
ESE504 (Fall 2013)

Lecture 1
Introduction and overview

• linear programming

• example

• course topics

• software

• integer linear programming

1–1

Linear program (LP)

minimize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi, i = 1, . . . ,m

n∑
j=1

cijxj = di, i = 1, . . . , p

variables: xj

problem data: the coefficients cj, aij, bi, cij, di

• can be solved very efficiently (several 10,000 variables, constraints)

• widely available general-purpose software

• extensive, useful theory (optimality conditions, sensitivity analysis, . . .)

Introduction and overview 1–2

Example. Open-loop control problem

single-input/single-output system (with input u, output y)

y(t) = h0u(t) + h1u(t− 1) + h2u(t− 2) + h3u(t− 3) + · · ·

output tracking problem: minimize deviation from desired output ydes(t)

max
t=0,...,N

|y(t)− ydes(t)|

subject to input amplitude and slew rate constraints:

|u(t)| ≤ U, |u(t+ 1)− u(t)| ≤ S

variables: u(0), . . . , u(M) (with u(t) = 0 for t < 0, t > M)

solution: can be formulated as an LP, hence easily solved (more later)

Introduction and overview 1–3

example

step response (s(t) = ht + · · ·+ h0) and desired output:

step response

0 100 200

0

1

ydes(t)

0 100 200

−1

0

1

amplitude and slew rate constraint on u:

|u(t)| ≤ 1.1, |u(t)− u(t− 1)| ≤ 0.25

Introduction and overview 1–4

optimal solution

output and desired output

0 100 200

−1

0

1

input u(t)

0 100 200
−1.1

0.0

1.1

u(t) − u(t − 1)

0 100 200
−0.25

0.00

0.25

Introduction and overview 1–5

Brief history

• 1930s (Kantorovich): economic applications

• 1940s (Dantzig): military logistics problems during WW2;
1947: simplex algorithm

• 1950s–60s discovery of applications in many other fields (structural
optimization, control theory, filter design, . . .)

• 1979 (Khachiyan) ellipsoid algorithm: more efficient (polynomial-time)
than simplex in worst case, but slower in practice

• 1984 (Karmarkar): projective (interior-point) algorithm:
polynomial-time worst-case complexity, and efficient in practice

• 1984–today. many variations of interior-point methods (improved
complexity or efficiency in practice), software for large-scale problems

Introduction and overview 1–6

Course outline

the linear programming problem
linear inequalities, geometry of linear programming

engineering applications
signal processing, control, structural optimization . . .

duality

algorithms
the simplex algorithm, interior-point algorithms

large-scale linear programming and network optimization
techniques for LPs with special structure, network flow problems

integer linear programming
introduction, some basic techniques

Introduction and overview 1–7

Software

solvers: solve LPs described in some standard form

modeling tools: accept a problem in a simpler, more intuitive, notation
and convert it to the standard form required by solvers

software for this course (see class website)

• platforms: Matlab, Octave, Python

• solvers: linprog (Matlab Optimization Toolbox),

• modeling tools: CVX (Matlab), YALMIP (Matlab),

• Thanks to Lieven Vandenberghe at UCLA for his slides

Introduction and overview 1–8

Integer linear program

integer linear program

minimize
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi, i = 1, . . . ,m∑n
j=1 cijxj = di, i = 1, . . . , p

xj ∈ Z

Boolean linear program

minimize
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi, i = 1, . . . ,m∑n
j=1 cijxj = di, i = 1, . . . , p

xj ∈ {0, 1}

• very general problems; can be extremely hard to solve

• can be solved as a sequence of linear programs

Introduction and overview 1–9

Example. Scheduling problem

scheduling graph V :

i

j

n

• nodes represent operations (e.g., jobs in a manufacturing process,
arithmetic operations in an algorithm)

• (i, j) ∈ V means operation j must wait for operation i to be finished

• M identical machines/processors; each operation takes unit time

problem: determine fastest schedule

Introduction and overview 1–10

Boolean linear program formulation

variables: xis, i = 1, . . . , n, s = 0, . . . , T :

xis = 1 if job i starts at time s , xis = 0 otherwise

constraints:

1. xis ∈ {0, 1}

2. job i starts exactly once:
T∑

s=0

xis = 1

3. if there is an arc (i, j) in V , then
T∑

s=0

sxjs −
T∑

s=0

sxis ≥ 1

Introduction and overview 1–11

4. limit on capacity (M machines) at time s:

n∑
i=1

xis ≤ M

cost function (start time of job n):

T∑
s=0

sxns

Boolean linear program

minimize
∑T

s=0 sxns

subject to
∑T

s=0 xis = 1, i = 1, . . . , n∑T
s=0 sxjs −

∑T
s=0 sxis ≥ 1, (i, j) ∈ V∑n

i=1 xis ≤ M, s = 0, . . . , T

xis ∈ {0, 1}, i = 1, . . . , n, s = 0, . . . , T

Introduction and overview 1–12

ESE504 (Fall 2013)

Lecture 2
Linear inequalities

• vectors

• inner products and norms

• linear equalities and hyperplanes

• linear inequalities and halfspaces

• polyhedra

2–1

Vectors

(column) vector x ∈ Rn:

x =

⎡
⎢⎢⎣

x1

x2
...
xn

⎤
⎥⎥⎦

• xi ∈ R: ith component or element of x

• also written as x = (x1, x2, . . . , xn)

some special vectors:

• x = 0 (zero vector): xi = 0, i = 1, . . . , n

• x = 1: xi = 1, i = 1, . . . , n

• x = ei (ith basis vector or ith unit vector): xi = 1, xk = 0 for k �= i

(n follows from context)

Linear inequalities 2–2

Vector operations

multiplying a vector x ∈ Rn with a scalar α ∈ R:

