Lecture 1 Introduction and overview

- linear programming
- example
- course topics
- software
- integer linear programming

Linear program (LP)

$$
\begin{aligned}
\operatorname{minimize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1, \ldots, m \\
& \sum_{j=1}^{n} c_{i j} x_{j}=d_{i}, \quad i=1, \ldots, p
\end{aligned}
$$

variables: x_{j} problem data: the coefficients $c_{j}, a_{i j}, b_{i}, c_{i j}, d_{i}$

- can be solved very efficiently (several 10,000 variables, constraints)
- widely available general-purpose software
- extensive, useful theory (optimality conditions, sensitivity analysis, . . .)

Example. Open-loop control problem

single-input/single-output system (with input u, output y)

$$
y(t)=h_{0} u(t)+h_{1} u(t-1)+h_{2} u(t-2)+h_{3} u(t-3)+\cdots
$$

output tracking problem: minimize deviation from desired output $y_{\text {des }}(t)$

$$
\max _{t=0, \ldots, N}\left|y(t)-y_{\mathrm{des}}(t)\right|
$$

subject to input amplitude and slew rate constraints:

$$
|u(t)| \leq U, \quad|u(t+1)-u(t)| \leq S
$$

variables: $u(0), \ldots, u(M)$ (with $u(t)=0$ for $t<0, t>M)$
solution: can be formulated as an LP, hence easily solved (more later)

example

step response $\left(s(t)=h_{t}+\cdots+h_{0}\right)$ and desired output:

amplitude and slew rate constraint on u :

$$
|u(t)| \leq 1.1, \quad|u(t)-u(t-1)| \leq 0.25
$$

optimal solution

Brief history

- 1930s (Kantorovich): economic applications
- 1940s (Dantzig): military logistics problems during WW2; 1947: simplex algorithm
- 1950s-60s discovery of applications in many other fields (structural optimization, control theory, filter design, . . .)
- 1979 (Khachiyan) ellipsoid algorithm: more efficient (polynomial-time) than simplex in worst case, but slower in practice
- 1984 (Karmarkar): projective (interior-point) algorithm: polynomial-time worst-case complexity, and efficient in practice
- 1984-today. many variations of interior-point methods (improved complexity or efficiency in practice), software for large-scale problems

Course outline

```
the linear programming problem
linear inequalities, geometry of linear programming
engineering applications
signal processing, control, structural optimization . . .
duality
algorithms
the simplex algorithm, interior-point algorithms
large-scale linear programming and network optimization
techniques for LPs with special structure, network flow problems
integer linear programming
introduction, some basic techniques
```


Software

solvers: solve LPs described in some standard form
modeling tools: accept a problem in a simpler, more intuitive, notation and convert it to the standard form required by solvers
software for this course (see class website)

- platforms: Matlab, Octave, Python
- solvers: linprog (Matlab Optimization Toolbox),
- modeling tools: CVX (Matlab), YALMIP (Matlab),
- Thanks to Lieven Vandenberghe at UCLA for his slides

Integer linear program

integer linear program

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1, \ldots, m \\
& \sum_{j=1}^{n} c_{i j} x_{j}=d_{i}, \quad i=1, \ldots, p \\
& x_{j} \in \mathbf{Z}
\end{array}
$$

Boolean linear program

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1, \ldots, m \\
& \sum_{j=1}^{n} c_{i j} x_{j}=d_{i}, \quad i=1, \ldots, p \\
& x_{j} \in\{0,1\}
\end{array}
$$

- very general problems; can be extremely hard to solve
- can be solved as a sequence of linear programs

Example. Scheduling problem

scheduling graph \mathcal{V} :

- nodes represent operations (e.g., jobs in a manufacturing process, arithmetic operations in an algorithm)
- $(i, j) \in \mathcal{V}$ means operation j must wait for operation i to be finished
- M identical machines/processors; each operation takes unit time
problem: determine fastest schedule

Boolean linear program formulation

variables: $x_{i s}, i=1, \ldots, n, s=0, \ldots, T$:

$$
x_{i s}=1 \text { if job } i \text { starts at time } s, \quad x_{i s}=0 \text { otherwise }
$$

constraints:

1. $x_{i s} \in\{0,1\}$
2. job i starts exactly once:

$$
\sum_{s=0}^{T} x_{i s}=1
$$

3. if there is an arc (i, j) in \mathcal{V}, then

$$
\sum_{s=0}^{T} s x_{j s}-\sum_{s=0}^{T} s x_{i s} \geq 1
$$

4. limit on capacity (M machines) at time s :

$$
\sum_{i=1}^{n} x_{i s} \leq M
$$

cost function (start time of job n):

$$
\sum_{s=0}^{T} s x_{n s}
$$

Boolean linear program

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{s=0}^{T} s x_{n s} \\
\text { subject to } & \sum_{s=0}^{T} x_{i s}=1, \quad i=1, \ldots, n \\
& \sum_{s=0}^{T} s x_{j s}-\sum_{s=0}^{T} s x_{i s} \geq 1, \quad(i, j) \in \mathcal{V} \\
& \sum_{i=1}^{n} x_{i s} \leq M, \quad s=0, \ldots, T \\
& x_{i s} \in\{0,1\}, \quad i=1, \ldots, n, \quad s=0, \ldots, T
\end{array}
$$

Lecture 2
 Linear inequalities

- vectors
- inner products and norms
- linear equalities and hyperplanes
- linear inequalities and halfspaces
- polyhedra

Vectors

(column) vector $x \in \mathbf{R}^{n}$:

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- $x_{i} \in \mathbf{R}$: i th component or element of x
- also written as $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
some special vectors:
- $x=0$ (zero vector): $x_{i}=0, i=1, \ldots, n$
- $x=1: x_{i}=1, i=1, \ldots, n$
- $x=e_{i}$ (ith basis vector or i th unit vector): $x_{i}=1, x_{k}=0$ for $k \neq i$
(n follows from context)

Vector operations

multiplying a vector $x \in \mathbf{R}^{n}$ with a scalar $\alpha \in \mathbf{R}$:

$$
\alpha x=\left[\begin{array}{c}
\alpha x_{1} \\
\vdots \\
\alpha x_{n}
\end{array}\right]
$$

adding and subtracting two vectors $x, y \in \mathbf{R}^{n}$:

$$
\begin{gathered}
x+y=\left[\begin{array}{c}
x_{1}+y_{1} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right], \quad x-y=\left[\begin{array}{c}
x_{1}-y_{1} \\
\vdots \\
x_{n}-y_{n}
\end{array}\right] \\
\underbrace{0.75 x+1.5 y}_{0.75 x} \text {, } x
\end{gathered}
$$

Inner product

$x, y \in \mathbf{R}^{n}$

$$
\langle x, y\rangle:=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=x^{T} y
$$

important properties

- $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$
- $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$
- $\langle x, y\rangle=\langle y, x\rangle$
- $\langle x, x\rangle \geq 0$
- $\langle x, x\rangle=0 \Longleftrightarrow x=0$
linear function: $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is linear, i.e.

