Lecture 1 Introduction and overview

- linear programming
- example
- course topics
- software
- integer linear programming

Linear program (LP)

minimize
$$\sum_{\substack{j=1\\n}}^{n} c_j x_j$$

subject to
$$\sum_{\substack{j=1\\n}}^{n} a_{ij} x_j \le b_i, \quad i = 1, \dots, m$$
$$\sum_{\substack{j=1\\j=1}}^{n} c_{ij} x_j = d_i, \quad i = 1, \dots, p$$

variables: x_i

problem data: the coefficients $c_{j}\text{, }a_{ij}\text{, }b_{i}\text{, }c_{ij}\text{, }d_{i}$

- can be solved very efficiently (several 10,000 variables, constraints)
- widely available general-purpose software
- extensive, useful theory (optimality conditions, sensitivity analysis, . . .)

Example. Open-loop control problem

single-input/single-output system (with input u, output y)

$$y(t) = h_0 u(t) + h_1 u(t-1) + h_2 u(t-2) + h_3 u(t-3) + \cdots$$

output tracking problem: minimize deviation from desired output $y_{des}(t)$

$$\max_{t=0,\dots,N} |y(t) - y_{\mathrm{des}}(t)|$$

subject to input amplitude and slew rate constraints:

$$|u(t)| \le U, \qquad |u(t+1) - u(t)| \le S$$

variables: $u(0), \ldots, u(M)$ (with u(t) = 0 for t < 0, t > M)

solution: can be formulated as an LP, hence easily solved (more later)

example

step response ($s(t) = h_t + \cdots + h_0$) and desired output:

amplitude and slew rate constraint on u:

$$|u(t)| \le 1.1, \qquad |u(t) - u(t-1)| \le 0.25$$

optimal solution

Brief history

- **1930s** (Kantorovich): economic applications
- 1940s (Dantzig): military logistics problems during WW2;
 1947: simplex algorithm
- **1950s–60s** discovery of applications in many other fields (structural optimization, control theory, filter design, . . .)
- **1979** (Khachiyan) ellipsoid algorithm: more efficient (polynomial-time) than simplex in worst case, but slower in practice
- **1984** (Karmarkar): projective (interior-point) algorithm: polynomial-time worst-case complexity, and efficient in practice
- **1984–today**. many variations of interior-point methods (improved complexity or efficiency in practice), software for large-scale problems

Course outline

the linear programming problem

linear inequalities, geometry of linear programming

engineering applications

signal processing, control, structural optimization . . .

duality

algorithms the simplex algorithm, interior-point algorithms

large-scale linear programming and network optimization techniques for LPs with special structure, network flow problems

integer linear programming introduction, some basic techniques

Software

solvers: solve LPs described in some standard form

modeling tools: accept a problem in a simpler, more intuitive, notation and convert it to the standard form required by solvers

software for this course (see class website)

- platforms: Matlab, Octave, Python
- solvers: linprog (Matlab Optimization Toolbox),
- modeling tools: CVX (Matlab), YALMIP (Matlab),
- Thanks to Lieven Vandenberghe at UCLA for his slides

Integer linear program

integer linear program

minimize
$$\sum_{j=1}^{n} c_j x_j$$

subject to
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad i = 1, \dots, m$$

$$\sum_{j=1}^{n} c_{ij} x_j = d_i, \quad i = 1, \dots, p$$

$$x_j \in \mathbf{Z}$$

Boolean linear program

minimize
$$\sum_{j=1}^{n} c_j x_j$$

subject to
$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i, \quad i = 1, \dots, m$$

$$\sum_{j=1}^{n} c_{ij} x_j = d_i, \quad i = 1, \dots, p$$

$$x_j \in \{0, 1\}$$

- very general problems; can be extremely hard to solve
- can be solved as a sequence of linear programs

Example. Scheduling problem

scheduling graph \mathcal{V} :

- nodes represent operations (*e.g.*, jobs in a manufacturing process, arithmetic operations in an algorithm)
- $(i, j) \in \mathcal{V}$ means operation j must wait for operation i to be finished
- M identical machines/processors; each operation takes unit time

problem: determine fastest schedule

Boolean linear program formulation

variables: x_{is} , i = 1, ..., n, s = 0, ..., T:

 $x_{is} = 1$ if job *i* starts at time *s*, $x_{is} = 0$ otherwise

constraints:

- 1. $x_{is} \in \{0, 1\}$
- 2. job *i* starts exactly once:

$$\sum_{s=0}^{I} x_{is} = 1$$

T

3. if there is an arc (i, j) in \mathcal{V} , then

$$\sum_{s=0}^{T} sx_{js} - \sum_{s=0}^{T} sx_{is} \ge 1$$

4. limit on capacity (M machines) at time s:

$$\sum_{i=1}^{n} x_{is} \le M$$

cost function (start time of job n):

$$\sum_{s=0}^{T} s x_{ns}$$

Boolean linear program

$$\begin{array}{lll} \text{minimize} & \sum_{s=0}^{T} s x_{ns} \\ \text{subject to} & \sum_{s=0}^{T} x_{is} = 1, \quad i = 1, \dots, n \\ & \sum_{s=0}^{T} s x_{js} - \sum_{s=0}^{T} s x_{is} \geq 1, \quad (i,j) \in \mathcal{V} \\ & \sum_{i=1}^{n} x_{is} \leq M, \quad s = 0, \dots, T \\ & x_{is} \in \{0,1\}, \quad i = 1, \dots, n, \quad s = 0, \dots, T \end{array}$$

Lecture 2 Linear inequalities

- vectors
- inner products and norms
- linear equalities and hyperplanes
- linear inequalities and halfspaces
- polyhedra

Vectors

(column) vector $x \in \mathbf{R}^n$:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- $x_i \in \mathbf{R}$: *i*th *component* or *element* of x
- also written as $x = (x_1, x_2, \dots, x_n)$

some special vectors:

- x = 0 (zero vector): $x_i = 0, i = 1, ..., n$
- x = 1: $x_i = 1, i = 1, ..., n$
- $x = e_i$ (ith basis vector or ith unit vector): $x_i = 1$, $x_k = 0$ for $k \neq i$

(n follows from context)

Vector operations

multiplying a vector $x \in \mathbf{R}^n$ with a scalar $\alpha \in \mathbf{R}$:

$$\alpha x = \left[\begin{array}{c} \alpha x_1 \\ \vdots \\ \alpha x_n \end{array} \right]$$

adding and subtracting two vectors x, $y \in \mathbf{R}^n$:

Inner product

$$x, y \in \mathbf{R}^n$$

 $\langle x, y \rangle := x_1 y_1 + x_2 y_2 + \dots + x_n y_n = x^T y$

important properties

- $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
- $\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle$
- $\langle x, y \rangle = \langle y, x \rangle$
- $\langle x, x \rangle \ge 0$
- $\langle x, x \rangle = 0 \iff x = 0$

linear function: $f : \mathbf{R}^n \to \mathbf{R}$ is linear, *i.e.*

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y),$$

if and only if $f(x) = \langle a, x \rangle$ for some a

Euclidean norm

for $x \in \mathbf{R}^n$ we define the (Euclidean) norm as

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$$

||x|| measures *length* of vector (from origin)

important properties:

- $\|\alpha x\| = |\alpha| \|x\|$ (homogeneity)
- $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- $||x|| \ge 0$ (nonnegativity)
- $||x|| = 0 \iff x = 0$ (definiteness)

distance between vectors: dist(x, y) = ||x - y||

Inner products and angles

angle between vectors in \mathbf{R}^n :

$$\theta = \angle(x, y) = \cos^{-1} \frac{x^T y}{\|x\| \|y\|}$$

i.e., $x^T y = ||x|| ||y|| \cos \theta$

•
$$x$$
 and y aligned: $\theta = 0$; $x^T y = ||x|| ||y||$

- x and y opposed: $\theta = \pi$; $x^T y = -\|x\|\|y\|$
- x and y orthogonal: $\theta = \pi/2$ or $-\pi/2$; $x^T y = 0$ (denoted $x \perp y$)
- $x^T y > 0$ means $\angle(x, y)$ is acute; $x^T y < 0$ means $\angle(x, y)$ is obtuse

Cauchy-Schwarz inequality:

$$|x^T y| \le \|x\| \|y\|$$

projection of x on y

projection is given by

$$\left(\frac{x^T y}{\|y\|^2}\right) y$$

Hyperplanes

hyperplane in \mathbf{R}^n :

$$\{x \mid a^T x = b\} \quad (a \neq 0)$$

- solution set of one linear equation $a_1x_1 + \cdots + a_nx_n = b$ with at least one $a_i \neq 0$
- set of vectors that make a constant inner product with vector $a = (a_1, \ldots, a_n)$ (the *normal* vector)

Halfspaces

(closed) halfspace in \mathbf{R}^n :

 $\{x \mid a^T x \le b\} \quad (a \ne 0)$

- solution set of one linear inequality $a_1x_1 + \cdots + a_nx_n \leq b$ with at least one $a_i \neq 0$
- $a = (a_1, \ldots, a_n)$ is the (outward) normal

