^+ \leq \lambda^2$ 

( $\lambda$  is Newton decrement at x;  $\lambda^+$  is Newton decrement at  $x^+$ )

• gives bound on number of iterations: suppose we start at  $x^{(0)}$  with  $\lambda^{(0)} \leq 0.5$ , then  $\varphi(x) - \varphi(x^*(t)) < \delta$  after fewer than

 $\log_2 \log_2(1/\delta)$  iterations

- called region of quadratic convergence
- practical rule of thumb: 5–6 iterations

proof.

1. 
$$\lambda^2 = \sum_{i=1}^m (a_i^T v)^2 / (b_i - a_i^T x)^2 < 1$$
 implies  $a_i^T (x + v) < b_i$   
2. assume  $b - Ax^+ = 1$ ; let  $w = 1 - d - \operatorname{diag}(d)^2 Av$ 

$$(\lambda^{+})^{2} = ||Av^{+}||^{2} = ||Av^{+}||^{2} - 2(Av^{+})^{T}(w + Av^{+}) \qquad (1)$$

$$\leq ||w + Av^{+} - Av^{+}||^{2}$$

$$= \sum_{i=1}^{m} (1 - d_{i})^{4} \qquad (2)$$

$$= \sum_{i=1}^{m} (d_{i}a_{i}^{T}v)^{4}$$

$$\leq ||\operatorname{diag}(d)Av||^{4} = \lambda^{4}$$

(1) uses 
$$A^T w = tc + A^T \mathbf{1}$$
,  $A^T A v^+ = -tc - A^T \mathbf{1}$   
(2) uses  $Av = Ax^+ - b - Ax + b = -\mathbf{1} + \operatorname{diag}(d)^{-1}\mathbf{1}$ ,  
therefore  $d_i a_i^T v = 1 - d_i$  and  $w_i = (1 - d_i)^2$ 

### **Global analysis of Newton's method**

damped Newton algorithm:  $x^+ = x + sv$ ,  $v = -\nabla^2 \varphi(x)^{-1} \nabla \varphi(x)$ step size to the boundary:  $s = \alpha^{-1}$  where

$$\alpha = \max\left\{\frac{a_i^T v}{b_i - a_i^T x} \mid a_i^T v > 0\right\} \qquad (\alpha = 0 \text{ if } Av \le 0)$$

theorem. for  $s = 1/(1 + \alpha)$ ,

$$\varphi(x+sv) \le \varphi(x) - (\lambda - \log(1+\lambda))$$

- very simple expression for step size
- same bound if s is determined by an exact line search

if  $\lambda \geq 0.5$ ,  $\varphi(x+(1+\alpha)^{-1}v) \leq \varphi(x) - 0.09$  (hence, convergence)

**proof.** define  $f(s) = \varphi(x + sv)$  for  $0 \le s < 1/\alpha$ 

$$f'(s) = v^T \nabla \varphi(x + sv), \qquad f''(s) = v^T \nabla^2 \varphi(x + sv)^T v$$

for Newton direction v:  $f'(0) = -f''(0) = -\lambda^2$ 

by integrating the upper bound

$$f''(s) = \sum_{i=1}^{m} \left( \frac{a_i^T v}{b_i - a_i^T x - s a_i^T v} \right)^2 \le \frac{f''(0)}{(1 - s\alpha)^2}$$

twice, we obtain

$$f(s) \le f(0) + sf'(0) - \frac{f''(0)}{\alpha^2}(s\alpha + \log(1 - s\alpha))$$

upper bound is minimized by  $s=-f'(0)/(f''(0)-\alpha f'(0))=1/(1+\alpha)$ 

$$\begin{aligned} f(s) &\leq f(0) - \frac{f''(0)}{\alpha^2} (\alpha - \log(1 + \alpha)) \\ &\leq f(0) - (\lambda - \log(1 + \lambda)) \quad \text{(since } \alpha \leq \lambda\text{))} \end{aligned}$$

### Summary

given x with Ax < b, tolerance  $\delta \in (0, 0.5)$ repeat 1. Compute Newton step at  $x: v = -\nabla^2 \varphi(x)^{-1} \nabla \varphi(x)$ 2. Compute Newton decrement:  $\lambda = (v^T \nabla^2 \varphi(x) v)^{1/2}$ 3. If  $\lambda \leq \delta$ , return(x) 4. Update  $x: \text{ If } \lambda \geq 0.5$ ,  $x := x + (1 + \alpha)^{-1} v$  where  $\alpha = \max\{0, \max_i a_i^T v / (b_i - a_i^T x)\}$ else, x := x + v

upper bound on #iterations, starting at x:

$$\log_2 \log_2(1/\delta) + 11 \left(\varphi(x) - \varphi(x^*(t))\right)$$

usually very pessimistic; good measure in practice:

$$\beta_0 + \beta_1 \left(\varphi(x) - \varphi(x^*(t))\right)$$

with empirically determined  $\beta_i$  ( $\beta_0 \leq 5$ ,  $\beta_1 \ll 11$ )

Convergence analysis of the barrier method

### **#Newton steps per outer iteration**

#Newton steps to minimize  $\varphi(x) = t^+ c^T x - \sum_{i=1}^m \log(b_i - a_i^T x)$ theorem. if z > 0,  $A^T z + c = 0$ , then

$$\varphi(x^*(t^+)) \ge -t^+ b^T z + \sum_{i=1}^m \log z_i + m(1 + \log t^+)$$

in particular, for  $t^+ = \mu t$ ,  $z_i = 1/t(b_i - a_i^T x^*(t))$ :

$$\varphi(x^*(t^+)) \ge \varphi(x^*(t)) - m(\mu - 1 - \log \mu)$$

yields estimates for #Newton steps to minimize  $\varphi$  starting at  $x^*(t)$ :

$$\beta_0 + \beta_1 m(\mu - 1 - \log \mu)$$

- is an upper bound for  $\beta_0 = \log_2 \log_2(1/\delta)$ ,  $\beta_1 = 11$
- is a good measure in practice for empirically determined  $\beta_0$ ,  $\beta_1$