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y),
$$

if and only if $f(x)=\langle a, x\rangle$ for some a

Euclidean norm

for $x \in \mathbf{R}^{n}$ we define the (Euclidean) norm as

$$
\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}=\sqrt{x^{T} x}
$$

$\|x\|$ measures length of vector (from origin)
important properties:

- $\|\alpha x\|=|\alpha|\|x\|$ (homogeneity)
- $\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality)
- $\|x\| \geq 0$ (nonnegativity)
- $\|x\|=0 \Longleftrightarrow x=0$ (definiteness)
distance between vectors: $\operatorname{dist}(x, y)=\|x-y\|$

Inner products and angles

angle between vectors in \mathbf{R}^{n} :

$$
\theta=\angle(x, y)=\cos ^{-1} \frac{x^{T} y}{\|x\|\|y\|}
$$

i.e., $x^{T} y=\|x\|\|y\| \cos \theta$

- x and y aligned: $\theta=0 ; x^{T} y=\|x\|\|y\|$
- x and y opposed: $\theta=\pi ; x^{T} y=-\|x\|\|y\|$
- x and y orthogonal: $\theta=\pi / 2$ or $-\pi / 2 ; x^{T} y=0$ (denoted $x \perp y$)
- $x^{T} y>0$ means $\angle(x, y)$ is acute; $x^{T} y<0$ means $\angle(x, y)$ is obtuse

Cauchy-Schwarz inequality:

$$
\left|x^{T} y\right| \leq\|x\|\|y\|
$$

projection of x on y

projection is given by

$$
\left(\frac{x^{T} y}{\|y\|^{2}}\right) y
$$

Hyperplanes

hyperplane in \mathbf{R}^{n} :

$$
\left\{x \mid a^{T} x=b\right\} \quad(a \neq 0)
$$

- solution set of one linear equation $a_{1} x_{1}+\cdots+a_{n} x_{n}=b$ with at least one $a_{i} \neq 0$
- set of vectors that make a constant inner product with vector $a=\left(a_{1}, \ldots, a_{n}\right)$ (the normal vector)

in \mathbf{R}^{2} : a line, in \mathbf{R}^{3} : a plane, . .

Halfspaces

(closed) halfspace in \mathbf{R}^{n} :

$$
\left\{x \mid a^{T} x \leq b\right\} \quad(a \neq 0)
$$

- solution set of one linear inequality $a_{1} x_{1}+\cdots+a_{n} x_{n} \leq b$ with at least one $a_{i} \neq 0$
- $a=\left(a_{1}, \ldots, a_{n}\right)$ is the (outward) normal

$$
\begin{aligned}
& \left.0 x \mid a^{T} x \geq a^{T} x_{0}\right\} \\
& \left\{x \mid a^{T} x \leq a^{T} x_{0}\right\}
\end{aligned}
$$

- $\left\{x \mid a^{T} x<b\right\}$ is called an open halfspace

Affine sets

solution set of a set of linear equations

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{1} \\
& \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

intersection of m hyperplanes with normal vectors $a_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$ (w.l.o.g., all $a_{i} \neq 0$)
in matrix notation:

$$
A x=b
$$

with

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], \quad b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Polyhedra

solution set of system of linear inequalities

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & \leq b_{1} \\
& \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & \leq b_{m}
\end{aligned}
$$

intersection of m halfspaces, with normal vectors $a_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$ (w.l.o.g., all $a_{i} \neq 0$)

matrix notation

$$
A x \leq b
$$

with

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], \quad b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

$A x \leq b$ stands for componentwise inequality, i.e., for $y, z \in \mathbf{R}^{n}$,

$$
y \leq z \quad \Longleftrightarrow \quad y_{1} \leq z_{1}, \ldots, y_{n} \leq z_{n}
$$

Examples of polyhedra

- a hyperplane $\left\{x \mid a^{T} x=b\right\}$:

$$
a^{T} x \leq b, \quad a^{T} x \geq b
$$

- solution set of system of linear equations/inequalities

$$
a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m, \quad c_{i}^{T} x=d_{i}, \quad i=1, \ldots, p
$$

- a slab $\left\{x \mid b_{1} \leq a^{T} x \leq b_{2}\right\}$
- the probability simplex $\left\{x \in \mathbf{R}^{n} \mid \mathbf{1}^{T} x=1, x_{i} \geq 0, i=1, \ldots, n\right\}$
- (hyper)rectangle $\left\{x \in \mathbf{R}^{n} \mid l \leq x \leq u\right\}$ where $l<u$

Lecture 3
 Geometry of linear programming

- subspaces and affine sets, independent vectors
- matrices, range and nullspace, rank, inverse
- polyhedron in inequality form
- extreme points
- degeneracy
- the optimal set of a linear program

Subspaces

$\mathcal{S} \subseteq \mathbf{R}^{n}(\mathcal{S} \neq \emptyset)$ is called a subspace if

$$
x, y \in \mathcal{S}, \quad \alpha, \beta \in \mathbf{R} \quad \Longrightarrow \quad \alpha x+\beta y \in \mathcal{S}
$$

$\alpha x+\beta y$ is called a linear combination of x and y
examples (in \mathbf{R}^{n})

- $\mathcal{S}=\mathbf{R}^{n}, \mathcal{S}=\{0\}$
- $\mathcal{S}=\{\alpha v \mid \alpha \in \mathbf{R}\}$ where $v \in \mathbf{R}^{n}$ (i.e., a line through the origin)
- $\mathcal{S}=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\left\{\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k} \mid \alpha_{i} \in \mathbf{R}\right\}$, where $v_{i} \in \mathbf{R}^{n}$
- set of vectors orthogonal to given vectors v_{1}, \ldots, v_{k} :

$$
\mathcal{S}=\left\{x \in \mathbf{R}^{n} \mid v_{1}^{T} x=0, \ldots, v_{k}^{T} x=0\right\}
$$

Independent vectors

vectors $v_{1}, v_{2}, \ldots, v_{k}$ are independent if and only if

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=0 \quad \Longrightarrow \quad \alpha_{1}=\alpha_{2}=\cdots=0
$$

some equivalent conditions:

- coefficients of $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}$ are uniquely determined, i.e.,

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k} v_{k}=\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{k} v_{k}
$$

implies $\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \ldots, \alpha_{k}=\beta_{k}$

- no vector v_{i} can be expressed as a linear combination of the other vectors $v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k}$

Basis and dimension

$\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a basis for a subspace \mathcal{S} if

- $v_{1}, v_{2}, \ldots, v_{k} \operatorname{span} \mathcal{S}$, i.e., $\mathcal{S}=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$
- $v_{1}, v_{2}, \ldots, v_{k}$ are independent
equivalently: every $v \in \mathcal{S}$ can be uniquely expressed as

$$
v=\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}
$$

fact: for a given subspace \mathcal{S}, the number of vectors in any basis is the same, and is called the dimension of \mathcal{S}, denoted $\operatorname{dim} \mathcal{S}$

Affine sets

$\mathcal{V} \subseteq \mathbf{R}^{n}(\mathcal{V} \neq \emptyset)$ is called an affine set if

$$
x, y \in \mathcal{V}, \alpha+\beta=1 \quad \Longrightarrow \quad \alpha x+\beta y \in \mathcal{V}
$$

$\alpha x+\beta y$ is called an affine combination of x and y
examples (in \mathbf{R}^{n})

- subspaces
- $\mathcal{V}=b+\mathcal{S}=\{x+b \mid x \in \mathcal{S}\}$ where \mathcal{S} is a subspace
- $\mathcal{V}=\left\{\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k} \mid \alpha_{i} \in \mathbf{R}, \sum_{i} \alpha_{i}=1\right\}$
- $\mathcal{V}=\left\{x \mid v_{1}^{T} x=b_{1}, \ldots, v_{k}^{T} x=b_{k}\right\}$ (if $\left.\mathcal{V} \neq \emptyset\right)$
every affine set \mathcal{V} can be written as $\mathcal{V}=x_{0}+\mathcal{S}$ where $x_{0} \in \mathbf{R}^{n}, \mathcal{S}$ a subspace (e.g., can take any $x_{0} \in \mathcal{V}, \mathcal{S}=\mathcal{V}-x_{0}$)
$\operatorname{dim}\left(\mathcal{V}-x_{0}\right)$ is called the dimension of \mathcal{V}