αx =

⎡
⎣ αx1

...
αxn

⎤
⎦

adding and subtracting two vectors x, y ∈ Rn:

x+ y =

⎡
⎣ x1 + y1

...
xn + yn

⎤
⎦ , x− y =

⎡
⎣ x1 − y1

...
xn − yn

⎤
⎦

x
0.75x

y

1.5y 0.75x + 1.5y

Linear inequalities 2–3

Inner product

x, y ∈ Rn

〈x, y〉 := x1y1 + x2y2 + · · ·+ xnyn = xTy

important properties

• 〈αx, y〉 = α〈x, y〉
• 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉
• 〈x, y〉 = 〈y, x〉
• 〈x, x〉 ≥ 0

• 〈x, x〉 = 0 ⇐⇒ x = 0

linear function: f : Rn → R is linear, i.e.

f(αx+ βy) = αf(x) + βf(y),

if and only if f(x) = 〈a, x〉 for some a

Linear inequalities 2–4

Euclidean norm

for x ∈ Rn we define the (Euclidean) norm as

‖x‖ =
√
x2
1 + x2

2 + · · ·+ x2
n =

√
xTx

‖x‖ measures length of vector (from origin)

important properties:

• ‖αx‖ = |α|‖x‖ (homogeneity)

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

• ‖x‖ ≥ 0 (nonnegativity)

• ‖x‖ = 0 ⇐⇒ x = 0 (definiteness)

distance between vectors: dist(x, y) = ‖x− y‖

Linear inequalities 2–5

Inner products and angles

angle between vectors in Rn:

θ = � (x, y) = cos−1 xTy

‖x‖‖y‖

i.e., xTy = ‖x‖‖y‖ cos θ

• x and y aligned : θ = 0; xTy = ‖x‖‖y‖
• x and y opposed : θ = π; xTy = −‖x‖‖y‖
• x and y orthogonal : θ = π/2 or −π/2; xTy = 0 (denoted x ⊥ y)

• xTy > 0 means � (x, y) is acute; xTy < 0 means � (x, y) is obtuse

x x

y y
xTy < 0xTy > 0

Linear inequalities 2–6

Cauchy-Schwarz inequality:

|xTy| ≤ ‖x‖‖y‖

projection of x on y

x

y

θ (
xT y

‖y‖2
)
y

projection is given by (
xTy

‖y‖2
)
y

Linear inequalities 2–7

Hyperplanes

hyperplane in Rn:
{x | aTx = b} (a �= 0)

• solution set of one linear equation a1x1 + · · ·+ anxn = b with at least
one ai �= 0

• set of vectors that make a constant inner product with vector
a = (a1, . . . , an) (the normal vector)

a

x0

(
aT x0
‖a‖2)a

x (aTx = aTx0)
0

in R2: a line, in R3: a plane, . . .

Linear inequalities 2–8

Halfspaces

(closed) halfspace in Rn:

{x | aTx ≤ b} (a �= 0)

• solution set of one linear inequality a1x1 + · · ·+ anxn ≤ b with at least
one ai �= 0

• a = (a1, . . . , an) is the (outward) normal
a

x0

{x | aTx ≤ aTx0}

{x | aTx ≥ aTx0}
0

• {x | aTx < b} is called an open halfspace

Linear inequalities 2–9

Affine sets

solution set of a set of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b1
...

am1x1 + am2x2 + · · ·+ amnxn = bm

intersection of m hyperplanes with normal vectors ai = (ai1, ai2, . . . , ain)
(w.l.o.g., all ai �= 0)

in matrix notation:
Ax = b

with

A =

⎡
⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

am1 am2 · · · amn

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

b1
b2
...
bm

⎤
⎥⎥⎦

Linear inequalities 2–10

Polyhedra

solution set of system of linear inequalities

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

intersection of m halfspaces, with normal vectors ai = (ai1, ai2, . . . , ain)
(w.l.o.g., all ai �= 0)

a1 a2

a3

a4

a5

Linear inequalities 2–11

matrix notation
Ax ≤ b

with

A =

⎡
⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

am1 am2 · · · amn

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

b1
b2
...
bm

⎤
⎥⎥⎦

Ax ≤ b stands for componentwise inequality, i.e., for y, z ∈ Rn,

y ≤ z ⇐⇒ y1 ≤ z1, . . . , yn ≤ zn

Linear inequalities 2–12

Examples of polyhedra

• a hyperplane {x | aTx = b}:

aTx ≤ b, aTx ≥ b

• solution set of system of linear equations/inequalities

aTi x ≤ bi, i = 1, . . . ,m, cTi x = di, i = 1, . . . , p

• a slab {x | b1 ≤ aTx ≤ b2}

• the probability simplex {x ∈ Rn | 1Tx = 1, xi ≥ 0, i = 1, . . . , n}

• (hyper)rectangle {x ∈ Rn | l ≤ x ≤ u} where l < u

Linear inequalities 2–13

Linear inequalities 2–14

ESE504 (Fall 2013)

Lecture 3
Geometry of linear programming

• subspaces and affine sets, independent vectors

• matrices, range and nullspace, rank, inverse

• polyhedron in inequality form

• extreme points

• degeneracy

• the optimal set of a linear program

3–1

Subspaces

S ⊆ Rn (S �= ∅) is called a subspace if

x, y ∈ S, α, β ∈ R =⇒ αx+ βy ∈ S

αx+ βy is called a linear combination of x and y

examples (in Rn)

• S = Rn, S = {0}
• S = {αv |α ∈ R} where v ∈ Rn (i.e., a line through the origin)

• S = span(v1, v2, . . . , vk) = {α1v1+ · · ·+αkvk | αi ∈ R}, where vi ∈ Rn

• set of vectors orthogonal to given vectors v1, . . . , vk:

S = {x ∈ Rn | vT1 x = 0, . . . , vTk x = 0}

Geometry of linear programming 3–2

Independent vectors

vectors v1, v2, . . . , vk are independent if and only if

α1v1 + α2v2 + · · ·+ αkvk = 0 =⇒ α1 = α2 = · · · = 0

some equivalent conditions:

• coefficients of α1v1 + α2v2 + · · ·+ αkvk are uniquely determined, i.e.,

α1v1 + α2v2 + · · ·+ αkvk = β1v1 + β2v2 + · · ·+ βkvk

implies α1 = β1, α2 = β2, . . . , αk = βk

• no vector vi can be expressed as a linear combination of the other
vectors v1, . . . , vi−1, vi+1, . . . , vk