**proof.** if z > 0,  $A^T z + c = 0$ , then

$$\varphi(x) = t^{+}c^{T}x - \sum_{i=1}^{m} \log(b_{i} - a_{i}^{T}x)$$

$$\geq t^{+}c^{T}x + \sum_{i=1}^{m} \log z_{i} - t^{+}z^{T}(b - Ax) + m(1 + \log t^{+})$$

$$= -t^{+}b^{T}z + \sum_{i=1}^{m} \log z_{i} + m(1 + \log t^{+})$$

for  $z_i = 1/(t(b_i - a_i^T x^*(t)))$ ,  $t^+ = \mu t$ , this yields

$$\varphi(x^{\star}(t^+)) \ge \varphi(x^{\star}(t)) - m(\mu - 1 - \log \mu)$$

### **Bound on total #Newton iters**

suppose we start on central path with  $t = t^{(0)}$ 

number of outer iterations:

#outer iters = 
$$\left\lceil \frac{\log(\epsilon^{(0)}/\epsilon)}{\log \mu} \right\rceil$$

- $\epsilon^{(0)}=m/t^{(0)}$ : initial duality gap
- $\epsilon^{(0)}/\epsilon$ : reduction in duality gap

upper bound on total #Newton steps:

$$\left\lceil \frac{\log(\epsilon^{(0)}/\epsilon)}{\log \mu} \right\rceil \left(\beta_0 + \beta_1 m(\mu - 1 - \log \mu)\right)$$

• 
$$\beta_0 = \log_2 \log_2(1/\delta)$$
,  $\beta_1 = 11$ 

• can use empirical values for  $\beta_i$  to estimate average-case behavior

## Strategies for choosing $\mu$

•  $\mu$  independent of m:

#Newton steps per outer iter  $\leq O(m)$ 

total #Newton steps  $\leq O(m \log(\epsilon^{(0)}/\epsilon)))$ 

•  $\mu = 1 + \gamma / \sqrt{m}$  with  $\gamma$  independent of m

#Newton steps per outer iter  $\leq O(1)$ 

total #Newton steps 
$$\leq O(\sqrt{m}\log(\epsilon^{(0)}/\epsilon)))$$

follows from:

- 
$$m(\mu - 1 - \log \mu) \le \gamma^2/2$$
, because  $x - x^2/2 \le \log(1 + x)$  for  $x > 0$   
-  $\log(1 + \gamma/\sqrt{m}) \ge \log(1 + \gamma)/\sqrt{m}$  for  $m \ge 1$ 

## Choice of initial t

rule of thumb: given estimate  $\widehat{p}$  of  $p^{\star}$ , choose

$$m/t \approx c^T x - \hat{p}$$

(since m/t is duality gap)

**via complexity theory** (c.f. page 12–12) given dual feasible z, #Newton steps in first iteration is bounded by an affine function of

$$t(c^T x + b^T z) + \phi(x) - \sum_{i=1}^m \log z_i - m(1 + \log t)$$
$$= t(c^T x + b^T z) - m \log t + \text{const.}$$

choose t to minimize bound; yields  $m/t = c^T x + b^T z$ 

there are many other ways to choose t

Convergence analysis of the barrier method

# Lecture 13 Primal-dual interior-point methods

- Mehrotra's predictor-corrector method
- computing the search directions

### Central path and complementary slackness

$$s + Ax - b = 0$$
$$A^T z + c = 0$$
$$z_i s_i = 1/t, \quad i = 1, \dots, m$$
$$z \ge 0, \quad s \ge 0$$

- continuous deformation of optimality conditions
- defines central path: solution is  $x = x^*(t)$ ,  $s = b Ax^*(t)$ ,  $z_i = 1/ts_i$
- m+n linear and m nonlinear equations in the variables  $s \in \mathbf{R}^m$ ,  $x \in \mathbf{R}^n$ ,  $z \in \mathbf{R}^m$
#### Interpretation of barrier method

apply Newton's method to

$$s + Ax - b = 0,$$
  $A^T z + c = 0,$   $z_i - 1/(ts_i) = 0,$   $i = 1, ..., m$ 

*i.e.*, linearize around current x, z, s:

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ X & 0 & X^{-1}/t \end{bmatrix} \begin{bmatrix} \Delta z \\ \Delta x \\ \Delta s \end{bmatrix} = \begin{bmatrix} -(Ax+s-b) \\ -(A^Tz+c) \\ 1/t-Xz \end{bmatrix}$$

where  $X = \mathbf{diag}(s)$ 

solution (for s + Ax - b = 0,  $A^T z + c = 0$ ):

- determine  $\Delta x$  from  $A^T X^{-2} A \Delta x = -tc A^T X^{-1} \mathbf{1}$  *i.e.*,  $\Delta x$  is the Newton direction used in barrier method
- substitute to obtain  $\Delta s$  ,  $\Delta z$

# **Primal-dual path-following methods**

- modifications to the barrier method:
  - different linearization of central path
  - update both  $\boldsymbol{x}$  and  $\boldsymbol{z}$  after each Newton step
  - allow infeasible iterates
  - very aggressive step size selection (99% or 99.9% of step to the boundary)
  - update t after each Newton step (hence distinction between outer & inner iteration disappears)
  - linear or polynomial approximation to the central path
- limited theory, fewer convergence results
- work better in practice (faster and more reliable)

#### **Primal-dual linearization**

apply Newton's method to

$$s + Ax - b = 0$$
$$A^T z + c = 0$$
$$z_i s_i - 1/t = 0, \quad i = 1, \dots, m$$

*i.e.*, linearize around s, x, z:

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ X & 0 & Z \end{bmatrix} \begin{bmatrix} \Delta z \\ \Delta x \\ \Delta s \end{bmatrix} = \begin{bmatrix} -(Ax+s-b) \\ -(A^Tz+c) \\ \mathbf{1}/t - Xz \end{bmatrix}$$

where  $X = \operatorname{diag}(s)$ ,  $Z = \operatorname{diag}(z)$ 

- iterates can be infeasible:  $b Ax \neq s$ ,  $A^T z + c \neq 0$
- we assume s > 0, z > 0