Matrices

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \in \mathbf{R}^{m \times n}
$$

some special matrices:

- $A=0$ (zero matrix): $a_{i j}=0$
- $A=I$ (identity matrix): $m=n$ and $A_{i i}=1$ for $i=1, \ldots, n, A_{i j}=0$ for $i \neq j$
- $A=\operatorname{diag}(x)$ where $x \in \mathbf{R}^{n}$ (diagonal matrix): $m=n$ and

$$
A=\left[\begin{array}{cccc}
x_{1} & 0 & \cdots & 0 \\
0 & x_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & x_{n}
\end{array}\right]
$$

Matrix operations

- addition, subtraction, scalar multiplication
- transpose:

$$
A^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right] \in \mathbf{R}^{n \times m}
$$

- multiplication: $A \in \mathbf{R}^{m \times n}, B \in \mathbf{R}^{n \times q}, A B \in \mathbf{R}^{m \times q}$:

$$
A B=\left[\begin{array}{cccc}
\sum_{i=1}^{n} a_{1 i} b_{i 1} & \sum_{i=1}^{n} a_{1 i} b_{i 2} & \cdots & \sum_{i=1}^{n} a_{1 i} b_{i q} \\
\sum_{i=1}^{n} a_{2 i} b_{i 1} & \sum_{i=1}^{n} a_{2 i} b_{i 2} & \cdots & \sum_{i=1}^{n} a_{2 i} b_{i q} \\
\vdots & \vdots & & \vdots \\
\sum_{i=1}^{n} a_{m i} b_{i 1} & \sum_{i=1}^{n} a_{m i} b_{i 2} & \cdots & \sum_{i=1}^{n} a_{m i} b_{i q}
\end{array}\right]
$$

Rows and columns

rows of $A \in \mathbf{R}^{m \times n}$:

$$
A=\left[\begin{array}{c}
a_{1}^{T} \\
a_{2}^{T} \\
\vdots \\
a_{m}^{T}
\end{array}\right]
$$

with $a_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right) \in \mathbf{R}^{n}$
columns of $B \in \mathbf{R}^{n \times q}$:

$$
B=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{q}
\end{array}\right]
$$

with $b_{i}=\left(b_{1 i}, b_{2 i}, \ldots, b_{n i}\right) \in \mathbf{R}^{n}$
for example, can write $A B$ as

$$
A B=\left[\begin{array}{cccc}
a_{1}^{T} b_{1} & a_{1}^{T} b_{2} & \cdots & a_{1}^{T} b_{q} \\
a_{2}^{T} b_{1} & a_{2}^{T} b_{2} & \cdots & a_{2}^{T} b_{q} \\
\vdots & \vdots & & \vdots \\
a_{m}^{T} b_{1} & a_{m}^{T} b_{2} & \cdots & a_{m}^{T} b_{q}
\end{array}\right]
$$

Range of a matrix

the range of $A \in \mathbf{R}^{m \times n}$ is defined as

$$
\mathcal{R}(A)=\left\{A x \mid x \in \mathbf{R}^{n}\right\} \subseteq \mathbf{R}^{m}
$$

- a subspace
- set of vectors that can be 'hit' by mapping $y=A x$
- the span of the columns of $A=\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]$

$$
\mathcal{R}(A)=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n} \mid x \in \mathbf{R}^{n}\right\}
$$

- the set of vectors y s.t. $A x=y$ has a solution
$\mathcal{R}(A)=\mathbf{R}^{m}$ \qquad
- $A x=y$ can be solved in x for any y
- the columns of A span \mathbf{R}^{m}
- $\operatorname{dim} \mathcal{R}(A)=m$

Interpretations

$v \in \mathcal{R}(A), w \notin \mathcal{R}(A)$

- $y=A x$ represents output resulting from input x
- v is a possible result or output
- w cannot be a result or output
$\mathcal{R}(A)$ characterizes the achievable outputs
- $y=A x$ represents measurement of x
- $y=v$ is a possible or consistent sensor signal
- $y=w$ is impossible or inconsistent; sensors have failed or model is wrong
$\mathcal{R}(A)$ characterizes the possible results

Nullspace of a matrix

the nullspace of $A \in \mathbf{R}^{m \times n}$ is defined as

$$
\mathcal{N}(A)=\left\{x \in \mathbf{R}^{n} \mid A x=0\right\}
$$

- a subspace
- the set of vectors mapped to zero by $y=A x$
- the set of vectors orthogonal to all rows of A :

$$
\mathcal{N}(A)=\left\{x \in \mathbf{R}^{n} \mid a_{1}^{T} x=\cdots=a_{m}^{T} x=0\right\}
$$

where $A=\left[\begin{array}{lll}a_{1} & \cdots & a_{m}\end{array}\right]^{T}$
zero nullspace: $\mathcal{N}(A)=\{0\} \Longleftrightarrow$

- x can always be uniquely determined from $y=A x$
(i.e., the linear transformation $y=A x$ doesn't 'lose' information)
- columns of A are independent

Interpretations

suppose $z \in \mathcal{N}(A)$

- $y=A x$ represents output resulting from input x
$-z$ is input with no result
$-x$ and $x+z$ have same result
$\mathcal{N}(A)$ characterizes freedom of input choice for given result
- $y=A x$ represents measurement of x
$-z$ is undetectable - get zero sensor readings
- x and $x+z$ are indistinguishable: $A x=A(x+z)$
$\mathcal{N}(A)$ characterizes ambiguity in x from $y=A x$

Inverse

$A \in \mathbf{R}^{n \times n}$ is invertible or nonsingular if $\operatorname{det} A \neq 0$
equivalent conditions:

- columns of A are a basis for \mathbf{R}^{n}
- rows of A are a basis for \mathbf{R}^{n}
- $\mathcal{N}(A)=\{0\}$
- $\mathcal{R}(A)=\mathbf{R}^{n}$
- $y=A x$ has a unique solution x for every $y \in \mathbf{R}^{n}$
- A has an inverse $A^{-1} \in \mathbf{R}^{n \times n}$, with $A A^{-1}=A^{-1} A=I$

Rank of a matrix

we define the rank of $A \in \mathbf{R}^{m \times n}$ as

$$
\operatorname{rank}(A)=\operatorname{dim} \mathcal{R}(A)
$$

(nontrivial) facts:

- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$
- $\operatorname{rank}(A)$ is maximum number of independent columns (or rows) of A, hence

$$
\operatorname{rank}(A) \leq \min \{m, n\}
$$

- $\operatorname{rank}(A)+\operatorname{dim} \mathcal{N}(A)=n$

Full rank matrices

for $A \in \mathbf{R}^{m \times n}$ we have $\operatorname{rank}(A) \leq \min \{m, n\}$
we say A is full rank if $\operatorname{rank}(A)=\min \{m, n\}$

- for square matrices, full rank means nonsingular
- for skinny matrices ($m>n$), full rank means columns are independent
- for fat matrices $(m<n)$, full rank means rows are independent