• $\{x \mid a^T x < b\}$ is called an *open* halfspace

Affine sets

solution set of a set of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_1$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

intersection of m hyperplanes with normal vectors $a_i = (a_{i1}, a_{i2}, \ldots, a_{in})$ (w.l.o.g., all $a_i \neq 0$)

in matrix notation:

$$Ax = b$$

with

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Polyhedra

solution set of system of linear inequalities

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \leq b_1$$

:
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \leq b_m$

intersection of m halfspaces, with normal vectors $a_i = (a_{i1}, a_{i2}, \ldots, a_{in})$ (w.l.o.g., all $a_i \neq 0$)

matrix notation

$$Ax \leq b$$

with

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

 $Ax \leq b$ stands for *componentwise* inequality, *i.e.*, for $y, z \in \mathbf{R}^n$,

$$y \le z \quad \Longleftrightarrow \quad y_1 \le z_1, \dots, y_n \le z_n$$

Examples of polyhedra

• a hyperplane $\{x \mid a^T x = b\}$:

$$a^T x \le b, \qquad a^T x \ge b$$

• solution set of system of linear equations/inequalities

$$a_i^T x \leq b_i, \quad i = 1, \dots, m, \qquad c_i^T x = d_i, \quad i = 1, \dots, p$$

- a slab $\{x \mid b_1 \leq a^T x \leq b_2\}$
- the probability simplex $\{x \in \mathbf{R}^n \mid \mathbf{1}^T x = 1, x_i \ge 0, i = 1, \dots, n\}$
- (hyper)rectangle $\{x \in \mathbf{R}^n \mid l \leq x \leq u\}$ where l < u

Lecture 3 Geometry of linear programming

- subspaces and affine sets, independent vectors
- matrices, range and nullspace, rank, inverse
- polyhedron in inequality form
- extreme points
- degeneracy
- the optimal set of a linear program

Subspaces

 $\mathcal{S} \subseteq \mathbf{R}^n \ (\mathcal{S} \neq \emptyset)$ is called a *subspace* if

$$x, y \in \mathcal{S}, \ \alpha, \beta \in \mathbf{R} \implies \alpha x + \beta y \in \mathcal{S}$$

 $\alpha x + \beta y$ is called a *linear combination* of x and y

examples (in \mathbb{R}^n)

- $\mathcal{S} = \mathbf{R}^n$, $\mathcal{S} = \{0\}$
- $S = \{ \alpha v \mid \alpha \in \mathbf{R} \}$ where $v \in \mathbf{R}^n$ (*i.e.*, a line through the origin)
- $\mathcal{S} = \operatorname{span}(v_1, v_2, \dots, v_k) = \{\alpha_1 v_1 + \dots + \alpha_k v_k \mid \alpha_i \in \mathbf{R}\}, \text{ where } v_i \in \mathbf{R}^n$
- set of vectors orthogonal to given vectors v_1, \ldots, v_k :

$$\mathcal{S} = \{ x \in \mathbf{R}^n \mid v_1^T x = 0, \dots, v_k^T x = 0 \}$$

Independent vectors

vectors v_1, v_2, \ldots, v_k are *independent* if and only if

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = 0 \quad \Longrightarrow \quad \alpha_1 = \alpha_2 = \dots = 0$$

some equivalent conditions:

• coefficients of $\alpha_1v_1 + \alpha_2v_2 + \cdots + \alpha_kv_k$ are uniquely determined, *i.e.*,

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_k v_k$$

implies $\alpha_1 = \beta_1, \alpha_2 = \beta_2, \ldots, \alpha_k = \beta_k$

 no vector v_i can be expressed as a linear combination of the other vectors v₁,..., v_{i-1}, v_{i+1},..., v_k

Basis and dimension

 $\{v_1, v_2, \ldots, v_k\}$ is a *basis* for a subspace S if

- v_1, v_2, \ldots, v_k span S, *i.e.*, $S = span(v_1, v_2, \ldots, v_k)$
- v_1, v_2, \ldots, v_k are independent

equivalently: every $v \in S$ can be uniquely expressed as

 $v = \alpha_1 v_1 + \dots + \alpha_k v_k$

fact: for a given subspace S, the number of vectors in any basis is the same, and is called the *dimension* of S, denoted dim S

Affine sets

 $\mathcal{V} \subseteq \mathbf{R}^n \ (\mathcal{V} \neq \emptyset)$ is called an *affine set* if

$$x, y \in \mathcal{V}, \ \alpha + \beta = 1 \implies \alpha x + \beta y \in \mathcal{V}$$

 $\alpha x + \beta y$ is called an *affine combination* of x and y examples (in \mathbb{R}^n)