Primal-dual interior-point methods

computing  $\Delta x$ ,  $\Delta z$ ,  $\Delta s$ 

1. compute  $\Delta x$  from

$$A^{T}X^{-1}ZA\Delta x = A^{T}z - A^{T}X^{-1}\mathbf{1}/t - r_{z} - A^{T}X^{-1}Zr_{x}$$

where 
$$r_x = Ax + s - b$$
,  $r_z = A^T z + c$ 

2. 
$$\Delta s = -r_x - A\Delta x$$

3. 
$$\Delta z = X^{-1} \mathbf{1}/t - z - X^{-1} Z \Delta s$$

the most expensive step is step 1

### Affine scaling direction

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ X & 0 & Z \end{bmatrix} \begin{bmatrix} \Delta z^{\text{aff}} \\ \Delta x^{\text{aff}} \\ \Delta s^{\text{aff}} \end{bmatrix} = \begin{bmatrix} -(Ax + s - b) \\ -(A^T z + c) \\ -Xz \end{bmatrix}$$
where  $X = \operatorname{diag}(s)$ ,  $Z = \operatorname{diag}(z)$ 

- limit of Newton direction for  $t \to \infty$
- Newton step for

$$s + Ax - b = 0$$
$$A^{T}z + c = 0$$
$$z_{i}s_{i} = 0, \quad i = 1, \dots, m$$

*i.e.*, the primal-dual optimality conditions

# **Centering direction**

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ X & 0 & Z \end{bmatrix} \begin{bmatrix} \Delta z^{\text{cent}} \\ \Delta x^{\text{cent}} \\ \Delta s^{\text{cent}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
where  $X = \operatorname{diag}(s)$ ,  $Z = \operatorname{diag}(z)$ 

- limit of Newton direction for  $t \to 0$
- search direction is weighted sum of centering direction and affine scaling direction

$$\Delta x = (1/t)\Delta x^{\text{cent}} + \Delta x^{\text{aff}}$$
$$\Delta z = (1/t)\Delta z^{\text{cent}} + \Delta z^{\text{aff}}$$
$$\Delta s = (1/t)\Delta s^{\text{cent}} + \Delta s^{\text{aff}}$$

- in practice:
  - compute affine scaling direction first
  - choose t
  - compute centering direction and add to affine scaling direction

## Heuristic for selecting t

- compute affine scaling direction
- compute primal and dual step lengths to the boundary along the affine scaling direction

$$\alpha_x = \max\{\alpha \in [0, 1] \mid s + \alpha \Delta s^{\text{aff}} \ge 0\}$$
  
$$\alpha_z = \max\{\alpha \in [0, 1] \mid z + \alpha \Delta z^{\text{aff}} \ge 0\}$$

• compute

$$\sigma = \left(\frac{(s + \alpha_x \Delta s^{\text{aff}})^T (z + \alpha_z \Delta z^{\text{aff}})}{s^T z}\right)^3$$

small  $\sigma$  means affine scaling directions are good search directions (significant reduction in  $s^T z$ )

- use  $t = m/(\sigma s^T z)$  *i.e.*, search direction will be the Newton direction towards the central point with duality gap  $\sigma s^T z$
- a *heuristic*, based on extensive experiments

#### Mehrotra's corrector step

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ X & 0 & Z \end{bmatrix} \begin{bmatrix} \Delta z^{cor} \\ \Delta x^{cor} \\ \Delta s^{cor} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -\Delta X^{aff} \Delta z^{aff} \end{bmatrix}$$

• higher-order correction to the affine scaling direction:

$$(s_i + \Delta s_i^{\text{aff}} + \Delta s_i^{\text{cor}})(z_i + \Delta z_i^{\text{aff}} + \Delta z_i^{\text{cor}}) \approx 0$$

• computation can be combined with centering step, *i.e.*, use

$$\Delta x = \Delta x^{\rm cc} + \Delta x^{\rm aff}, \qquad \Delta z = \Delta z^{\rm cc} + \Delta z^{\rm aff}, \qquad \Delta s = \Delta s^{\rm cc} + \Delta s^{\rm aff}$$

where

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ X & 0 & Z \end{bmatrix} \begin{bmatrix} \Delta z^{cc} \\ \Delta x^{cc} \\ \Delta s^{cc} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1/t - \Delta X^{aff} \Delta z^{aff} \end{bmatrix}$$

### Step size selection

• determine step to the boundary

$$\alpha_x = \max\{\alpha \ge 0 \mid s + \alpha \Delta s \ge 0\}$$
  
$$\alpha_z = \max\{\alpha \ge 0 \mid z + \alpha \Delta z \ge 0\}$$

• update x, s, z

$$x := x + \min\{1, 0.99\alpha_x\}\Delta x$$
$$s := s + \min\{1, 0.99\alpha_x\}\Delta s$$
$$z := z + \min\{1, 0.99\alpha_z\}\Delta z$$

### Mehrotra's predictor-corrector method

choose starting points x, z, s with s > 0, z > 0

#### 1. evaluate stopping criteria

- primal feasibility:  $||Ax + s b|| \le \epsilon_1(1 + ||b||)$
- dual feasibility:  $||A^T z + c|| \le \epsilon_2(1 + ||c||)$
- maximum absolute error:  $c^T x + b^T z \leq \epsilon_3$
- maximum relative error:

$$\begin{aligned} c^T x + b^T z &\leq \epsilon_4 |b^T z| & \text{ if } - b^T z > 0 \\ c^T x + b^T z &\leq \epsilon_4 |c^T x| & \text{ if } c^T x < 0 \end{aligned}$$

**2.** compute affine scaling direction  $(X = \operatorname{diag}(s), Z = \operatorname{diag}(z))$ 

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ X & 0 & Z \end{bmatrix} \begin{bmatrix} \Delta z^{\text{aff}} \\ \Delta x^{\text{aff}} \\ \Delta s^{\text{aff}} \end{bmatrix} = \begin{bmatrix} -(Ax+s-b) \\ -(A^Tz+c) \\ -Xz \end{bmatrix}$$

3. compute steps to the boundary

$$\alpha_x = \max\{\alpha \in [0, 1] \mid s + \alpha \Delta s^{\text{aff}} \ge 0\}$$
  
$$\alpha_z = \max\{\alpha \in [0, 1] \mid z + \alpha \Delta z^{\text{aff}} \ge 0\}$$

4. compute centering-corrector steps

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ X & 0 & Z \end{bmatrix} \begin{bmatrix} \Delta z^{cc} \\ \Delta x^{cc} \\ \Delta s^{cc} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \sigma \frac{s^T z}{m} \mathbf{1} - \Delta X^{aff} \Delta z^{aff} \end{bmatrix}$$

where  $\Delta X^{\text{aff}} = \text{diag}(\Delta s^{\text{aff}})$ , and

$$\sigma = \left(\frac{(s + \alpha_x \Delta s^{\text{aff}})^T (z + \alpha_z \Delta z^{\text{aff}})}{s^T z}\right)^3$$