Sets of linear equations

$$
A x=y
$$

given $A \in \mathbf{R}^{m \times n}, y \in \mathbf{R}^{m}$

- solvable if and only if $y \in \mathcal{R}(A)$
- unique solution if $y \in \mathcal{R}(A)$ and $\operatorname{rank}(A)=n$
- general solution set:

$$
\left\{x_{0}+v \mid v \in \mathcal{N}(A)\right\}
$$

where $A x_{0}=y$
A square and invertible: unique solution for every y :

$$
x=A^{-1} y
$$

Polyhedron (inequality form)

$A=\left[a_{1} \cdots a_{m}\right]^{T} \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$

$$
\mathcal{P}=\{x \mid A x \leq b\}=\left\{x \mid a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m\right\}
$$

\mathcal{P} is convex:

$$
x, y \in \mathcal{P}, \quad 0 \leq \lambda \leq 1 \quad \Longrightarrow \quad \lambda x+(1-\lambda) y \in \mathcal{P}
$$

i.e., the line segment between any two points in \mathcal{P} lies in \mathcal{P}

Extreme points and vertices

$x \in \mathcal{P}$ is an extreme point if it cannot be written as

$$
x=\lambda y+(1-\lambda) z
$$

with $0 \leq \lambda \leq 1, y, z \in \mathcal{P}, y \neq x, z \neq x$

$x \in \mathcal{P}$ is a vertex if there is a c such that $c^{T} x<c^{T} y$ for all $y \in \mathcal{P}, y \neq x$ fact: x is an extreme point $\Longleftrightarrow x$ is a vertex (proof later)

Basic feasible solution

define I as the set of indices of the active or binding constraints (at x^{\star}):

$$
a_{i}^{T} x^{\star}=b_{i}, \quad i \in I, \quad a_{i}^{T} x^{\star}<b_{i}, \quad i \notin I
$$

define \bar{A} as

$$
\bar{A}=\left[\begin{array}{c}
a_{i_{1}}^{T} \\
a_{i_{2}}^{T} \\
\vdots \\
a_{i_{k}}^{T}
\end{array}\right], \quad I=\left\{i_{1}, \ldots, i_{k}\right\}
$$

x^{\star} is called a basic feasible solution if

$$
\operatorname{rank} \bar{A}=n
$$

fact: x^{\star} is a vertex (extreme point) $\Longleftrightarrow x^{\star}$ is a basic feasible solution (proof later)

Example

$$
\left[\begin{array}{rr}
-1 & 0 \\
2 & 1 \\
0 & -1 \\
1 & 2
\end{array}\right] x \leq\left[\begin{array}{l}
0 \\
3 \\
0 \\
3
\end{array}\right]
$$

- $(1,1)$ is an extreme point
- $(1,1)$ is a vertex: unique minimum of $c^{T} x$ with $c=(-1,-1)$
- $(1,1)$ is a basic feasible solution: $I=\{2,4\}$ and $\operatorname{rank} \bar{A}=2$, where

$$
\bar{A}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Equivalence of the three definitions

vertex \Longrightarrow extreme point
let x^{\star} be a vertex of \mathcal{P}, i.e., there is a $c \neq 0$ such that

$$
c^{T} x^{\star}<c^{T} x \quad \text { for all } x \in \mathcal{P}, x \neq x^{\star}
$$

let $y, z \in \mathcal{P}, y \neq x^{\star}, z \neq x^{\star}$:

$$
c^{T} x^{\star}<c^{T} y, \quad c^{T} x^{\star}<c^{T} z
$$

so, if $0 \leq \lambda \leq 1$, then

$$
c^{T} x^{\star}<c^{T}(\lambda y+(1-\lambda) z)
$$

hence $x^{\star} \neq \lambda y+(1-\lambda) z$

extreme point \Longrightarrow basic feasible solution

suppose $x^{\star} \in \mathcal{P}$ is an extreme point with

$$
a_{i}^{T} x^{\star}=b_{i}, \quad i \in I, \quad a_{i}^{T} x^{\star}<b_{i}, \quad i \notin I
$$

suppose x^{\star} is not a basic feasible solution; then there exists a $d \neq 0$ with

$$
a_{i}^{T} d=0, \quad i \in I
$$

and for small enough $\epsilon>0$,

$$
y=x^{\star}+\epsilon d \in \mathcal{P}, \quad z=x^{\star}-\epsilon d \in \mathcal{P}
$$

we have

$$
x^{\star}=0.5 y+0.5 z
$$

which contradicts the assumption that x^{\star} is an extreme point

basic feasible solution \Longrightarrow vertex

suppose $x^{\star} \in \mathcal{P}$ is a basic feasible solution and

$$
a_{i}^{T} x^{\star}=b_{i} \quad i \in I, \quad a_{i}^{T} x^{\star}<b_{i} \quad i \notin I
$$

define $c=-\sum_{i \in I} a_{i}$; then

$$
c^{T} x^{\star}=-\sum_{i \in I} b_{i}
$$

and for all $x \in \mathcal{P}$,

$$
c^{T} x \geq-\sum_{i \in I} b_{i}
$$

with equality only if $a_{i}^{T} x=b_{i}, i \in I$
however the only solution to $a_{i}^{T} x=b_{i}, i \in I$, is x^{\star}; hence $c^{T} x^{\star}<c^{T} x$ for all $x \in \mathcal{P}$

Degeneracy

set of linear inequalities $a_{i}^{T} x \leq b_{i}, i=1, \ldots, m$
a basic feasible solution x^{\star} with

$$
a_{i}^{T} x^{\star}=b_{i}, \quad i \in I, \quad a_{i}^{T} x^{\star}<b_{i}, \quad i \notin I
$$

is degenerate if $\#$ indices in I is greater than n

- a property of the description of the polyhedron, not its geometry
- affects the performance of some algorithms
- disappears with small perturbations of b

Unbounded directions

\mathcal{P} contains a half-line if there exists $d \neq 0, x_{0}$ such that

$$
x_{0}+t d \in \mathcal{P} \text { for all } t \geq 0
$$

equivalent condition for $\mathcal{P}=\{x \mid A x \leq b\}$:

$$
A x_{0} \leq b, \quad A d \leq 0
$$

fact: \mathcal{P} unbounded $\Longleftrightarrow \mathcal{P}$ contains a half-line \mathcal{P} contains a line if there exists $d \neq 0, x_{0}$ such that

$$
x_{0}+t d \in \mathcal{P} \text { for all } t
$$

equivalent condition for $\mathcal{P}=\{x \mid A x \leq b\}$:

$$
A x_{0} \leq b, \quad A d=0
$$

fact: \mathcal{P} has no extreme points $\Longleftrightarrow \mathcal{P}$ contains a line

Optimal set of an LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b
\end{array}
$$

- optimal value: $p^{\star}=\min \left\{c^{T} x \mid A x \leq b\right\}\left(p^{\star}= \pm \infty\right.$ is possible)
- optimal point: x^{\star} with $A x^{\star} \leq b$ and $c^{T} x^{\star}=p^{\star}$
- optimal set: $X_{\mathrm{opt}}=\left\{x \mid A x \leq b, c^{T} x=p^{\star}\right\}$

example

$$
\begin{array}{ll}
\operatorname{minimize} & c_{1} x_{1}+c_{2} x_{2} \\
\text { subject to } & -2 x_{1}+x_{2} \leq 1 \\
& x_{1} \geq 0, \quad x_{2} \geq 0
\end{array}
$$