Geometry of linear programming 3–3

Basis and dimension

{v1, v2, . . . , vk} is a basis for a subspace S if

• v1, v2, . . . , vk span S, i.e., S = span(v1, v2, . . . , vk)

• v1, v2, . . . , vk are independent

equivalently: every v ∈ S can be uniquely expressed as

v = α1v1 + · · ·+ αkvk

fact: for a given subspace S, the number of vectors in any basis is the
same, and is called the dimension of S, denoted dimS

Geometry of linear programming 3–4

Affine sets

V ⊆ Rn (V �= ∅) is called an affine set if

x, y ∈ V , α+ β = 1 =⇒ αx+ βy ∈ V

αx+ βy is called an affine combination of x and y

examples (in Rn)

• subspaces

• V = b+ S = {x+ b | x ∈ S} where S is a subspace

• V = {α1v1 + · · ·+ αkvk | αi ∈ R,
∑

iαi = 1}
• V = {x | vT1 x = b1, . . . , v

T
k x = bk} (if V �= ∅)

every affine set V can be written as V = x0 + S where x0 ∈ Rn, S a
subspace (e.g., can take any x0 ∈ V , S = V − x0)

dim(V − x0) is called the dimension of V

Geometry of linear programming 3–5

Matrices

A =

⎡
⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

am1 am2 · · · amn

⎤
⎥⎥⎦ ∈ Rm×n

some special matrices:

• A = 0 (zero matrix): aij = 0

• A = I (identity matrix): m = n and Aii = 1 for i = 1, . . . , n, Aij = 0
for i �= j

• A = diag(x) where x ∈ Rn (diagonal matrix): m = n and

A =

⎡
⎢⎢⎣

x1 0 · · · 0
0 x2 · · · 0
...
0 0 · · · xn

⎤
⎥⎥⎦

Geometry of linear programming 3–6

Matrix operations

• addition, subtraction, scalar multiplication

• transpose:

AT =

⎡
⎢⎢⎣

a11 a21 · · · am1

a12 a22 · · · am2
...

a1n a2n · · · amn

⎤
⎥⎥⎦ ∈ Rn×m

• multiplication: A ∈ Rm×n, B ∈ Rn×q, AB ∈ Rm×q:

AB =

⎡
⎢⎢⎣

∑n
i=1 a1ibi1

∑n
i=1 a1ibi2 · · · ∑n

i=1 a1ibiq∑n
i=1 a2ibi1

∑n
i=1 a2ibi2 · · · ∑n

i=1 a2ibiq
...∑n

i=1 amibi1
∑n

i=1 amibi2 · · · ∑n
i=1 amibiq

⎤
⎥⎥⎦

Geometry of linear programming 3–7

Rows and columns

rows of A ∈ Rm×n:

A =

⎡
⎢⎢⎣

aT1
aT2
...
aTm

⎤
⎥⎥⎦

with ai = (ai1, ai2, . . . , ain) ∈ Rn

columns of B ∈ Rn×q:

B =
[
b1 b2 · · · bq

]
with bi = (b1i, b2i, . . . , bni) ∈ Rn

for example, can write AB as

AB =

⎡
⎢⎢⎣

aT1 b1 aT1 b2 · · · aT1 bq
aT2 b1 aT2 b2 · · · aT2 bq
...

aTmb1 aTmb2 · · · aTmbq

⎤
⎥⎥⎦

Geometry of linear programming 3–8

Range of a matrix

the range of A ∈ Rm×n is defined as

R(A) = {Ax | x ∈ Rn} ⊆ Rm

• a subspace

• set of vectors that can be ‘hit’ by mapping y = Ax

• the span of the columns of A = [a1 · · · an]

R(A) = {a1x1 + · · ·+ anxn | x ∈ Rn}

• the set of vectors y s.t. Ax = y has a solution

R(A) = Rm ⇐⇒
• Ax = y can be solved in x for any y

• the columns of A span Rm

• dimR(A) = m

Geometry of linear programming 3–9

Interpretations

v ∈ R(A), w �∈ R(A)

• y = Ax represents output resulting from input x

– v is a possible result or output
– w cannot be a result or output

R(A) characterizes the achievable outputs

• y = Ax represents measurement of x

– y = v is a possible or consistent sensor signal
– y = w is impossible or inconsistent; sensors have failed or model is

wrong

R(A) characterizes the possible results

Geometry of linear programming 3–10

Nullspace of a matrix

the nullspace of A ∈ Rm×n is defined as

N (A) = { x ∈ Rn | Ax = 0 }

• a subspace

• the set of vectors mapped to zero by y = Ax

• the set of vectors orthogonal to all rows of A:

N (A) =
{
x ∈ Rn | aT1 x = · · · = aTmx = 0

}
where A = [a1 · · · am]T

zero nullspace: N (A) = {0} ⇐⇒
• x can always be uniquely determined from y = Ax
(i.e., the linear transformation y = Ax doesn’t ‘lose’ information)

• columns of A are independent

Geometry of linear programming 3–11

Interpretations

suppose z ∈ N (A)

• y = Ax represents output resulting from input x

– z is input with no result
– x and x+ z have same result

N (A) characterizes freedom of input choice for given result

• y = Ax represents measurement of x

– z is undetectable — get zero sensor readings
– x and x+ z are indistinguishable: Ax = A(x+ z)

N (A) characterizes ambiguity in x from y = Ax

Geometry of linear programming 3–12

Inverse

A ∈ Rn×n is invertible or nonsingular if detA �= 0

equivalent conditions:

• columns of A are a basis for Rn

• rows of A are a basis for Rn

• N (A) = {0}
• R(A) = Rn

• y = Ax has a unique solution x for every y ∈ Rn

• A has an inverse A−1 ∈ Rn×n, with AA−1 = A−1A = I

Geometry of linear programming 3–13

Rank of a matrix

we define the rank of A ∈ Rm×n as

rank(A) = dimR(A)

(nontrivial) facts:

• rank(A) = rank(AT)