Primal-dual interior-point methods

5. compute search directions

$$\Delta x = \Delta x^{\text{aff}} + \Delta x^{\text{cc}}, \qquad \Delta s = \Delta s^{\text{aff}} + \Delta s^{\text{cc}}, \qquad \Delta z = \Delta z^{\text{aff}} + \Delta z^{\text{cc}}$$

#### 6. determine step sizes and update

$$\alpha_x = \max\{\alpha \ge 0 \mid s + \alpha \Delta s \ge 0\}$$
  
$$\alpha_z = \max\{\alpha \ge 0 \mid z + \alpha \Delta z \ge 0\}$$

$$x := x + \min\{1, 0.99\alpha_x\}\Delta x$$
  

$$s := s + \min\{1, 0.99\alpha_x\}\Delta s$$
  

$$z := z + \min\{1, 0.99\alpha_z\}\Delta z$$

#### go to step 1

### **Computing the search direction**

most expensive part of one iteration: solve two sets of equations

$$A^T X^{-1} Z A \Delta x^{\text{aff}} = r_1, \qquad A^T X^{-1} Z A \Delta x^{\text{cc}} = r_2$$

for some  $r_1$ ,  $r_2$ 

two methods

- sparse Cholesky factorization: used in all general-purpose solvers
- conjugate gradients: used for extremely large LPs, or LPs with special structure

### **Cholesky factorization**

if  $B = B^T \in \mathbf{R}^{n \times n}$  is positive definite, then it can be written as

$$B = LL^T$$

L lower triangular with  $l_{ii} > 0$ 

- L is called the Cholesky factor of B
- costs  $O(n^3)$  if B is dense

application: solve Bx = d with  $B = LL^T$ 

- solve Ly = d (forward substitution)
- solve  $L^T x = y$  (backward substitution)

# **Sparse Cholesky factorization**

solve Bx = d with B positive definite and sparse

- 1. reordering of rows and columns of B to increase sparsity of L
- 2. symbolic factorization: based on sparsity pattern of B, determine sparsity pattern of L
- 3. *numerical factorization*: determine L
- 4. forward and backward substitution: compute x

only steps 3,4 depend on the numerical values of B; only step 4 depends on the right hand side; most expensive steps: 2,3

in Mehrotra's method with sparse LP:  $B = A^T X^{-1} Z A$ 

- do steps 1,2 once, at the beginning of the algorithm  $(A^T X^{-1} Z A$  has same sparsity pattern as  $A^T A$ )
- do step 3 once per iteration, step 4 twice

# **Conjugate gradients**

solve Bx = d with  $B = B^T \in \mathbf{R}^{n \times n}$  positive definite

- iterative method
- requires n evaluations of Bx (in theory)
- faster if evaluation of Bx is cheap (*e.g.*, *B* is sparse, Toeplitz, ...)
- much cheaper in memory than Cholesky factorization
- less accurate and robust (requires preconditioning)

in Mehrotra's method:

$$B = A^T X^{-1} Z A$$

evaluations Bx are cheap if evaluations Ax and  $A^Ty$  are cheap (e.g., A is sparse)

# Lecture 14 Self-dual formulations

- initialization and infeasibility detection
- skew-symmetric LPs
- homogeneous self-dual formulation
- self-dual formulation

#### Complete solution of an LP

given a pair of primal and dual LPs

$$\begin{array}{ll} \mbox{minimize} & c^T x & \mbox{maximize} & -b^T z \\ \mbox{subject to} & Ax + s = b & \mbox{subject to} & A^T z + c = 0 \\ & s \geq 0 & z \geq 0, \end{array}$$

classify problem as solvable, primal infeasible, or dual infeasible

• if solvable, find optimal x, s, z

$$Ax + s = b,$$
  $A^T z + c = 0,$   $c^T x + b^T z = 0,$   $s \ge 0,$   $z \ge 0$ 

- if primal infeasible, find certificate z:  $A^T z = 0$ ,  $z \ge 0$ ,  $b^T z < 0$
- if dual infeasible, find certificate x:  $Ax \leq 0$ ,  $c^T x < 0$

# Methods for initialization and infeasibility detection

• phase I – phase II

```
\begin{array}{ll} \mbox{minimize} & t \\ \mbox{subject to} & Ax \leq b + t {\bf 1}, \quad t \geq 0 \end{array}
```

disadvantage: phase I is as expensive as phase II

• 'big M' method

 $\begin{array}{ll} \mbox{minimize} & c^T x + M t \\ \mbox{subject to} & A x \leq b + t \mathbf{1}, \quad t \geq 0 \end{array}$ 

for some large M disadvantage: large M causes numerical problems

- infeasible-start methods (lecture 13) disadvantage: do not return certificate of (primal or dual) infeasibility
- self-dual embeddings: this lecture

### Self-dual LP

primal LP (variables u, v)

$$\begin{array}{ll} \mbox{minimize} & f^T u + g^T v \\ \mbox{subject to} & C u + D v \leq f \\ & -D^T u + E v = g \\ & u \geq 0 \end{array}$$

with 
$$C = -C^T$$
,  $E = -E^T$ 

**dual LP** (variables  $\tilde{u}, \tilde{v}$ )

$$\begin{array}{ll} \mbox{maximize} & -f^T \tilde{u} - g^T \tilde{v} \\ \mbox{subject to} & C \tilde{u} + D \tilde{v} \leq f \\ & -D^T \tilde{u} + E \tilde{v} = g \\ & \tilde{u} \geq 0 \end{array}$$

- primal LP = dual LP
- we assume the problem is feasible: hence  $p^\star = d^\star = -p^\star = 0$

### **Optimality conditions for self-dual LP**

primal & dual feasibility, complementary slackness:

$$\begin{bmatrix} C & D \\ -D^T & E \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} w \\ 0 \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$
$$\begin{bmatrix} C & D \\ -D^T & E \end{bmatrix} \begin{bmatrix} \tilde{u} \\ \tilde{v} \end{bmatrix} + \begin{bmatrix} \tilde{w} \\ 0 \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$
$$u \ge 0, \qquad w \ge 0, \qquad \tilde{u} \ge 0, \qquad \tilde{w} \ge 0, \qquad w^T \tilde{u} + u^T \tilde{w} = 0$$