- $c=(1,1): X_{\mathrm{opt}}=\{(0,0)\}, p^{\star}=0$
- $c=(1,0): X_{\mathrm{opt}}=\left\{\left(0, x_{2}\right) \mid 0 \leq x_{2} \leq 1\right\}, p^{\star}=0$
- $c=(-1,-1): X_{\mathrm{opt}}=\emptyset, p^{\star}=-\infty$

Existence of optimal points

- $p^{\star}=-\infty$ if and only if there exists a feasible half-line

$$
\left\{x_{0}+t d \mid t \geq 0\right\}
$$

with $c^{T} d<0$

- $p^{\star}=+\infty$ if and only if $\mathcal{P}=\emptyset$
- p^{\star} is finite if and only if $X_{\text {opt }} \neq \emptyset$
property: if \mathcal{P} has at least one extreme point and p^{\star} is finite, then there exists an extreme point that is optimal

Lecture 4
 The linear programming problem: variants and examples

- variants of the linear programming problem
- LP feasibility problem
- examples and some general applications
- linear-fractional programming

Variants of the linear programming problem

general form

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m \\
& g_{i}^{T} x=h_{i}, \quad i=1, \ldots, p
\end{array}
$$

in matrix notation:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b \\
& G x=h
\end{array}
$$

where

$$
A=\left[\begin{array}{c}
a_{1}^{T} \\
a_{2}^{T} \\
\vdots \\
a_{m}^{T}
\end{array}\right] \in \mathbf{R}^{m \times n}, \quad G=\left[\begin{array}{c}
g_{1}^{T} \\
g_{2}^{T} \\
\vdots \\
g_{p}^{T}
\end{array}\right] \in \mathbf{R}^{p \times n}
$$

inequality form LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

in matrix notation:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b
\end{array}
$$

standard form LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & g_{i}^{T} x=h_{i}, \quad i=1, \ldots, m \\
& x \geq 0
\end{array}
$$

in matrix notation:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & G x=h \\
& x \geq 0
\end{array}
$$

Reduction of general LP to inequality/standard form

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m \\
& g_{i}^{T} x=h_{i}, \quad i=1, \ldots, p
\end{array}
$$

reduction to inequality form:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m \\
& g_{i}^{T} x \geq h_{i}, \quad i=1, \ldots, p \\
& g_{i}^{T} x \leq h_{i}, \quad i=1, \ldots, p
\end{array}
$$

in matrix notation (where A has rows a_{i}^{T}, G has rows g_{i}^{T})

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & {\left[\begin{array}{r}
A \\
-G \\
G
\end{array}\right] x \leq\left[\begin{array}{r}
b \\
-h \\
h
\end{array}\right]}
\end{array}
$$

reduction to standard form:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x^{+}-c^{T} x^{-} \\
\text {subject to } & a_{i}^{T} x^{+}-a_{i}^{T} x^{-}+s_{i}=b_{i}, \quad i=1, \ldots, m \\
& g_{i}^{T} x^{+}-g_{i}^{T} x^{-}=h_{i}, \quad i=1, \ldots, p \\
& x^{+}, x^{-}, s \geq 0
\end{array}
$$

- variables x^{+}, x^{-}, s
- recover x as $x=x^{+}-x^{-}$
- $s \in \mathbf{R}^{m}$ is called a slack variable
in matrix notation:

$$
\begin{array}{ll}
\operatorname{minimize} & \widetilde{c}^{T} \widetilde{x} \\
\text { subject to } & \widetilde{G} \widetilde{x}=\widetilde{h} \\
& \widetilde{x} \geq 0
\end{array}
$$

where
$\widetilde{x}=\left[\begin{array}{l}x^{+} \\ x^{-} \\ s\end{array}\right], \quad \widetilde{c}=\left[\begin{array}{r}c \\ -c \\ 0\end{array}\right], \quad \widetilde{G}=\left[\begin{array}{ccc}A & -A & I \\ G & -G & 0\end{array}\right], \quad \widetilde{h}=\left[\begin{array}{l}b \\ h\end{array}\right]$

LP feasibility problem

feasibility problem: find x that satisfies $a_{i}^{T} x \leq b_{i}, i=1, \ldots, m$
solution via LP (with variables t, x)

```
minimize t
subject to }\mp@subsup{a}{i}{T}x\leq\mp@subsup{b}{i}{}+t,\quadi=1,\ldots,
```

- variables t, x
- if minimizer x^{\star}, t^{\star} satisfies $t^{\star} \leq 0$, then x^{\star} satisfies the inequalities

LP in matrix notation:

$$
\begin{aligned}
& \text { minimize } \quad \widetilde{c}^{T} \widetilde{x} \\
& \text { subject to } \widetilde{A} \widetilde{x} \leq \widetilde{b} \\
& \widetilde{x}=\left[\begin{array}{l}
x \\
t
\end{array}\right], \quad \widetilde{c}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \widetilde{A}=\left[\begin{array}{cc}
A & -\mathbf{1}
\end{array}\right], \quad \widetilde{b}=b
\end{aligned}
$$

Piecewise-linear minimization

piecewise-linear minimization: $\operatorname{minimize} \max _{i=1, \ldots, m}\left(c_{i}^{T} x+d_{i}\right)$

\qquad
x
equivalent LP (with variables $x \in \mathbf{R}^{n}, t \in \mathbf{R}$):

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & c_{i}^{T} x+d_{i} \leq t, \quad i=1, \ldots, m
\end{array}
$$

in matrix notation:
minimize $\quad \widetilde{c}^{T} \widetilde{x}$
subject to $\widetilde{A} \widetilde{x} \leq \widetilde{b}$

$$
\widetilde{x}=\left[\begin{array}{l}
x \\
t
\end{array}\right], \quad \widetilde{c}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \widetilde{A}=\left[\begin{array}{ll}
C & -\mathbf{1}
\end{array}\right], \quad \widetilde{b}=[-d]
$$

Convex functions

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if for $0 \leq \lambda \leq 1$

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Piecewise-linear approximation

assume $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ differentiable and convex

- 1st-order approximation at x^{1} is a global lower bound on f :

$$
f(x) \geq f\left(x^{1}\right)+\nabla f\left(x^{1}\right)^{T}\left(x-x^{1}\right)
$$

- evaluating $f, \nabla f$ at several x^{i} yields a piecewise-linear lower bound:

$$
f(x) \geq \max _{i=1, \ldots, K}\left(f\left(x^{i}\right)+\nabla f\left(x^{i}\right)^{T}\left(x-x^{i}\right)\right)
$$

Convex optimization problem

$$
\operatorname{minimize} \quad f_{0}(x)
$$

(f_{i} convex and differentiable)
LP approximation (choose points $x^{j}, j=1, \ldots, K$):

```
minimize t
subject to }\mp@subsup{f}{0}{}(\mp@subsup{x}{}{j})+\nabla\mp@subsup{f}{0}{}(\mp@subsup{x}{}{j}\mp@subsup{)}{}{T}(x-\mp@subsup{x}{}{j})\leqt,\quadj=1,\ldots,
```

(variables x, t)

- yields lower bound on optimal value
- can be extended to nondifferentiable convex functions
- more sophisticated variation: cutting-plane algorithm (solves convex optimization problem via sequence of LP approximations)

Norms

norms on \mathbf{R}^{n} :

- Euclidean norm $\|x\|$ (or $\left.\|x\|_{2}\right)=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$
- ℓ_{1}-norm: $\|x\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$
- $\ell_{\infty^{-}}$(or Chebyshev-) norm: $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$