• rank(A) is maximum number of independent columns (or rows) of A,
hence

rank(A) ≤ min{m,n}

• rank(A) + dimN (A) = n

Geometry of linear programming 3–14

Full rank matrices

for A ∈ Rm×n we have rank(A) ≤ min{m,n}

we say A is full rank if rank(A) = min{m,n}

• for square matrices, full rank means nonsingular

• for skinny matrices (m > n), full rank means columns are independent

• for fat matrices (m < n), full rank means rows are independent

Geometry of linear programming 3–15

Sets of linear equations

Ax = y

given A ∈ Rm×n, y ∈ Rm

• solvable if and only if y ∈ R(A)

• unique solution if y ∈ R(A) and rank(A) = n

• general solution set:
{x0 + v | v ∈ N (A)}

where Ax0 = y

A square and invertible: unique solution for every y:

x = A−1y

Geometry of linear programming 3–16

Polyhedron (inequality form)

A = [a1 · · · am]T ∈ Rm×n, b ∈ Rm

P = {x | Ax ≤ b} = {x | aTi x ≤ bi, i = 1, . . . ,m}

a1 a2

a3

a4

a5

a6

P is convex:

x, y ∈ P , 0 ≤ λ ≤ 1 =⇒ λx+ (1− λ)y ∈ P

i.e., the line segment between any two points in P lies in P

Geometry of linear programming 3–17

Extreme points and vertices

x ∈ P is an extreme point if it cannot be written as

x = λy + (1− λ)z

with 0 ≤ λ ≤ 1, y, z ∈ P , y �= x, z �= x

c

P

cTx constant

x ∈ P is a vertex if there is a c such that cTx < cTy for all y ∈ P , y �= x

fact: x is an extreme point ⇐⇒ x is a vertex (proof later)

Geometry of linear programming 3–18

Basic feasible solution

define I as the set of indices of the active or binding constraints (at x�):

aTi x
� = bi, i ∈ I, aTi x

� < bi, i �∈ I

define Ā as

Ā =

⎡
⎢⎢⎢⎢⎣

aTi1
aTi2
...
aTik

⎤
⎥⎥⎥⎥⎦ , I = {i1, . . . , ik}

x� is called a basic feasible solution if

rankA = n

fact: x� is a vertex (extreme point) ⇐⇒ x� is a basic feasible solution
(proof later)

Geometry of linear programming 3–19

Example

⎡
⎢⎢⎣

−1 0
2 1
0 −1
1 2

⎤
⎥⎥⎦x ≤

⎡
⎢⎢⎣

0
3
0
3

⎤
⎥⎥⎦

• (1,1) is an extreme point

• (1,1) is a vertex: unique minimum of cTx with c = (−1,−1)

• (1,1) is a basic feasible solution: I = {2, 4} and rankA = 2, where

A =

[
2 1
1 2

]

Geometry of linear programming 3–20

Equivalence of the three definitions

vertex =⇒ extreme point

let x� be a vertex of P , i.e., there is a c �= 0 such that

cTx� < cTx for all x ∈ P , x �= x�

let y, z ∈ P , y �= x�, z �= x�:

cTx� < cTy, cTx� < cTz

so, if 0 ≤ λ ≤ 1, then

cTx� < cT (λy + (1− λ)z)

hence x� �= λy + (1− λ)z

Geometry of linear programming 3–21

extreme point =⇒ basic feasible solution

suppose x� ∈ P is an extreme point with

aTi x
� = bi, i ∈ I, aTi x

� < bi, i �∈ I

suppose x� is not a basic feasible solution; then there exists a d �= 0 with

aTi d = 0, i ∈ I

and for small enough ε > 0,

y = x� + εd ∈ P , z = x� − εd ∈ P

we have
x� = 0.5y + 0.5z,

which contradicts the assumption that x� is an extreme point

Geometry of linear programming 3–22

basic feasible solution =⇒ vertex

suppose x� ∈ P is a basic feasible solution and

aTi x
� = bi i ∈ I, aTi x

� < bi i �∈ I

define c = −∑
i∈I ai; then

cTx� = −
∑
i∈I

bi

and for all x ∈ P ,
cTx ≥ −

∑
i∈I

bi

with equality only if aTi x = bi, i ∈ I

however the only solution to aTi x = bi, i ∈ I , is x�; hence cTx� < cTx for
all x ∈ P

Geometry of linear programming 3–23

Degeneracy

set of linear inequalities aTi x ≤ bi, i = 1, . . . ,m

a basic feasible solution x� with

aTi x
� = bi, i ∈ I, aTi x

� < bi, i �∈ I

is degenerate if #indices in I is greater than n

• a property of the description of the polyhedron, not its geometry

• affects the performance of some algorithms

• disappears with small perturbations of b

Geometry of linear programming 3–24

Unbounded directions

P contains a half-line if there exists d �= 0, x0 such that

x0 + td ∈ P for all t ≥ 0

equivalent condition for P = {x | Ax ≤ b}:

Ax0 ≤ b, Ad ≤ 0

fact: P unbounded ⇐⇒ P contains a half-line

P contains a line if there exists d �= 0, x0 such that

x0 + td ∈ P for all t

equivalent condition for P = {x | Ax ≤ b}:

Ax0 ≤ b, Ad = 0

fact: P has no extreme points ⇐⇒ P contains a line

Geometry of linear programming 3–25

Optimal set of an LP

minimize cTx
subject to Ax ≤ b

• optimal value: p� = min{cTx | Ax ≤ b} (p� = ±∞ is possible)

• optimal point: x� with Ax� ≤ b and cTx� = p�

• optimal set: Xopt = {x | Ax ≤ b, cTx = p�}

example
minimize c1x1 + c2x2

subject to −2x1 + x2 ≤ 1
x1 ≥ 0, x2 ≥ 0

• c = (1, 1): Xopt = {(0, 0)}, p� = 0

• c = (1, 0): Xopt = {(0, x2) | 0 ≤ x2 ≤ 1}, p� = 0

• c = (−1,−1): Xopt = ∅, p� = −∞

Geometry of linear programming 3–26

Existence of optimal points

• p� = −∞ if and only if there exists a feasible half-line

{x0 + td | t ≥ 0}

with cTd < 0

d

x0

c

• p� = +∞ if and only if P = ∅
• p� is finite if and only if Xopt �= ∅

Geometry of linear programming 3–27

property: if P has at least one extreme point and p� is finite, then there
exists an extreme point that is optimal