• observation 1: if u, v, w are primal optimal, then  $\tilde{u} = u, \tilde{v} = v$ ,  $\tilde{w} = w$  are dual optimal; hence optimal u, v, w must satisfy

$$\begin{bmatrix} C & D \\ -D^T & E \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} w \\ 0 \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$
$$u \ge 0, \qquad w \ge 0, \qquad u^T w = 0$$

observation 2: there exists a strictly complementary optimal pair (u, v, w), (ũ, v, w) (true for any LP with finite optimal value; see hw); can show that u, w are strictly complementary:

$$w_{i} = 0 \implies \tilde{u}_{i} > 0 \qquad (by strict complementarity of w and \tilde{u})$$
  

$$\implies \tilde{w}_{i} = 0 \qquad (because \ \tilde{w}^{T}\tilde{u} = 0)$$
  

$$\implies u_{i} > 0 \qquad (by strict complementarity of u and \tilde{w})$$
  

$$w_{i} > 0 \implies u_{i} = 0 \qquad (because \ u^{T}w = 0)$$

**conclusion:** a feasible self-dual LP has optimal u, v, w for which

$$\begin{bmatrix} C & D \\ -D^T & E \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} w \\ 0 \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$
$$u \ge 0, \qquad w \ge 0, \qquad u^T w = 0$$
$$u + w > 0$$

#### Homogeneous self-dual embedding of LP

$$\begin{array}{ll} \mbox{minimize} & c^T x & \mbox{maximize} & -b^T z \\ \mbox{subject to} & Ax + s = b & \mbox{subject to} & A^T z + c = 0 \\ & s \geq 0 & z \geq 0, \end{array}$$

#### homogeneous self-dual (HSD) formulation:

$$\begin{array}{ll} \text{minimize} & 0 \\ \text{subject to} & \begin{bmatrix} 0 & b^T & c^T \\ -b & 0 & A \\ -c & -A^T & 0 \end{bmatrix} \begin{bmatrix} \tau \\ z \\ x \end{bmatrix} + \begin{bmatrix} \lambda \\ s \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \tau \ge 0, \quad z \ge 0, \quad \lambda \ge 0, \quad s \ge 0 \end{array}$$

- homogeneous (rhs zero) and self-dual
- all feasible points are optimal
- feasible, but not strictly feasible

#### LP solution from HSD formulation

let  $\tau^*$ ,  $z^*$ ,  $x^*$ ,  $\lambda^*$ ,  $s^*$  be optimal for HSD and strictly complementary:

$$\tau^* \lambda^* = z^{*T} s^* = 0, \qquad \tau^* + \lambda^* > 0, \qquad z^* + s^* > 0$$

#### two cases:

1.  $\tau^{\star} > 0$ ,  $\lambda^{\star} = 0$ : primal and dual LP are solvable, with optimal solution

$$x = x^*/\tau^*, \qquad s = s^*/\tau^*, \qquad z = z^*/\tau^*$$

follows from HSD constraints, divided by  $\tau^*$ :

$$Ax + s = b,$$
  $A^T z + c = 0,$   $c^T x + b^T z = 0,$   $s \ge 0,$   $z \ge 0$ 

#### Self-dual formulations

- 2.  $\tau^* = 0, \ \lambda^* > 0$ :  $c^T x^* + b^T z^* < 0$ 
  - if  $c^T x^* < 0$ , dual problem is infeasible

$$Ax^{\star} \le 0, \qquad c^T x^{\star} < 0$$

 $x^{\star}$  is a certificate of dual infeasibility

• if  $b^T z^* < 0$ , primal problem is infeasible

$$A^T z^\star = 0, \qquad b^T z^\star < 0$$

 $\boldsymbol{z^{\star}}$  is a certificate of primal infeasibility

#### Extended self-dual embedding of LP

choose  $x_0$ ,  $z_0 > 0$ ,  $s_0 > 0$ , and define

$$r_{\rm pri} = b - Ax_0 - s_0, \qquad r_{\rm du} = A^T z_0 + c, \qquad r = -(c^T x_0 + b^T z_0 + 1)$$

#### self-dual (SD) formulation

$$\begin{array}{ll} \min. & (z_0^T s_0 + 1)\theta \\ \text{s.t.} & \begin{bmatrix} 0 & b^T & c^T & r \\ -b & 0 & A & r_{\text{pri}} \\ -c & -A^T & 0 & r_{\text{du}} \\ -r & -r_{\text{pri}}^T & -r_{\text{du}}^T & 0 \end{bmatrix} \begin{bmatrix} \tau \\ z \\ x \\ \theta \end{bmatrix} + \begin{bmatrix} \lambda \\ s \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ z_0^T s_0 + 1 \end{bmatrix} \\ \tau \ge 0, \qquad z \ge 0, \qquad \lambda \ge 0, \qquad s \ge 0 \end{array}$$

- self-dual, not homogeneous
- strictly feasible: take  $x = x_0$ ,  $z = z_0$ ,  $s = s_0$ ,  $\tau = \theta = \lambda = 1$

#### Self-dual formulations

• at optimum:

$$0 = \begin{bmatrix} \tau \\ z \end{bmatrix}^{T} \begin{bmatrix} \lambda \\ s \end{bmatrix}$$
$$= -\begin{bmatrix} \tau \\ z \end{bmatrix}^{T} \left( \begin{bmatrix} 0 & b^{T} \\ -b & 0 \end{bmatrix} \begin{bmatrix} \tau \\ z \end{bmatrix} + \begin{bmatrix} c^{T} & r \\ A & r_{\text{pri}} \end{bmatrix} \begin{bmatrix} x \\ \theta \end{bmatrix} \right)$$
$$= 0 - \begin{bmatrix} x \\ \theta \end{bmatrix}^{T} \begin{bmatrix} c & A^{T} \\ r & r_{\text{pri}}^{T} \end{bmatrix} \begin{bmatrix} \tau \\ z \end{bmatrix}$$
$$= \theta (1 + z_{0}^{T} s_{0}) - \begin{bmatrix} x \\ \theta \end{bmatrix}^{T} \begin{bmatrix} 0 & r_{\text{du}} \\ -r_{\text{du}}^{T} & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \end{bmatrix}$$
$$= \theta (1 + z_{0}^{T} s_{0})$$

hence  $\theta = 0$ 

#### LP solution from SD formulation

let  $\tau^*$ ,  $z^*$ ,  $x^*$ ,  $\theta^* = 0$ ,  $\lambda^*$ ,  $s^*$  be optimal for SD form and strictly complementary:

$$\tau^* \lambda^* = z^{*T} s^* = 0, \qquad \tau^* + \lambda^* > 0, \qquad z^* + s^* > 0$$