• subspaces

•
$$\mathcal{V} = b + \mathcal{S} = \{x + b \mid x \in \mathcal{S}\}$$
 where \mathcal{S} is a subspace

•
$$\mathcal{V} = \{ \alpha_1 v_1 + \dots + \alpha_k v_k \mid \alpha_i \in \mathbf{R}, \sum_i \alpha_i = 1 \}$$

•
$$\mathcal{V} = \{x \mid v_1^T x = b_1, \dots, v_k^T x = b_k\}$$
 (if $\mathcal{V} \neq \emptyset$)

every affine set \mathcal{V} can be written as $\mathcal{V} = x_0 + \mathcal{S}$ where $x_0 \in \mathbb{R}^n$, \mathcal{S} a subspace (*e.g.*, can take any $x_0 \in \mathcal{V}$, $\mathcal{S} = \mathcal{V} - x_0$)

 $\dim(\mathcal{V} - x_0)$ is called the dimension of \mathcal{V}

Matrices

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \in \mathbf{R}^{m \times n}$$

some special matrices:

•
$$A = 0$$
 (zero matrix): $a_{ij} = 0$

- A = I (identity matrix): m = n and $A_{ii} = 1$ for i = 1, ..., n, $A_{ij} = 0$ for $i \neq j$
- $A = \operatorname{diag}(x)$ where $x \in \mathbf{R}^n$ (diagonal matrix): m = n and

$$A = \begin{bmatrix} x_1 & 0 & \cdots & 0 \\ 0 & x_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_n \end{bmatrix}$$

Matrix operations

- addition, subtraction, scalar multiplication
- transpose:

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} \in \mathbf{R}^{n \times m}$$

• multiplication: $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times q}$, $AB \in \mathbb{R}^{m \times q}$:

$$AB = \begin{bmatrix} \sum_{i=1}^{n} a_{1i}b_{i1} & \sum_{i=1}^{n} a_{1i}b_{i2} & \cdots & \sum_{i=1}^{n} a_{1i}b_{iq} \\ \sum_{i=1}^{n} a_{2i}b_{i1} & \sum_{i=1}^{n} a_{2i}b_{i2} & \cdots & \sum_{i=1}^{n} a_{2i}b_{iq} \\ \vdots & \vdots & \vdots & \vdots \\ \sum_{i=1}^{n} a_{mi}b_{i1} & \sum_{i=1}^{n} a_{mi}b_{i2} & \cdots & \sum_{i=1}^{n} a_{mi}b_{iq} \end{bmatrix}$$

Rows and columns

rows of $A \in \mathbf{R}^{m \times n}$:

$$A = \begin{bmatrix} a_1^I \\ a_2^T \\ \vdots \\ a_m^T \end{bmatrix}$$
 with $a_i = (a_{i1}, a_{i2}, \dots, a_{in}) \in \mathbf{R}^n$

columns of $B \in \mathbf{R}^{n \times q}$:

$$B = \left[\begin{array}{cccc} b_1 & b_2 & \cdots & b_q \end{array} \right]$$

with $b_i = (b_{1i}, b_{2i}, \dots, b_{ni}) \in \mathbf{R}^n$

for example, can write AB as

$$AB = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_q \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_q \\ \vdots & \vdots & & \vdots \\ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_q \end{bmatrix}$$

Range of a matrix

the range of $A \in \mathbf{R}^{m \times n}$ is defined as

$$\mathcal{R}(A) = \{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$$

- a subspace
- set of vectors that can be 'hit' by mapping y = Ax
- the span of the columns of $A = [a_1 \cdots a_n]$

$$\mathcal{R}(A) = \{a_1 x_1 + \dots + a_n x_n \mid x \in \mathbf{R}^n\}$$

• the set of vectors y s.t. Ax = y has a solution

 $\mathcal{R}(A) = \mathbf{R}^m \iff$

- Ax = y can be solved in x for any y
- the columns of A span \mathbf{R}^m
- dim $\mathcal{R}(A) = m$

Interpretations

 $v \in \mathcal{R}(A)$, $w \notin \mathcal{R}(A)$

- y = Ax represents output resulting from input x
 - -v is a possible result or output
 - \boldsymbol{w} cannot be a result or output

 $\mathcal{R}(A)$ characterizes the *achievable outputs*

- y = Ax represents measurement of x
 - y = v is a *possible* or *consistent* sensor signal
 - y = w is *impossible* or *inconsistent*; sensors have failed or model is wrong