Xopt

c

Geometry of linear programming 3–28

ESE504 (Fall 2013)

Lecture 4
The linear programming problem: variants and

examples

• variants of the linear programming problem

• LP feasibility problem

• examples and some general applications

• linear-fractional programming

4–1

Variants of the linear programming problem

general form

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

gTi x = hi, i = 1, . . . , p

in matrix notation:
minimize cTx
subject to Ax ≤ b

Gx = h

where

A =

⎡
⎢⎢⎣

aT1
aT2
...
aTm

⎤
⎥⎥⎦ ∈ Rm×n, G =

⎡
⎢⎢⎣

gT1
gT2
...
gTp

⎤
⎥⎥⎦ ∈ Rp×n

The linear programming problem: variants and examples 4–2

inequality form LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

in matrix notation:
minimize cTx
subject to Ax ≤ b

standard form LP

minimize cTx
subject to gTi x = hi, i = 1, . . . ,m

x ≥ 0

in matrix notation:
minimize cTx
subject to Gx = h

x ≥ 0

The linear programming problem: variants and examples 4–3

Reduction of general LP to inequality/standard form

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

gTi x = hi, i = 1, . . . , p

reduction to inequality form:

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

gTi x ≥ hi, i = 1, . . . , p
gTi x ≤ hi, i = 1, . . . , p

in matrix notation (where A has rows aTi , G has rows gTi)

minimize cTx

subject to

⎡
⎣ A

−G
G

⎤
⎦x ≤

⎡
⎣ b

−h
h

⎤
⎦

The linear programming problem: variants and examples 4–4

reduction to standard form:

minimize cTx+ − cTx−

subject to aTi x
+ − aTi x

− + si = bi, i = 1, . . . ,m
gTi x

+ − gTi x
− = hi, i = 1, . . . , p

x+, x−, s ≥ 0

• variables x+, x−, s
• recover x as x = x+ − x−

• s ∈ Rm is called a slack variable

in matrix notation:
minimize c̃T x̃

subject to G̃x̃ = h̃
x̃ ≥ 0

where

x̃ =

⎡
⎣ x+

x−

s

⎤
⎦ , c̃ =

⎡
⎣ c

−c
0

⎤
⎦ , G̃ =

[
A −A I
G −G 0

]
, h̃ =

[
b
h

]

The linear programming problem: variants and examples 4–5

LP feasibility problem

feasibility problem: find x that satisfies aTi x ≤ bi, i = 1, . . . ,m

solution via LP (with variables t, x)

minimize t
subject to aTi x ≤ bi + t, i = 1, . . . ,m

• variables t, x

• if minimizer x�, t� satisfies t� ≤ 0, then x� satisfies the inequalities

LP in matrix notation:

minimize c̃T x̃

subject to Ãx̃ ≤ b̃

x̃ =

[
x
t

]
, c̃ =

[
0
1

]
, Ã =

[
A −1

]
, b̃ = b

The linear programming problem: variants and examples 4–6

Piecewise-linear minimization

piecewise-linear minimization: minimize maxi=1,...,m(cTi x+ di)

x

cTi x + di

maxi (c
T
i x + di)

equivalent LP (with variables x ∈ Rn, t ∈ R):

minimize t
subject to cTi x+ di ≤ t, i = 1, . . . ,m

in matrix notation:
minimize c̃T x̃

subject to Ãx̃ ≤ b̃

x̃ =

[
x
t

]
, c̃ =

[
0
1

]
, Ã =

[
C −1

]
, b̃ =

[−d
]

The linear programming problem: variants and examples 4–7

Convex functions

f : Rn → R is convex if for 0 ≤ λ ≤ 1

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

x yλx + (1 − λ)y

λf(x) + (1 − λ)f(y)

The linear programming problem: variants and examples 4–8

Piecewise-linear approximation

assume f : Rn → R differentiable and convex

• 1st-order approximation at x1 is a global lower bound on f :

f(x) ≥ f(x1) +∇f(x1)T (x− x1)

xx1

f(x)

• evaluating f , ∇f at several xi yields a piecewise-linear lower bound:

f(x) ≥ max
i=1,...,K

(
f(xi) +∇f(xi)T (x− xi)

)

The linear programming problem: variants and examples 4–9

Convex optimization problem

minimize f0(x)

(fi convex and differentiable)

LP approximation (choose points xj, j = 1, . . . ,K):

minimize t
subject to f0(x

j) +∇f0(x
j)T (x− xj) ≤ t, j = 1, . . . , K

(variables x, t)

• yields lower bound on optimal value

• can be extended to nondifferentiable convex functions

• more sophisticated variation: cutting-plane algorithm (solves convex
optimization problem via sequence of LP approximations)

The linear programming problem: variants and examples 4–10

Norms

norms on Rn:

• Euclidean norm ‖x‖ (or ‖x‖2) =
√

x2
1 + · · ·+ x2

n

• �1-norm: ‖x‖1 = |x1|+ · · ·+ |xn|

• �∞- (or Chebyshev-) norm: ‖x‖∞ = maxi |xi|

x1

x2

1

1

‖x‖∞ = 1
‖x‖ = 1
‖x‖1 = 1

The linear programming problem: variants and examples 4–11

Norm approximation problems

minimize ‖Ax− b‖p

• x ∈ Rn is variable; A ∈ Rm×n and b ∈ Rm are problem data

• p = 1, 2,∞
• r = Ax− b is called residual

• ri = aTi x− bi is ith residual (aTi is ith row of A)

• usually overdetermined, i.e., b �∈ R(A) (e.g., m > n, A full rank)

interpretations:

• approximate or fit b with linear combination of columns of A

• b is corrupted measurement of Ax; find ‘least inconsistent’ value of x
for given measurements