Norm approximation problems

$$
\operatorname{minimize} \quad\|A x-b\|_{p}
$$

- $x \in \mathbf{R}^{n}$ is variable; $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^{m}$ are problem data
- $p=1,2, \infty$
- $r=A x-b$ is called residual
- $r_{i}=a_{i}^{T} x-b_{i}$ is i th residual (a_{i}^{T} is i th row of A)
- usually overdetermined, i.e., $b \notin \mathcal{R}(A)$ (e.g., $m>n, A$ full rank)
interpretations:
- approximate or fit b with linear combination of columns of A
- b is corrupted measurement of $A x$; find 'least inconsistent' value of x for given measurements

examples:

- $\|r\|=\sqrt{r^{T} r}$: least-squares or ℓ_{2}-approximation (a.k.a. regression)
- $\|r\|=\max _{i}\left|r_{i}\right|$: Chebyshev, ℓ_{∞}, or minimax approximation
- $\|r\|=\sum_{i}\left|r_{i}\right|$: absolute-sum or ℓ_{1}-approximation

solution:

- ℓ_{2} : closed form expression

$$
x_{\mathrm{opt}}=\left(A^{T} A\right)^{-1} A^{T} b
$$

(assume $\operatorname{rank}(A)=n$)

- ℓ_{1}, ℓ_{∞} : no closed form expression, but readily solved via LP

ℓ_{1}-approximation via LP

ℓ_{1}-approximation problem

$$
\operatorname{minimize} \quad\|A x-b\|_{1}
$$

write as

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{m} y_{i} \\
\text { subject to } & -y \leq A x-b \leq y
\end{array}
$$

an LP with variables y, x :

$$
\begin{array}{ll}
\operatorname{minimize} & \widetilde{c}^{T} \widetilde{x} \\
\text { subject to } & \widetilde{A} \widetilde{x} \leq \widetilde{b}
\end{array}
$$

with

$$
\widetilde{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad \widetilde{c}=\left[\begin{array}{l}
0 \\
\mathbf{1}
\end{array}\right], \quad \widetilde{A}=\left[\begin{array}{rr}
A & -I \\
-A & -I
\end{array}\right], \quad \widetilde{b}=\left[\begin{array}{r}
b \\
-b
\end{array}\right]
$$

ℓ_{∞}-approximation via LP

ℓ_{∞}-approximation problem

$$
\operatorname{minimize} \quad\|A x-b\|_{\infty}
$$

write as

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & -t 1 \leq A x-b \leq t 1
\end{array}
$$

an LP with variables t, x :

$$
\begin{array}{ll}
\operatorname{minimize} & \widetilde{c}^{T} \widetilde{x} \\
\text { subject to } & \widetilde{A} \widetilde{x} \leq \widetilde{b}
\end{array}
$$

with

$$
\widetilde{x}=\left[\begin{array}{l}
x \\
t
\end{array}\right], \quad \widetilde{c}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \widetilde{A}=\left[\begin{array}{rr}
A & -\mathbf{1} \\
-A & -\mathbf{1}
\end{array}\right], \quad \widetilde{b}=\left[\begin{array}{r}
b \\
-b
\end{array}\right]
$$

Example

minimize $\|A x-b\|_{p}$ for $p=1,2, \infty\left(A \in \mathbf{R}^{100 \times 30}\right)$
resulting residuals:

histogram of residuals:

- $p=\infty$ gives 'thinnest' distribution; $p=1$ gives widest distribution
- $p=1$ most very small (or even zero) r_{i}

Interpretation: maximum likelihood estimation

m linear measurements y_{1}, \ldots, y_{m} of $x \in \mathbf{R}^{n}$:

$$
y_{i}=a_{i}^{T} x+v_{i}, \quad i=1, \ldots, m
$$

- v_{i} : measurement noise, IID with density p
- y is a random variable with density $p_{x}(y)=\prod_{i=1}^{m} p\left(y_{i}-a_{i}^{T} x\right)$
log-likelihood function is defined as

$$
\log p_{x}(y)=\sum_{i=1}^{m} \log p\left(y_{i}-a_{i}^{T} x\right)
$$

maximum likelihood (ML) estimate of x is

$$
\hat{x}=\underset{x}{\operatorname{argmax}} \sum_{i=1}^{m} \log p\left(y_{i}-a_{i}^{T} x\right)
$$

examples

- v_{i} Gaussian: $p(z)=1 /(\sqrt{2 \pi} \sigma) e^{-z^{2} / 2 \sigma^{2}}$

ML estimate is ℓ_{2}-estimate $\hat{x}=\operatorname{argmin}_{x}\|A x-y\|_{2}$

- v_{i} double-sided exponential: $p(z)=(1 / 2 a) e^{-|z| / a}$

ML estimate is ℓ_{1}-estimate $\hat{x}=\operatorname{argmin}_{x}\|A x-y\|_{1}$

- v_{i} is one-sided exponential: $p(z)= \begin{cases}(1 / a) e^{-z / a} & z \geq 0 \\ 0 & z<0\end{cases}$

ML estimate is found by solving LP

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T}(y-A x) \\
\text { subject to } & y-A x \geq 0
\end{array}
$$

- v_{i} are uniform on $[-a, a]: p(z)= \begin{cases}1 /(2 a) & -a \leq z \leq a \\ 0 & \text { otherwise }\end{cases}$

ML estimate is any x satisfying $\|A x-y\|_{\infty} \leq a$

Linear-fractional programming

$$
\begin{array}{ll}
\text { minimize } & \frac{c^{T} x+d}{f^{T} x+g} \\
\text { subject to } & A x \leq b \\
& f^{T} x+g \geq 0
\end{array}
$$

(asume $a / 0=+\infty$ if $a>0, a / 0=-\infty$ if $a \leq 0$)

- nonlinear objective function
- like LP, can be solved very efficiently
equivalent form with linear objective (vars. x, γ):

$$
\begin{array}{ll}
\operatorname{minimize} & \gamma \\
\text { subject to } & c^{T} x+d \leq \gamma\left(f^{T} x+g\right) \\
& f^{T} x+g \geq 0 \\
& A x \leq b
\end{array}
$$

Bisection algorithm for linear-fractional programming

given: interval $[l, u]$ that contains optimal γ repeat: solve feasibility problem for $\gamma=(u+l) / 2$

$$
\begin{aligned}
& c^{T} x+d \leq \gamma\left(f^{T} x+g\right) \\
& f^{T} x+g \geq 0 \\
& A x \leq b
\end{aligned}
$$

if feasible $u:=\gamma$; if infeasible $l:=\gamma$ until $u-l \leq \epsilon$

- each iteration is an LP feasibility problem
- accuracy doubles at each iteration
- number of iterations to reach accuracy ϵ starting with initial interval of width $u-l=\epsilon_{0}$:

$$
k=\left\lceil\log _{2}\left(\epsilon_{0} / \epsilon\right)\right\rceil
$$

Generalized linear-fractional programming

$$
\begin{array}{ll}
\operatorname{minimize} & \max _{i=1, \ldots, K} \frac{c_{i}^{T} x+d_{i}}{f_{i}^{T} x+g_{i}} \\
\text { subject to } & A x \leq b \\
& f_{i}^{T} x+g_{i} \geq 0, \quad i=1, \ldots, K
\end{array}
$$

equivalent formulation:

$$
\begin{array}{ll}
\operatorname{minimize} & \gamma \\
\text { subject to } & A x \leq b \\
& c_{i}^{T} x+d_{i} \leq \gamma\left(f_{i}^{T} x+g_{i}\right), \quad i=1, \ldots, K \\
& f_{i}^{T} x+g_{i} \geq 0, \quad i=1, \ldots, K
\end{array}
$$