#### two cases:

1.  $\tau^{\star} > 0$ ,  $\lambda^{\star} = 0$ : primal and dual LP are solvable, with optimal solution

$$x = x^*/\tau^*, \qquad s = s^*/\tau^*, \qquad z = z^*/\tau^*$$

2.  $\tau^{\star} = 0$ ,  $\lambda^{\star} > 0$ :

c<sup>T</sup>x<sup>\*</sup> < 0: dual problem is infeasible</li>
b<sup>T</sup>z<sup>\*</sup> < 0: primal problem is infeasible</li>

# Conclusion

- status of the LP can be determined unambiguously from strictly complementary solution of HSD or SD formulation
- can apply any algorithm (barrier, primal-dual, feasible, infeasible) to solve SD form
- can apply any infeasible-start algorithm to solve HSD form
- HSD and SD formulations are twice the size of the original LP; however by exploiting (skew-)symmetry in the equations, one can compute the search directions at roughly the same cost as for the original LP

# Lecture 15 Network optimization

- network flows
- extreme flows
- minimum cost network flow problem
- applications

#### Networks

**network** (directed graph): m nodes connected by n directed arcs

- arcs are ordered pairs (i, j)
- we assume there is at most one arc from node i to node j
- we assume there are no self-loops (arcs (i, i))

arc-node incidence matrix  $A \in \mathbf{R}^{m \times n}$ :

$$A_{ij} = \begin{cases} 1 & \text{arc } j \text{ starts at node } i \\ -1 & \text{arc } j \text{ ends at node } i \\ 0 & \text{otherwise} \end{cases}$$

column sums of A are zero:  $\mathbf{1}^T A = 0$ 

reduced arc-node incidence matrix  $\tilde{A} \in \mathbf{R}^{(m-1) \times n}$ : the matrix formed by the first m-1 rows of A

example 
$$(m = 6, n = 8)$$
  

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & -1 & -1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \end{bmatrix}$$

#### **Network flow**

flow vector  $x \in \mathbf{R}^n$ 

- $x_j$ : flow (of material, traffic, charge, information, . . . ) through arc j
- positive if in direction of arc; negative otherwise

total flow leaving node *i*:

$$\sum_{j=1}^{n} A_{ij} x_j = (Ax)_i$$



# External supply

#### supply vector $b \in \mathbf{R}^m$

- $b_i$ : external supply at node i
- negative  $b_i$  represents external demand from the network
- must satisfy  $\mathbf{1}^T b = 0$  (total supply = total demand)



balance equations: Ax = b

reduced balance equations:  $\tilde{A}x = (b_1, \ldots, b_{m-1})$ 

#### Minimum cost network flow problem

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax = b \\ & l \leq x \leq u \end{array}$$

- $c_i$  is unit cost of flow through arc i
- $l_j$  and  $u_j$  are limits on flow through arc j (typically,  $l_j \leq 0$ ,  $u_j \geq 0$ )
- we assume  $l_j < u_j$ , but allow  $l_j = -\infty$  and  $u_j = \infty$

includes many network problems as special cases
#### Max-flow problem

maximize flow between node 1 (source) and node m (sink)



$$\begin{array}{ll} \text{maximize} & t\\ \text{subject to} & Ax = te\\ & l \leq x \leq u \end{array}$$

where  $e = (1, 0, \dots, 0, -1)$ 

Network optimization

interpretation as minimum cost flow problem



 $\begin{array}{ll} \text{minimize} & -t \\ \text{subject to} & \left[ \begin{array}{c} A & -e \end{array} \right] \left[ \begin{array}{c} x \\ t \end{array} \right] = 0 \\ & l \leq x \leq u \end{array}$ 

### **Project scheduling**



- arcs represent n tasks to be completed in a period of length T
- $t_k$  is duration of task k; must satisfy  $\alpha_k \leq t_k \leq \beta_k$
- cost of completing task k in time  $t_k$  is  $c_k(\beta_k t_k)$
- nodes represent precedence relations: if arc k ends at node i and arc j starts at node i, then task k must be completed before task j can start

#### LP formulation

$$\begin{array}{ll} \text{minimize} & c^T(\beta-t) \\ \text{subject to} & t_k+y_i \leq y_j & \text{for all arcs } k=(i,j) \\ & y_m-y_1 \leq T \\ & \alpha \leq t \leq \beta \end{array}$$

• variables 
$$t_1, \ldots, t_n, y_1, \ldots, y_m$$

•  $y_i - y_1$  is an upper bound on the total duration of tasks preceding node i

#### in matrix form

$$\begin{array}{ll} \text{minimize} & c^T(\beta-t) \\ \text{subject to} & t+A^Ty \leq 0 \\ & y_m-y_1 \leq T \\ & \alpha \leq t \leq \beta \end{array}$$

dual problem (after a simplification)

$$\begin{array}{ll} \text{maximize} & -T\lambda + \alpha^T x + (\beta - \alpha)^T s \\ \text{subject to} & Ax = \lambda e \\ & x \geq 0, \quad s \leq x, \quad s \leq c, \quad \lambda \geq 0 \end{array}$$

variables  $\lambda$ , x, s;  $e = (1, 0, \dots, 0, -1)$ 

interpretation: minimum cost network flow problem with nonlinear cost



#### Paths and cycles

• path from node s to node t: sequence of arcs  $P_1, \ldots, P_N$ 

$$P_k = (i_{k-1}, i_k)$$
 or  $P_k = (i_k, i_{k-1}),$   $i_0 = s,$   $i_N = t$ 

example (page 15–3): arcs 1, 3, 4, 7 form a path from node 1 to node 5

• directed path sequence of arcs  $P_1, \ldots, P_N$ 

$$P_k = (i_{k-1}, i_k)$$
  $i_0 = s,$   $i_N = t$ 

example: arcs 1, 3, 6 form a directed path from node 1 to node 5

• (directed) cycle: (directed) path from a node to itself example: arcs 1, 2, 3 form a cycle; arcs 4, 6, 7 form a directed cycle