The linear programming problem: variants and examples 4–12

examples:

• ‖r‖ =
√
rTr: least-squares or �2-approximation (a.k.a. regression)

• ‖r‖ = maxi |ri|: Chebyshev, �∞, or minimax approximation

• ‖r‖ =
∑

i |ri|: absolute-sum or �1-approximation

solution:

• �2: closed form expression

xopt = (ATA)−1AT b

(assume rank(A) = n)

• �1, �∞: no closed form expression, but readily solved via LP

The linear programming problem: variants and examples 4–13

�1-approximation via LP

�1-approximation problem

minimize ‖Ax− b‖1

write as
minimize

∑m
i=1 yi

subject to −y ≤ Ax− b ≤ y

an LP with variables y, x:

minimize c̃T x̃

subject to Ãx̃ ≤ b̃

with

x̃ =

[
x
y

]
, c̃ =

[
0
1

]
, Ã =

[
A −I

−A −I

]
, b̃ =

[
b

−b

]

The linear programming problem: variants and examples 4–14

�∞-approximation via LP

�∞-approximation problem

minimize ‖Ax− b‖∞

write as
minimize t
subject to −t1 ≤ Ax− b ≤ t1

an LP with variables t, x:

minimize c̃T x̃

subject to Ãx̃ ≤ b̃

with

x̃ =

[
x
t

]
, c̃ =

[
0
1

]
, Ã =

[
A −1

−A −1

]
, b̃ =

[
b

−b

]

The linear programming problem: variants and examples 4–15

Example

minimize ‖Ax− b‖p for p = 1, 2, ∞ (A ∈ R100×30)

resulting residuals:

10 20 30 40 50 60 70 80 90 100
−2

0

2

10 20 30 40 50 60 70 80 90 100
−2

0

2

10 20 30 40 50 60 70 80 90 100
−2

0

2

i

i

i

r
i
(p

=
1
)

r
i
(p

=
2
)

r
i
(p

=
∞

)

The linear programming problem: variants and examples 4–16

histogram of residuals:

−3 −2 −1 0 1 2 3
0

20

40

−3 −2 −1 0 1 2 3
0

20

40

−3 −2 −1 0 1 2 3
0

20

40

n
u
m
b
er

of
r
i

n
u
m
b
er

of
r
i

n
u
m
b
er

of
r
i

r (p = 1)

r (p = 2)

r (p = ∞)

• p = ∞ gives ‘thinnest’ distribution; p = 1 gives widest distribution

• p = 1 most very small (or even zero) ri

The linear programming problem: variants and examples 4–17

Interpretation: maximum likelihood estimation

m linear measurements y1, . . . , ym of x ∈ Rn:

yi = aTi x+ vi, i = 1, . . . ,m

• vi: measurement noise, IID with density p

• y is a random variable with density px(y) =
∏m

i=1 p(yi − aTi x)

log-likelihood function is defined as

log px(y) =
m∑
i=1

log p(yi − aTi x)

maximum likelihood (ML) estimate of x is

x̂ = argmax
x

m∑
i=1

log p(yi − aTi x)

The linear programming problem: variants and examples 4–18

examples

• vi Gaussian: p(z) = 1/(
√
2πσ)e−z2/2σ2

ML estimate is �2-estimate x̂ = argminx ‖Ax− y‖2

• vi double-sided exponential: p(z) = (1/2a)e−|z|/a

ML estimate is �1-estimate x̂ = argminx ‖Ax− y‖1

• vi is one-sided exponential: p(z) =

{
(1/a)e−z/a z ≥ 0
0 z < 0

ML estimate is found by solving LP

minimize 1T (y −Ax)
subject to y − Ax ≥ 0

• vi are uniform on [−a, a]: p(z) =

{
1/(2a) −a ≤ z ≤ a
0 otherwise

ML estimate is any x satisfying ‖Ax− y‖∞ ≤ a

The linear programming problem: variants and examples 4–19

Linear-fractional programming

minimize
cTx+ d

fTx+ g
subject to Ax ≤ b

fTx+ g ≥ 0

(asume a/0 = +∞ if a > 0, a/0 = −∞ if a ≤ 0)

• nonlinear objective function

• like LP, can be solved very efficiently

equivalent form with linear objective (vars. x, γ):

minimize γ
subject to cTx+ d ≤ γ(fTx+ g)

fTx+ g ≥ 0
Ax ≤ b

The linear programming problem: variants and examples 4–20

Bisection algorithm for linear-fractional programming

given: interval [l, u] that contains optimal γ
repeat: solve feasibility problem for γ = (u+ l)/2

cTx+ d ≤ γ(fTx+ g)
fTx+ g ≥ 0
Ax ≤ b

if feasible u := γ; if infeasible l := γ
until u− l ≤ ε

• each iteration is an LP feasibility problem

• accuracy doubles at each iteration

• number of iterations to reach accuracy ε starting with initial interval of
width u− l = ε0:

k = �log2(ε0/ε)�

The linear programming problem: variants and examples 4–21

Generalized linear-fractional programming

minimize max
i=1,...,K

cTi x+ di
fT
i x+ gi

subject to Ax ≤ b
fT
i x+ gi ≥ 0, i = 1, . . . ,K

equivalent formulation:

minimize γ
subject to Ax ≤ b

cTi x+ di ≤ γ(fT
i x+ gi), i = 1, . . . , K

fT
i x+ gi ≥ 0, i = 1, . . . ,K

• efficiently solved via bisection on γ

• each iteration is an LP feasibility problem

The linear programming problem: variants and examples 4–22

Von Neumann economic growth problem

simple model of an economy: m goods, n economic sectors

• xi(t): ‘activity’ of sector i in current period t

• aTi x(t): amount of good i consumed in period t

• bTi x(t): amount of good i produced in period t

choose x(t) to maximize growth rate mini xi(t+ 1)/xi(t):

maximize γ
subject to Ax(t+ 1) ≤ Bx(t), x(t+ 1) ≥ γx(t), x(t) ≥ 1

or equivalently (since aij ≥ 0):

maximize γ
subject to γAx(t) ≤ Bx(t), x(t) ≥ 1

(linear-fractional problem with variables x(0), γ)