- efficiently solved via bisection on γ
- each iteration is an LP feasibility problem

Von Neumann economic growth problem

simple model of an economy: m goods, n economic sectors

- $x_{i}(t)$: 'activity' of sector i in current period t
- $a_{i}^{T} x(t)$: amount of good i consumed in period t
- $b_{i}^{T} x(t)$: amount of good i produced in period t choose $x(t)$ to maximize growth rate $\min _{i} x_{i}(t+1) / x_{i}(t)$:

$$
\begin{array}{ll}
\operatorname{maximize} & \gamma \\
\text { subject to } & A x(t+1) \leq B x(t), \quad x(t+1) \geq \gamma x(t), \quad x(t) \geq \mathbf{1}
\end{array}
$$

or equivalently (since $\left.a_{i j} \geq 0\right)$:

$$
\begin{array}{ll}
\text { maximize } & \gamma \\
\text { subject to } & \gamma A x(t) \leq B x(t), \quad x(t) \geq \mathbf{1}
\end{array}
$$

(linear-fractional problem with variables $x(0), \gamma$)

Optimal transmitter power allocation

- m transmitters, $m n$ receivers all at same frequency
- transmitter i wants to transmit to n receivers labeled $(i, j), j=1, \ldots, n$

- $A_{i j k}$ is path gain from transmitter k to receiver (i, j)
- $N_{i j}$ is (self) noise power of receiver (i, j)
- variables: transmitter powers $p_{k}, k=1, \ldots, m$
at receiver (i, j) :
- signal power: $S_{i j}=A_{i j i} p_{i}$
- noise plus interference power: $I_{i j}=\sum_{k \neq i} A_{i j k} p_{k}+N_{i j}$
- signal to interference/noise ratio (SINR): $S_{i j} / I_{i j}$
problem: choose p_{i} to maximize smallest SINR:

$$
\begin{array}{ll}
\text { maximize } & \min _{i, j} \frac{A_{i j i} p_{i}}{\sum_{k \neq i} A_{i j k} p_{k}+N_{i j}} \\
\text { subject to } & 0 \leq p_{i} \leq p_{\max }
\end{array}
$$

- a (generalized) linear-fractional program
- special case with analytical solution: $m=1$, no upper bound on p_{i} (see exercises)

Lecture 5
 Applications in control

- optimal input design
- robust optimal input design
- pole placement (with low-authority control)

Linear dynamical system

$$
y(t)=h_{0} u(t)+h_{1} u(t-1)+h_{2} u(t-2)+\cdots
$$

- single input/single output: input $u(t) \in \mathbf{R}$, output $y(t) \in \mathbf{R}$
- h_{i} are called impulse response coefficients
- finite impulse response (FIR) system of order k : $h_{i}=0$ for $i>k$
if $u(t)=0$ for $t<0$,

$$
\left[\begin{array}{c}
y(0) \\
y(1) \\
y(2) \\
\vdots \\
y(N)
\end{array}\right]=\left[\begin{array}{ccccc}
h_{0} & 0 & 0 & \cdots & 0 \\
h_{1} & h_{0} & 0 & \cdots & 0 \\
h_{2} & h_{1} & h_{0} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
h_{N} & h_{N-1} & h_{N-2} & \cdots & h_{0}
\end{array}\right]\left[\begin{array}{c}
u(0) \\
u(1) \\
u(2) \\
\vdots \\
u(N)
\end{array}\right]
$$

a linear mapping from input to output sequence

Output tracking problem

choose inputs $u(t), t=0, \ldots, M(M<N)$ that

- minimize peak deviation between $y(t)$ and a desired output $y_{\text {des }}(t)$, $t=0, \ldots, N$,

$$
\max _{t=0, \ldots, N}\left|y(t)-y_{\mathrm{des}}(t)\right|
$$

- satisfy amplitude and slew rate constraints:

$$
|u(t)| \leq U, \quad|u(t+1)-u(t)| \leq S
$$

as a linear program (variables: $w, u(0), \ldots, u(N)$):
minimize. w

$$
\begin{array}{ll}
\text { subject to } & -w \leq \sum_{i=0}^{t} h_{i} u(t-i)-y_{\mathrm{des}}(t) \leq w, \quad t=0, \ldots, N \\
& u(t)=0, \quad t=M+1, \ldots, N \\
& -U \leq u(t) \leq U, \quad t=0, \ldots, M \\
& -S \leq u(t+1)-u(t) \leq S, \quad t=0, \ldots, M+1
\end{array}
$$

example. single input/output, $N=200$

constraints on u :

- input horizon $M=150$
- amplitude constraint $|u(t)| \leq 1.1$
- slew rate constraint $|u(t)-u(t-1)| \leq 0.25$

output and desired output:

optimal input sequence u :

Robust output tracking (1)

- impulse response is not exactly known; it can take two values:

$$
\left(h_{0}^{(1)}, h_{1}^{(1)}, \ldots, h_{k}^{(1)}\right), \quad\left(h_{0}^{(2)}, h_{1}^{(2)}, \ldots, h_{k}^{(2)}\right)
$$

- design an input sequence that minimizes the worst-case peak tracking error

$$
\begin{array}{ll}
\operatorname{minimize} & w \\
\text { subject to } & -w \leq \sum_{i=0}^{t} h_{i}^{(1)} u(t-i)-y_{\mathrm{des}}(t) \leq w, \quad t=0, \ldots, N \\
& -w \leq \sum_{i=0}^{t} h_{i}^{(2)} u(t-i)-y_{\mathrm{des}}(t) \leq w, \quad t=0, \ldots, N \\
& u(t)=0, \quad t=M+1, \ldots, N \\
& -U \leq u(t) \leq U, \quad t=0, \ldots, M \\
& -S \leq u(t+1)-u(t) \leq S, \quad t=0, \ldots, M+1
\end{array}
$$

an LP in the variables $w, u(0), \ldots, u(N)$

example

Robust output tracking (2)

$$
\left[\begin{array}{c}
h_{0}(s) \\
h_{1}(s) \\
\vdots \\
h_{k}(s)
\end{array}\right]=\left[\begin{array}{c}
\bar{h}_{0} \\
\bar{h}_{1} \\
\vdots \\
\bar{h}_{k}
\end{array}\right]+s_{1}\left[\begin{array}{c}
v_{0}^{(1)} \\
v_{1}^{(1)} \\
\vdots \\
v_{k}^{(1)}
\end{array}\right]+\cdots+s_{K}\left[\begin{array}{c}
v_{0}^{(K)} \\
v_{1}^{(K)} \\
\vdots \\
v_{k}^{(K)}
\end{array}\right]
$$