 $\mathcal{R}(A)$ characterizes the *possible results*
Nullspace of a matrix

the *nullspace* of $A \in \mathbf{R}^{m \times n}$ is defined as

$$\mathcal{N}(A) = \{ x \in \mathbf{R}^n \mid Ax = 0 \}$$

- a subspace
- the set of vectors mapped to zero by y = Ax
- the set of vectors orthogonal to all rows of A:

$$\mathcal{N}(A) = \left\{ x \in \mathbf{R}^n \mid a_1^T x = \dots = a_m^T x = 0 \right\}$$

where $A = [a_1 \cdots a_m]^T$

zero nullspace: $\mathcal{N}(A) = \{0\} \iff$

- x can always be uniquely determined from y = Ax(*i.e.*, the linear transformation y = Ax doesn't 'lose' information)
- $\bullet\,$ columns of A are independent

Interpretations

suppose $z \in \mathcal{N}(A)$

- y = Ax represents output resulting from input x
 - -z is input with no result
 - x and x + z have same result

 $\mathcal{N}(A)$ characterizes *freedom of input choice* for given result

- y = Ax represents measurement of x
 - -z is undetectable get zero sensor readings
 - x and x + z are indistinguishable: Ax = A(x + z)

 $\mathcal{N}(A)$ characterizes *ambiguity* in x from y = Ax

Inverse

 $A \in \mathbf{R}^{n \times n}$ is invertible or nonsingular if det $A \neq 0$

equivalent conditions:

- columns of A are a basis for ${\rm I\!R}^n$
- $\bullet\,$ rows of A are a basis for ${\bf R}^n$
- $\mathcal{N}(A) = \{0\}$
- $\mathcal{R}(A) = \mathbf{R}^n$
- y = Ax has a unique solution x for every $y \in \mathbf{R}^n$
- A has an inverse $A^{-1} \in \mathbf{R}^{n \times n}$, with $AA^{-1} = A^{-1}A = I$

Rank of a matrix

we define the *rank* of $A \in \mathbf{R}^{m \times n}$ as

 $\mathbf{rank}(A) = \dim \mathcal{R}(A)$

(nontrivial) facts:

- $\operatorname{rank}(A) = \operatorname{rank}(A^T)$
- rank(A) is maximum number of independent columns (or rows) of A, hence

 $\operatorname{rank}(A) \le \min\{m, n\}$

• $\operatorname{rank}(A) + \dim \mathcal{N}(A) = n$

Full rank matrices

for $A \in \mathbf{R}^{m \times n}$ we have $\operatorname{rank}(A) \le \min\{m, n\}$

we say A is full rank if $rank(A) = min\{m, n\}$

- for square matrices, full rank means nonsingular
- for skinny matrices (m > n), full rank means columns are independent
- for fat matrices (m < n), full rank means rows are independent

Sets of linear equations

$$Ax = y$$

given $A \in \mathbf{R}^{m \times n}$, $y \in \mathbf{R}^m$

- solvable if and only if $y \in \mathcal{R}(A)$
- unique solution if $y \in \mathcal{R}(A)$ and $\operatorname{\mathbf{rank}}(A) = n$
- general solution set:

$$\{x_0 + v \mid v \in \mathcal{N}(A)\}$$

where $Ax_0 = y$

A square and invertible: unique solution for every y:

$$x = A^{-1}y$$

Polyhedron (inequality form)

 $A = [a_1 \cdots a_m]^T \in \mathbf{R}^{m \times n}, \ b \in \mathbf{R}^m$ $\mathcal{P} = \{x \mid Ax \le b\} = \{x \mid a_i^T x \le b_i, \ i = 1, \dots, m\}$ $a_1 \quad \times \quad a_2$

 \mathcal{P} is convex:

$$x, y \in \mathcal{P}, \ 0 \le \lambda \le 1 \implies \lambda x + (1 - \lambda)y \in \mathcal{P}$$

i.e., the *line segment* between any two points in \mathcal{P} lies in \mathcal{P}

Extreme points and vertices

 $x \in \mathcal{P}$ is an **extreme point** if it cannot be written as

$$x = \lambda y + (1 - \lambda)z$$

with $0 \leq \lambda \leq 1$, $y, z \in \mathcal{P}$, $y \neq x$, $z \neq x$

 $x \in \mathcal{P}$ is a **vertex** if there is a c such that $c^T x < c^T y$ for all $y \in \mathcal{P}$, $y \neq x$ **fact:** x is an extreme point $\iff x$ is a vertex (proof later)