The linear programming problem: variants and examples 4–23

Optimal transmitter power allocation

• m transmitters, mn receivers all at same frequency

• transmitter i wants to transmit to n receivers labeled (i, j), j = 1, . . . , n

transmitter i

transmitter k

receiver (i, j)

• Aijk is path gain from transmitter k to receiver (i, j)

• Nij is (self) noise power of receiver (i, j)

• variables: transmitter powers pk, k = 1, . . . ,m

The linear programming problem: variants and examples 4–24

at receiver (i, j):

• signal power: Sij = Aijipi

• noise plus interference power: Iij =
∑

k �=iAijkpk +Nij

• signal to interference/noise ratio (SINR): Sij/Iij

problem: choose pi to maximize smallest SINR:

maximize min
i,j

Aijipi∑
k �=iAijkpk +Nij

subject to 0 ≤ pi ≤ pmax

• a (generalized) linear-fractional program

• special case with analytical solution: m = 1, no upper bound on pi (see
exercises)

The linear programming problem: variants and examples 4–25

The linear programming problem: variants and examples 4–26

ESE504 (Fall 2013)

Lecture 5
Applications in control

• optimal input design

• robust optimal input design

• pole placement (with low-authority control)

5–1

Linear dynamical system

y(t) = h0u(t) + h1u(t− 1) + h2u(t− 2) + · · ·

• single input/single output: input u(t) ∈ R, output y(t) ∈ R

• hi are called impulse response coefficients

• finite impulse response (FIR) system of order k: hi = 0 for i > k

if u(t) = 0 for t < 0,

⎡
⎢⎢⎢⎢⎢⎣

y(0)

y(1)

y(2)
...

y(N)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

h0 0 0 · · · 0

h1 h0 0 · · · 0

h2 h1 h0 · · · 0
...

hN hN−1 hN−2 · · · h0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u(0)

u(1)

u(2)
...

u(N)

⎤
⎥⎥⎥⎥⎥⎦

a linear mapping from input to output sequence

Applications in control 5–2

Output tracking problem

choose inputs u(t), t = 0, . . . ,M (M < N) that

• minimize peak deviation between y(t) and a desired output ydes(t),
t = 0, . . . , N ,

max
t=0,...,N

|y(t)− ydes(t)|
• satisfy amplitude and slew rate constraints:

|u(t)| ≤ U, |u(t+ 1)− u(t)| ≤ S

as a linear program (variables: w, u(0), . . . , u(N)):

minimize. w

subject to −w ≤ ∑t
i=0 hiu(t− i)− ydes(t) ≤ w, t = 0, . . . , N

u(t) = 0, t = M + 1, . . . , N
−U ≤ u(t) ≤ U, t = 0, . . . ,M
−S ≤ u(t+ 1)− u(t) ≤ S, t = 0, . . . ,M + 1

Applications in control 5–3

example. single input/output, N = 200

step response

0 100 200

0

1

ydes

0 100 200

−1

0

1

constraints on u:

• input horizon M = 150

• amplitude constraint |u(t)| ≤ 1.1

• slew rate constraint |u(t)− u(t− 1)| ≤ 0.25

Applications in control 5–4

output and desired output:

y(t), ydes(t)

0 100 200

−1

0

1

optimal input sequence u:

u(t)

0 100 200
−1.1

0.0

1.1
u(t) − u(t − 1)

0 100 200
−0.25

0.00

0.25

Applications in control 5–5

Robust output tracking (1)

• impulse response is not exactly known; it can take two values:

(h
(1)
0 , h

(1)
1 , . . . , h

(1)
k), (h

(2)
0 , h

(2)
1 , . . . , h

(2)
k)

• design an input sequence that minimizes the worst-case peak tracking
error

minimize w

subject to −w ≤ ∑t
i=0 h

(1)
i u(t− i)− ydes(t) ≤ w, t = 0, . . . , N

−w ≤ ∑t
i=0 h

(2)
i u(t− i)− ydes(t) ≤ w, t = 0, . . . , N

u(t) = 0, t = M + 1, . . . , N
−U ≤ u(t) ≤ U, t = 0, . . . ,M
−S ≤ u(t+ 1)− u(t) ≤ S, t = 0, . . . ,M + 1

an LP in the variables w, u(0), . . . , u(N)

Applications in control 5–6

example

step responses

0 100 200

0

1

outputs and desired output

0 100 200

−1

0

1

u(t)

0 100 200
−1.1

0.0

1.1
u(t) − u(t − 1)

0 100 200
−0.25

0.00

0.25

Applications in control 5–7

Robust output tracking (2)

⎡
⎢⎢⎣

h0(s)
h1(s)
...

hk(s)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

h̄0

h̄1
...
h̄k

⎤
⎥⎥⎦+ s1

⎡
⎢⎢⎢⎣

v
(1)
0

v
(1)
1
...

v
(1)
k

⎤
⎥⎥⎥⎦+ · · ·+ sK

⎡
⎢⎢⎢⎣

v
(K)
0

v
(K)
1
...

v
(K)
k

⎤
⎥⎥⎥⎦

h̄i and v
(j)
i are given; si ∈ [−1,+1] is unknown

robust output tracking problem (variables w, u(t)):

min. w

s.t. −w ≤ ∑t
i=0 hi(s)u(t− i)− ydes(t) ≤ w, t = 0, . . . , N, ∀s ∈ [−1, 1]K

u(t) = 0, t = M + 1, . . . , N
−U ≤ u(t) ≤ U, t = 0, . . . ,M
−S ≤ u(t+ 1)− u(t) ≤ S, t = 0, . . . ,M + 1

straightforward (and very inefficient) solution: enumerate all 2K extreme
values of s

Applications in control 5–8

simplification: we can express the 2K+1 linear inequalities

−w ≤
t∑

i=0

hi(s)u(t− i)− ydes(t) ≤ w for all s ∈ {−1, 1}K

as two nonlinear inequalities

t∑
i=0

h̄iu(t− i) +
K∑
j=1

∣∣∣∣∣
t∑

i=0

v
(j)
i u(t− i)