\bar{h}_{i} and $v_{i}^{(j)}$ are given; $s_{i} \in[-1,+1]$ is unknown
robust output tracking problem (variables $w, u(t)$):
\min. w
s.t. $\quad-w \leq \sum_{i=0}^{t} h_{i}(s) u(t-i)-y_{\mathrm{des}}(t) \leq w, \quad t=0, \ldots, N, \quad \forall s \in[-1,1]^{K}$
$u(t)=0, \quad t=M+1, \ldots, N$
$-U \leq u(t) \leq U, \quad t=0, \ldots, M$
$-S \leq u(t+1)-u(t) \leq S, \quad t=0, \ldots, M+1$
straightforward (and very inefficient) solution: enumerate all 2^{K} extreme values of s
simplification: we can express the 2^{K+1} linear inequalities

$$
-w \leq \sum_{i=0}^{t} h_{i}(s) u(t-i)-y_{\mathrm{des}}(t) \leq w \text { for all } s \in\{-1,1\}^{K}
$$

as two nonlinear inequalities

$$
\begin{aligned}
& \sum_{i=0}^{t} \bar{h}_{i} u(t-i)+\sum_{j=1}^{K}\left|\sum_{i=0}^{t} v_{i}^{(j)} u(t-i)\right| \leq y_{\operatorname{des}}(t)+w \\
& \sum_{i=0}^{t} \bar{h}_{i} u(t-i)-\sum_{j=1}^{K}\left|\sum_{i=0}^{t} v_{i}^{(j)} u(t-i)\right| \geq y_{\operatorname{des}}(t)-w
\end{aligned}
$$

proof:

$$
\begin{aligned}
& \max _{s \in\{-1,1\}^{K}} \sum_{i=0}^{t} h_{i}(s) u(t-i) \\
& =\sum_{i=0}^{t} \bar{h}_{i} u(t-i)+\sum_{j=1}^{K} \max _{s_{j} \in\{-1,+1\}} s_{j} \sum_{i=0}^{t} v_{i}^{(j)} u(t-i) \\
& =\sum_{i=0}^{t} \bar{h}_{i} u(t-i)+\sum_{j=1}^{K}\left|\sum_{i=0}^{t} v_{i}^{(j)} u(t-i)\right|
\end{aligned}
$$

and similarly for the lower bound
robust output tracking problem reduces to:
min. w
s.t. $\quad \sum_{i=0}^{t} \bar{h}_{i} u(t-i)+\sum_{j=1}^{K}\left|\sum_{i=0}^{t} v_{i}^{(j)} u(t-i)\right| \leq y_{\operatorname{des}}(t)+w, \quad t=0, \ldots, N$
$\sum_{i=0}^{t} \bar{h}_{i} u(t-i)-\sum_{j=1}^{K}\left|\sum_{i=0}^{t} v_{i}^{(j)} u(t-i)\right| \geq y_{\mathrm{des}}(t)-w, \quad t=0, \ldots, N$
$u(t)=0, \quad t=M+1, \ldots, N$
$-U \leq u(t) \leq U, \quad t=0, \ldots, M$
$-S \leq u(t+1)-u(t) \leq S, \quad t=0, \ldots, M+1$
(variables $u(t), w)$
to express as an LP:

- for $t=0, \ldots, N, j=1, \ldots, K$, introduce new variables $p^{(j)}(t)$ and constraints

$$
-p^{(j)}(t) \leq \sum_{i=0}^{t} v_{i}^{(j)} u(t-i) \leq p^{(j)}(t)
$$

- replace $\left|\sum_{i} v_{i}^{(j)} u(t-i)\right|$ by $p^{(j)}(t)$
example $(K=6)$
nominal and perturbed step responses

design for nominal system

robust design

State space description

input-output description:

$$
y(t)=H_{0} u(t)+H_{1} u(t-1)+H_{2} u(t-2)+\cdots
$$

if $u(t)=0, t<0$:

$$
\left[\begin{array}{c}
y(0) \\
y(1) \\
y(2) \\
\vdots \\
y(N)
\end{array}\right]=\left[\begin{array}{ccccc}
H_{0} & 0 & 0 & \cdots & 0 \\
H_{1} & H_{0} & 0 & \cdots & 0 \\
H_{2} & H_{1} & H_{0} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
H_{N} & H_{N-1} & H_{N-2} & \cdots & H_{0}
\end{array}\right]\left[\begin{array}{c}
u(0) \\
u(1) \\
u(2) \\
\vdots \\
u(N)
\end{array}\right]
$$

block Toeplitz structure (constant along diagonals)
state space model:

$$
x(t+1)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

with $H_{0}=D, H_{i}=C A^{i-1} B(i>0)$
$x(t) \in \mathbf{R}^{n}$ is state sequence
alternative description:

$$
\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
y(0) \\
y(1) \\
\vdots \\
y(N)
\end{array}\right]=\left[\begin{array}{ccccccccc}
A & -I & 0 & \cdots & 0 & B & 0 & \cdots & 0 \\
0 & A & -I & \cdots & 0 & 0 & B & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -I & 0 & 0 & \cdots & B \\
C & 0 & 0 & \cdots & 0 & D & 0 & \cdots & 0 \\
0 & C & 0 & \cdots & 0 & 0 & D & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & C & 0 & 0 & \cdots & D
\end{array}\right]\left[\begin{array}{c}
x(0) \\
x(1) \\
x(2) \\
\vdots \\
x(N) \\
u(0) \\
u(1) \\
\vdots \\
u(N)
\end{array}\right]
$$

- we don't eliminate the intermediate variables $x(t)$
- matrix is larger, but very sparse (interesting when using general-purpose LP solvers)

Pole placement

linear system

$$
\begin{array}{r}
\dot{z}(t)=A(x) z(t), \quad z(0)=z_{0} \\
\text { where } A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{p} A_{p} \in \mathbf{R}^{n \times n}
\end{array}
$$

- solutions have the form

$$
z_{i}(t)=\sum_{k} \beta_{i k} e^{\sigma_{k} t} \cos \left(\omega_{k} t-\phi_{i k}\right)
$$

where $\lambda_{k}=\sigma_{k} \pm j \omega_{k}$ are the eigenvalues of $A(x)$

- $x \in \mathbf{R}^{p}$ is the design parameter
- goal: place eigenvalues of $A(x)$ in a desired region by choosing x

Low-authority control

eigenvalues of $A(x)$ are very complicated (nonlinear, nondifferentiable) functions of x
first-order perturbation: if $\lambda_{i}\left(A_{0}\right)$ is simple, then

$$
\lambda_{i}(A(x))=\lambda_{i}\left(A_{0}\right)+\sum_{k=1}^{p} \frac{w_{i}^{*} A_{k} v_{i}}{w_{i}^{*} v_{i}} x_{k}+o(\|x\|)
$$

where w_{i}, v_{i} are the left and right eigenvectors:

$$
w_{i}^{*} A_{0}=\lambda_{i}\left(A_{0}\right) w_{i}^{*}, \quad A_{0} v_{i}=\lambda_{i}\left(A_{0}\right) v_{i}
$$

‘low-authority’ control:

- use linear first-order approximations for λ_{i}
- can place λ_{i} in a polyhedral region by imposing linear inequalities on x
- we expect this to work only for small shifts in eigenvalues

Example

truss with 30 nodes, 83 bars

$$
M \ddot{d}(t)+D \dot{d}(t)+K d(t)=0
$$

- $d(t)$: vector of horizontal and vertical node displacements
- $M=M^{T}>0$ (mass matrix): masses at the nodes
- $D=D^{T}>0$ (damping matrix); $K=K^{T}>0$ (stiffness matrix)
to increase damping, we attach dampers to the bars:

$$
D(x)=D_{0}+x_{1} D_{1}+\cdots+x_{p} D_{p}
$$

$x_{i}>0$: amount of external damping at bar i
eigenvalue placement problem

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{p} x_{i} \\
\text { subject to } & \lambda_{i}(M, D(x), K) \in \mathcal{C}, \quad i=1, \ldots, n \\
& x \geq 0
\end{array}
$$

an LP if \mathcal{C} is polyhedral and we use the 1 st order approximation for λ_{i}
eigenvalues

location of dampers