Basic feasible solution

define I as the set of indices of the *active* or *binding* constraints (at x^*):

$$a_i^T x^* = b_i, \quad i \in I, \qquad a_i^T x^* < b_i, \quad i \notin I$$

define \bar{A} as

$$\bar{A} = \begin{bmatrix} a_{i_1}^T \\ a_{i_2}^T \\ \vdots \\ a_{i_k}^T \end{bmatrix}, \qquad I = \{i_1, \dots, i_k\}$$

 x^{\star} is called a *basic feasible solution* if

$$\operatorname{\mathbf{rank}}\overline{A} = n$$

fact: x^* is a vertex (extreme point) $\iff x^*$ is a basic feasible solution (proof later)

Example

$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} x \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

- (1,1) is an extreme point
- (1,1) is a vertex: unique minimum of $c^T x$ with c = (-1, -1)
- (1,1) is a basic feasible solution: $I = \{2, 4\}$ and $\operatorname{rank} \overline{A} = 2$, where

$$\overline{A} = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

Equivalence of the three definitions

vertex \implies extreme point

let x^* be a vertex of \mathcal{P} , *i.e.*, there is a $c \neq 0$ such that

$$c^T x^{\star} < c^T x$$
 for all $x \in \mathcal{P}$, $x \neq x^{\star}$

let $y, z \in \mathcal{P}$, $y \neq x^*$, $z \neq x^*$:

$$c^T x^\star < c^T y, \qquad c^T x^\star < c^T z$$

so, if $0 \leq \lambda \leq 1$, then

$$c^T x^* < c^T (\lambda y + (1 - \lambda)z)$$

hence $x^{\star} \neq \lambda y + (1 - \lambda)z$

extreme point \implies basic feasible solution

suppose $x^{\star} \in \mathcal{P}$ is an extreme point with

$$a_i^T x^* = b_i, \quad i \in I, \qquad a_i^T x^* < b_i, \quad i \notin I$$

suppose x^* is not a basic feasible solution; then there exists a $d \neq 0$ with

$$a_i^T d = 0, \quad i \in I$$

and for small enough $\epsilon > 0$,

$$y = x^* + \epsilon d \in \mathcal{P}, \quad z = x^* - \epsilon d \in \mathcal{P}$$

we have

$$x^{\star} = 0.5y + 0.5z,$$

which contradicts the assumption that x^{\star} is an extreme point

basic feasible solution \implies vertex

suppose $x^{\star} \in \mathcal{P}$ is a basic feasible solution and

$$a_i^T x^* = b_i \quad i \in I, \qquad a_i^T x^* < b_i \quad i \notin I$$

define $c = -\sum_{i \in I} a_i$; then

$$c^T x^\star = -\sum_{i \in I} b_i$$

and for all $x \in \mathcal{P}$,

$$c^T x \ge -\sum_{i \in I} b_i$$

with equality only if $a_i^T x = b_i$, $i \in I$

however the only solution to $a_i^T x = b_i$, $i \in I$, is x^* ; hence $c^T x^* < c^T x$ for all $x \in \mathcal{P}$

Degeneracy

set of linear inequalities $a_i^T x \leq b_i$, $i = 1, \ldots, m$

a basic feasible solution x^\star with

 $a_i^T x^* = b_i, \quad i \in I, \qquad a_i^T x^* < b_i, \quad i \notin I$

is *degenerate* if #indices in I is greater than n

- a property of the *description* of the polyhedron, not its geometry
- affects the performance of some algorithms
- $\bullet\,$ disappears with small perturbations of b

Unbounded directions

 ${\mathcal P}$ contains a **half-line** if there exists $d \neq 0$, x_0 such that

 $x_0 + td \in \mathcal{P}$ for all $t \ge 0$

equivalent condition for $\mathcal{P} = \{x \mid Ax \leq b\}$:

 $Ax_0 \le b, \quad Ad \le 0$

fact: \mathcal{P} unbounded $\iff \mathcal{P}$ contains a half-line

 \mathcal{P} contains a **line** if there exists $d \neq 0$, x_0 such that

 $x_0 + td \in \mathcal{P}$ for all t

equivalent condition for $\mathcal{P} = \{x \mid Ax \leq b\}$:

$$Ax_0 \le b, \quad Ad = 0$$

fact: \mathcal{P} has no extreme points $\iff \mathcal{P}$ contains a line

Optimal set of an LP

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

- optimal value: $p^* = \min\{c^T x \mid Ax \le b\}$ ($p^* = \pm \infty$ is possible)
- optimal point: x^* with $Ax^* \leq b$ and $c^T x^* = p^*$
- optimal set: $X_{\text{opt}} = \{x \mid Ax \le b, \ c^T x = p^\star\}$

example

$$\begin{array}{ll} \mbox{minimize} & c_1 x_1 + c_2 x_2 \\ \mbox{subject to} & -2 x_1 + x_2 \leq 1 \\ & x_1 \geq 0, \quad x_2 \geq 0 \end{array}$$