### Acyclic networks and trees

**connected network:** there exists a path between every pair of nodes **acyclic network**: does not contain cycles

tree: connected acyclic network



connected, not acyclic



acyclic, not connected



#### **Topology and rank of incidence matrix**

• network is **connected** if and only if

$$\operatorname{rank} A = \operatorname{rank} \tilde{A} = m - 1$$

Ax = b is solvable for all b with  $\mathbf{1}^T b = 0$ 

• network is acyclic if and only if

 $\operatorname{rank} A = \operatorname{rank} \tilde{A} = n$ 

if Ax = b is solvable, its solution is unique

• network is a **tree** if and only if

$$\operatorname{rank}(A) = \operatorname{rank} \tilde{A} = n = m - 1$$

Ax = b has a unique solution for all b with  $\mathbf{1}^T b = 0$ 

#### Solving balance equations for tree networks



in general, choose node m as 'root' node and take

$$x_j = \pm \sum_{\text{nodes } i \text{ downstream of arc } j} b_i$$

important consequence:  $x \in \mathbf{Z}^n$  if  $b \in \mathbf{Z}^m$ 

#### Solving balance equations for acyclic networks



- can solve using only additions/subtractions
- $x \in \mathbf{Z}^n$  if  $b \in \mathbf{Z}^m$

### **Integrality of extreme flows**

 $\ensuremath{\mathcal{P}}$  is polyhedron of feasible flows

$$Ax = b, \qquad l \le x \le u$$

we will show that the extreme points of  $\mathcal{P}$  are integer vectors if

- the external supplies  $b_i$  are integer
- the flow limits  $l_i$ ,  $u_i$  are integer (or  $\pm \infty$ )

**proof.** suppose x is an extreme flow with

$$l_j < x_j < u_j, \quad j = 1, \dots, K, \qquad x_j = \begin{cases} l_j & j = K+1, \dots, L \\ u_j & j = L+1, \dots, n \end{cases}$$

we prove that  $x_1, \ldots, x_K$  are integers

1. apply rank test of page 3–19 to the inequalities

$$l \le x \le u, \qquad Ax \le b, \qquad -Ax \le -b$$

rank test:

$$\operatorname{rank} \left( \begin{bmatrix} 0 & -I & 0 \\ 0 & 0 & I \\ B_0 & B_- & B_+ \\ -B_0 & -B_- & -B_+ \end{bmatrix} \right) = n$$
  
where  $A = \begin{bmatrix} B_0 & B_- & B_+ \end{bmatrix}$ ,  $B_0 \in \mathbf{R}^{m \times K}$ , etc.

**conclusion**: rank  $B_0 = K$  (subnetwork with arcs 1, . . . , K is acyclic)

2.  $y = (x_1, \ldots, x_K)$  satisfies

$$B_0 y = b - \begin{bmatrix} B_- & B_+ \end{bmatrix} \begin{bmatrix} x_{K+1} \\ \vdots \\ x_n \end{bmatrix}$$
(1)

**interpretation**: balance equations of an *acyclic* subnetwork with incidence matrix  $B_0$ , flow vector y, and *integer* external supplies

$$b - \begin{bmatrix} B_{-} & B_{+} \end{bmatrix} \begin{bmatrix} x_{K+1} \\ \vdots \\ x_{n} \end{bmatrix}$$

**conclusion** (from page 15–16): y is an integer vector

example  $(l_i = 0, u_i = \infty \text{ for all arcs})$ 



x = (0, 2, 1, 0, 0, 0, 2, 0) is an extreme flow:

- it is feasible
- subgraph with arcs 2, 3, 7 is acyclic

### Shortest path problem

$$\begin{array}{ll} \mbox{minimize} & \mathbf{1}^T x\\ \mbox{subject to} & Ax = (-1, 0, \dots, 0, 1)\\ & 0 \leq x \leq \mathbf{1} \end{array}$$

- extreme optimal solutions satisfy  $x_i \in \{0, 1\}$
- arcs with  $x_i = 1$  form a shortest (forward) path between nodes 1 and m
- extends to arcs with non-unit lengths
- can be solved very efficiently via specialized algorithms

### **Assignment problem**

- $\bullet \mbox{ match } N$  people to N tasks
- each person assigned to one task; each task assigned to one person
- cost of matching person i to task j is  $a_{ij}$

minimum cost flow formulation



min. 
$$\sum_{i,j=1}^{N} a_{ij} x_{ij}$$
  
s.t.  $\sum_{i=1}^{N} x_{ij} = 1, \quad j = 1, \dots, N$   
 $\sum_{j=1}^{N} x_{ij} = 1, \quad i = 1, \dots, N$   
 $0 \le x_{ij} \le 1, \quad i, j = 1, \dots, N$ 



integrality: extreme optimal solution satisfies  $x_{ij} \in \{0, 1\}$ 

# Lecture 16 Integer linear programming

- integer linear programming, 0-1 linear programming
- a few basic facts
- branch-and-bound

### Definition

integer linear program (ILP)





mixed integer linear program: only some of the variables are integer 0-1 (Boolean) linear program variables take values 0 or 1

### **Example: facility location problem**

- n potential facility locations, m clients
- $c_i$ ,  $i = 1, \ldots, n$ : cost of opening a facility at location i
- $d_{ij}$ ,  $i = 1 \dots, m$ ,  $j = 1, \dots, n$ : cost of serving client i from location j

determine optimal location:

minimize 
$$\sum_{j=1}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$
  
subject to  $\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, \dots, m$   
 $x_{ij} \le y_j, \quad i = 1, \dots, m, \quad j = 1, \dots, n$   
 $x_{ij}, y_j \in \{0, 1\}$ 

- $y_j = 1$  if location j is selected
- $x_{ij} = 1$  if location j serves client i

a 0-1 LP

### Linear programming relaxation

the LP obtained by deleting the constraints  $x \in \mathbf{Z}^n$  (or  $x \in \{0, 1\}^n$ ) is called the LP *relaxation* 