∣∣∣∣∣ ≤ ydes(t) + w

t∑
i=0

h̄iu(t− i)−
K∑
j=1

∣∣∣∣∣
t∑

i=0

v
(j)
i u(t− i)

∣∣∣∣∣ ≥ ydes(t)− w

Applications in control 5–9

proof:

max
s∈{−1,1}K

t∑
i=0

hi(s)u(t− i)

=

t∑
i=0

h̄iu(t− i) +

K∑
j=1

max
sj∈{−1,+1}

sj

t∑
i=0

v
(j)
i u(t− i)

=
t∑

i=0

h̄iu(t− i) +
K∑
j=1

∣∣∣∣∣
t∑

i=0

v
(j)
i u(t− i)

∣∣∣∣∣
and similarly for the lower bound

Applications in control 5–10

robust output tracking problem reduces to:

min. w

s.t.
∑t

i=0 h̄iu(t− i) +
∑K

j=1

∣∣∣∑t
i=0 v

(j)
i u(t− i)

∣∣∣ ≤ ydes(t) + w, t = 0, . . . , N∑t
i=0 h̄iu(t− i)−∑K

j=1

∣∣∣∑t
i=0 v

(j)
i u(t− i)

∣∣∣ ≥ ydes(t)− w, t = 0, . . . , N

u(t) = 0, t = M + 1, . . . , N
−U ≤ u(t) ≤ U, t = 0, . . . ,M
−S ≤ u(t+ 1)− u(t) ≤ S, t = 0, . . . ,M + 1

(variables u(t), w)

to express as an LP:

• for t = 0, . . . , N , j = 1, . . . , K, introduce new variables p(j)(t) and
constraints

−p(j)(t) ≤
t∑

i=0

v
(j)
i u(t− i) ≤ p(j)(t)

• replace |∑i v
(j)
i u(t− i)| by p(j)(t)

Applications in control 5–11

example (K = 6)

0 20 40 60

0

1

nominal and perturbed step responses

design for nominal system

output for nominal system

0 50 100

−1

0

1

output for worst-case system

0 50 100

−1

0

1

Applications in control 5–12

robust design

output for nominal system

0 50 100

−1

0

1

output for worst-case system

0 50 100

−1

0

1

Applications in control 5–13

State space description

input-output description:

y(t) = H0u(t) +H1u(t− 1) +H2u(t− 2) + · · ·

if u(t) = 0, t < 0:⎡
⎢⎢⎢⎢⎢⎣

y(0)

y(1)

y(2)
...

y(N)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

H0 0 0 · · · 0

H1 H0 0 · · · 0

H2 H1 H0 · · · 0
...

HN HN−1 HN−2 · · · H0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u(0)

u(1)

u(2)
...

u(N)

⎤
⎥⎥⎥⎥⎥⎦

block Toeplitz structure (constant along diagonals)

state space model:

x(t+ 1) = Ax(t) + Bu(t), y(t) = Cx(t) +Du(t)

with H0 = D, Hi = CAi−1B (i > 0)

x(t) ∈ Rn is state sequence

Applications in control 5–14

alternative description:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

y(0)

y(1)
...

y(N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A −I 0 · · · 0 B 0 · · · 0

0 A −I · · · 0 0 B · · · 0
...

0 0 0 · · · −I 0 0 · · · B

C 0 0 · · · 0 D 0 · · · 0

0 C 0 · · · 0 0 D · · · 0
...

0 0 0 · · · C 0 0 · · · D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0)

x(1)

x(2)
...

x(N)

u(0)

u(1)
...

u(N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• we don’t eliminate the intermediate variables x(t)

• matrix is larger, but very sparse (interesting when using general-purpose
LP solvers)

Applications in control 5–15

Pole placement

linear system
ż(t) = A(x)z(t), z(0) = z0

where A(x) = A0 + x1A1 + · · ·+ xpAp ∈ Rn×n

• solutions have the form

zi(t) =
∑
k

βike
σkt cos(ωkt− φik)

where λk = σk ± jωk are the eigenvalues of A(x)

• x ∈ Rp is the design parameter

• goal: place eigenvalues of A(x) in a desired region by choosing x

Applications in control 5–16

Low-authority control

eigenvalues of A(x) are very complicated (nonlinear, nondifferentiable)
functions of x

first-order perturbation: if λi(A0) is simple, then

λi(A(x)) = λi(A0) +

p∑
k=1

w∗
iAkvi
w∗

i vi
xk + o(‖x‖)

where wi, vi are the left and right eigenvectors:

w∗
iA0 = λi(A0)w

∗
i , A0vi = λi(A0)vi

‘low-authority’ control:

• use linear first-order approximations for λi

• can place λi in a polyhedral region by imposing linear inequalities on x

• we expect this to work only for small shifts in eigenvalues

Applications in control 5–17

Example

truss with 30 nodes, 83 bars

Md̈(t) +Dḋ(t) +Kd(t) = 0

• d(t): vector of horizontal and vertical node displacements

• M = MT > 0 (mass matrix): masses at the nodes

• D = DT > 0 (damping matrix); K = KT > 0 (stiffness matrix)

to increase damping, we attach dampers to the bars:

D(x) = D0 + x1D1 + · · ·+ xpDp

xi > 0: amount of external damping at bar i

Applications in control 5–18

eigenvalue placement problem

minimize
∑p

i=1 xi

subject to λi(M,D(x),K) ∈ C, i = 1, . . . , n
x ≥ 0

an LP if C is polyhedral and we use the 1st order approximation for λi

eigenvalues

−0.01 −0.009 −0.008 −0.007 −0.006 −0.005 −0.004 −0.003 −0.002 −0.001 0
−5

−4

−3

−2

−1

0

1

2

3

4

5
before

−0.01 −0.009 −0.008 −0.007 −0.006 −0.005 −0.004 −0.003 −0.002 −0.001 0
−5

−4

−3

−2

−1

0

1

2

3

4

5
after

Applications in control 5–19

location of dampers

Applications in control 5–20