•
$$c = (1,1)$$
: $X_{opt} = \{(0,0)\}, p^* = 0$

•
$$c = (1,0)$$
: $X_{\text{opt}} = \{(0, x_2) \mid 0 \le x_2 \le 1\}, p^* = 0$

•
$$c = (-1, -1)$$
: $X_{\text{opt}} = \emptyset$, $p^* = -\infty$

Existence of optimal points

• $p^{\star} = -\infty$ if and only if there exists a feasible half-line

 $\{x_0 + td \mid t \ge 0\}$

with $c^T d < 0$

- $p^{\star} = +\infty$ if and only if $\mathcal{P} = \emptyset$
- p^* is finite if and only if $X_{\text{opt}} \neq \emptyset$

property: if \mathcal{P} has at least one extreme point and p^* is finite, then there exists an extreme point that is optimal

- variants of the linear programming problem
- LP feasibility problem
- examples and some general applications
- linear-fractional programming

Variants of the linear programming problem

general form

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & a_i^T x \leq b_i, \quad i=1,\ldots,m\\ & g_i^T x=h_i, \quad i=1,\ldots,p \end{array}$$

in matrix notation:

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax \leq b \\ & Gx = h \end{array}$$

where

$$A = \begin{bmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_m^T \end{bmatrix} \in \mathbf{R}^{m \times n}, \qquad G = \begin{bmatrix} g_1^T \\ g_2^T \\ \vdots \\ g_p^T \end{bmatrix} \in \mathbf{R}^{p \times n}$$

inequality form LP

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & a_i^T x \leq b_i, \quad i=1,\ldots,m \end{array}$

in matrix notation:

minimize
$$c^T x$$

subject to $Ax \leq b$

standard form LP

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & g_i^T x = h_i, \quad i = 1, \dots, m \\ & x \geq 0 \end{array}$$

in matrix notation:

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Gx = h\\ & x \geq 0 \end{array}$$

Reduction of general LP to inequality/standard form

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & a_i^T x \leq b_i, \quad i = 1, \dots, m\\ & g_i^T x = h_i, \quad i = 1, \dots, p \end{array}$$

reduction to inequality form:

$$\begin{array}{lll} \text{minimize} & c^T x\\ \text{subject to} & a_i^T x \leq b_i, & i = 1, \dots, m\\ & g_i^T x \geq h_i, & i = 1, \dots, p\\ & g_i^T x \leq h_i, & i = 1, \dots, p \end{array}$$

in matrix notation (where A has rows a_i^T , G has rows g_i^T)

minimize
$$c^T x$$

subject to $\begin{bmatrix} A \\ -G \\ G \end{bmatrix} x \leq \begin{bmatrix} b \\ -h \\ h \end{bmatrix}$

reduction to standard form:

$$\begin{array}{ll} \mbox{minimize} & c^T x^+ - c^T x^- \\ \mbox{subject to} & a_i^T x^+ - a_i^T x^- + s_i = b_i, \quad i = 1, \dots, m \\ & g_i^T x^+ - g_i^T x^- = h_i, \quad i = 1, \dots, p \\ & x^+, x^-, s \geq 0 \end{array}$$

- variables x^+ , x^- , s
- recover x as $x = x^+ x^-$
- $s \in \mathbf{R}^m$ is called a *slack* variable

in matrix notation:

$$\begin{array}{ll} \text{minimize} & \widetilde{c}^T \, \widetilde{x} \\ \text{subject to} & \widetilde{G} \widetilde{x} = \widetilde{h} \\ & \widetilde{x} \geq 0 \end{array}$$

where

$$\widetilde{x} = \begin{bmatrix} x^+ \\ x^- \\ s \end{bmatrix}, \qquad \widetilde{c} = \begin{bmatrix} c \\ -c \\ 0 \end{bmatrix}, \qquad \widetilde{G} = \begin{bmatrix} A & -A & I \\ G & -G & 0 \end{bmatrix}, \qquad \widetilde{h} = \begin{bmatrix} b \\ h \end{bmatrix}$$

LP feasibility problem

feasibility problem: find x that satisfies $a_i^T x \leq b_i$, i = 1, ..., msolution via LP (with variables t, x)

minimize
$$t$$

subject to $a_i^T x \leq b_i + t, \quad i = 1, \dots, m$

- variables t, x
- if minimizer x^* , t^* satisfies $t^* \leq 0$, then x^* satisfies the inequalities