- provides a lower bound on the optimal value of the integer LP
- if the solution of the relaxation has integer components, then it also solves the integer LP

equivalent ILP formulations of the same problem can have different relaxations



#### **Strong formulations**

the convex hull of the feasible set  ${\mathcal S}$  of an ILP is:

$$\operatorname{conv} \mathcal{S} = \left\{ \sum_{i=1}^{K} \lambda_{i} x^{i} \; \middle| \; x^{i} \in \mathcal{S}, \lambda_{i} \ge 0, \sum_{i} \lambda_{i} = 1 \right\}$$

(the smallest polyhedron containing S)



for any c, the solution of the ILP also solves the relaxation

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & x \in \operatorname{\mathbf{conv}} \mathcal{S} \end{array}$ 

### **Branch-and-bound algorithm**

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & x \in \mathcal{P} \end{array}$ 

where  $\ensuremath{\mathcal{P}}$  is a finite set

#### general idea:

• decompose in smaller problems

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & x \in \mathcal{P}_i \end{array}$ 

where  $\mathcal{P}_i \subset \mathcal{P}$ ,  $i = 1, \ldots, K$ 

- to solve subproblem: decompose recursively in smaller problems
- use lower bounds from LP relaxation to identify subproblems that don't lead to a solution

#### example

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & x \in \mathcal{P} \end{array}$ 

where c = (-2, -3), and

$$\mathcal{P} = \left\{ x \in \mathbf{Z}_{+}^{2} \mid \frac{2}{9}x_{1} + \frac{1}{4}x_{2} \le 1, \quad \frac{1}{7}x_{1} + \frac{1}{3}x_{2} \le 1 \right\}$$



#### optimal point: (2,2)

tree of subproblems and results of LP relaxations:



|          | $x^{\star}$  | $p^{\star}$ |
|----------|--------------|-------------|
| $P_0$    | (2.17, 2.07) | -10.56      |
| $P_1$    | (2.00, 2.14) | -10.43      |
| $P_2$    | (3.00, 1.33) | -10.00      |
| $P_3$    | (2.00, 2.00) | -10.00      |
| $P_4$    | (0.00, 3.00) | -9.00       |
| $P_5$    | (3.38, 1.00) | -9.75       |
| $P_6$    |              | $+\infty$   |
| $P_7$    | (3.00, 1.00) | -9.00       |
| $P_8$    | (4.00, 0.44) | -9.33       |
| $P_9$    | (4.50, 0.00) | -9.00       |
| $P_{10}$ |              | $+\infty$   |
| $P_{11}$ | (4.00, 0.00) | -8.00       |
| $P_{12}$ |              | $+\infty$   |

conclusions from subproblems:

•  $P_2$ : the optimal value of

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & x \in \mathcal{P}, \quad x_1 \geq 3 \end{array}$$

is greater than or equal to -10.00

•  $P_3$ : the solution of

minimize 
$$c^T x$$
  
subject to  $x \in \mathcal{P}$ ,  $x_1 \leq 2$ ,  $x_2 \leq 2$ 

is (2, 2)

•  $P_6$ : the problem

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & x \in \mathcal{P}, \quad x_1 \leq 3, \quad x_2 \geq 2 \end{array}$$

is infeasible

suppose we enumerate the subproblems in the order

 $P_0, P_1, P_2, P_3, \ldots$ 

then after solving subproblem  $P_4$  we can conclude that (2,2) is optimal

#### branch-and-bound for 0-1 linear program

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax \leq b, \quad x \in \{0,1\}^n \end{array}$$



can solve by enumerating all  $2^n$  possible x; every node represents a problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \\ & x_i = 0, \quad i \in I_1, \quad x_i = 1, \quad i \in I_2 \\ & x_i \in \{0, 1\}, \quad i \in I_3 \end{array}$$

where  $I_1$ ,  $I_2$ ,  $I_3$  partition  $\{1, \ldots, n\}$ 

#### branch-and-bound method

set  $U = +\infty$ , mark all nodes in the tree as active

1. select an active node k, and solve the corresponding LP relaxation

minimize 
$$c^T x$$
  
subject to  $Ax \leq b$   
 $x_i = 0, \ i \in I_1^k$   
 $x_i = 1, \ i \in I_2^k$   
 $0 \leq x_i \leq 1, \ i \in I_3^k$ 

let  $\hat{x}$  be the solution of the relaxation

- 2. if  $c^T \hat{x} \ge U$ , mark all nodes in the subtree with root k as inactive
- 3. if all components of  $\hat{x}$  are 0 or 1, mark all nodes in the subtree with root k as inactive; if moreover  $c^T \hat{x} < U$ , then set  $U := c^T \hat{x}$  and save  $\hat{x}$  as the best feasible point found so far
- 4. otherwise, mark node k as inactive
- 5. go to step 1

ESE504 (Fall 2010)

# Lecture 17 Conclusions

- topics we didn't cover
- choosing an algorithm
- EE236B

### Topics we didn't cover

#### network flow problems

- LPs defined in terms of graphs, *e.g.*, assignment, shortest path, transportation problems
- huge problems solvable via specialized methods

see 232E

#### integer linear programming

- examples and applications
- other methods (cutting plane, dynamic programming, ...)

### **Choice of method**

#### interior-point methods vs. simplex

- both work very well
- interior-point methods believed to be (usually) faster than simplex for problems with more than 10,000 variables/constraints

#### general-purpose vs. custom software

- several widely available and efficient general-purpose packages
- unsophisticated custom software that exploits specific structure can be faster than general-purpose solvers; some examples:
  - column generation via simplex method
  - $\ell_1$ -minimization via interior-point methods
  - interior-point method using conjugate gradients

some interesting URLs

- http://plato.la.asu.edu/guide.html (decision tree for optimization software)
- http://www.mcs.anl.gov/home/otc/Guide (NEOS guide of optimization software)
- http://gams.cam.nist.gov (guide to available mathematical software)

## **EE236B** (winter quarter)

benefits of expressing a problem as an LP:

- algorithms will find the global optimum
- very large instances are readily solved

both advantages extend to nonlinear convex problems

- duality theory, interior-point algorithms extend gracefully from LP to nonlinear convex problems
- nonlinear convex optimization covers a much wider range of applications
- recognizing convex problems is more difficult than recognizing LPs

#### Conclusions