LP in matrix notation:

$$\begin{array}{ll} \mbox{minimize} & \widetilde{c}^T \widetilde{x} \\ \mbox{subject to} & \widetilde{A} \widetilde{x} \leq \widetilde{b} \end{array}$$

$$\widetilde{x} = \begin{bmatrix} x \\ t \end{bmatrix}, \quad \widetilde{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \widetilde{A} = \begin{bmatrix} A & -\mathbf{1} \end{bmatrix}, \quad \widetilde{b} = b$$

Piecewise-linear minimization

piecewise-linear minimization: minimize $\max_{i=1,...,m} (c_i^T x + d_i)$ $\max_i (c_i^T x + d_i)$ $c_i^T x + d_i$

equivalent LP (with variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$):

 $\begin{array}{ll} \mbox{minimize} & t \\ \mbox{subject to} & c_i^T x + d_i \leq t, \quad i = 1, \ldots, m \end{array}$

- **(T**) - (

in matrix notation:

$$\begin{array}{ccc} \text{minimize} & \widetilde{c}^{T} \widetilde{x} \\ \text{subject to} & \widetilde{A} \widetilde{x} \leq \widetilde{b} \end{array} \\ \widetilde{x} = \left[\begin{array}{c} x \\ t \end{array} \right], \qquad \widetilde{c} = \left[\begin{array}{c} 0 \\ 1 \end{array} \right], \qquad \widetilde{A} = \left[\begin{array}{c} C & -\mathbf{1} \end{array} \right], \qquad \widetilde{b} = \left[\begin{array}{c} -d \end{array} \right] \end{array}$$

Convex functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if for $0 \le \lambda \le 1$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Piecewise-linear approximation

assume $f : \mathbf{R}^n \to \mathbf{R}$ differentiable and convex

• 1st-order approximation at x^1 is a global lower bound on f:

• evaluating f, ∇f at several x^i yields a *piecewise-linear* lower bound:

$$f(x) \ge \max_{i=1,...,K} \left(f(x^i) + \nabla f(x^i)^T (x - x^i) \right)$$

Convex optimization problem

minimize $f_0(x)$

 $(f_i \text{ convex and differentiable})$

LP approximation (choose points x^j , j = 1, ..., K):

minimize
$$t$$

subject to $f_0(x^j) + \nabla f_0(x^j)^T (x - x^j) \le t, \quad j = 1, \dots, K$

(variables x, t)

- yields lower bound on optimal value
- can be extended to nondifferentiable convex functions
- more sophisticated variation: cutting-plane algorithm (solves convex optimization problem via sequence of LP approximations)

Norms

norms on \mathbf{R}^n :

- Euclidean norm ||x|| (or $||x||_2$) = $\sqrt{x_1^2 + \dots + x_n^2}$
- ℓ_1 -norm: $||x||_1 = |x_1| + \dots + |x_n|$
- ℓ_{∞} (or Chebyshev-) norm: $||x||_{\infty} = \max_i |x_i|$

Norm approximation problems

minimize $||Ax - b||_p$

- $x \in \mathbf{R}^n$ is variable; $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$ are problem data
- $p = 1, 2, \infty$
- r = Ax b is called *residual*
- $r_i = a_i^T x b_i$ is *i*th residual $(a_i^T \text{ is } i \text{th row of } A)$
- usually overdetermined, *i.e.*, $b \notin \mathcal{R}(A)$ (*e.g.*, m > n, A full rank)

interpretations:

- approximate or fit b with linear combination of columns of A
- *b* is corrupted measurement of *Ax*; find 'least inconsistent' value of *x* for given measurements

examples:

- $||r|| = \sqrt{r^T r}$: least-squares or ℓ_2 -approximation (a.k.a. regression)
- $||r|| = \max_i |r_i|$: Chebyshev, ℓ_{∞} , or minimax approximation
- $||r|| = \sum_{i} |r_i|$: absolute-sum or ℓ_1 -approximation

solution:

• ℓ_2 : closed form expression

$$x_{\rm opt} = (A^T A)^{-1} A^T b$$

(assume $\operatorname{rank}(A) = n$)

• ℓ_1 , ℓ_∞ : no closed form expression, but readily solved via LP

$\ell_1\text{-approximation}$ via LP

 ℓ_1 -approximation problem

minimize
$$||Ax - b||_1$$

write as

minimize
$$\sum_{i=1}^{m} y_i$$

subject to $-y \le Ax - b \le y$

an LP with variables y, x:

$$\begin{array}{ll} \mbox{minimize} & \widetilde{c}^T \widetilde{x} \\ \mbox{subject to} & \widetilde{A} \widetilde{x} \leq \widetilde{b} \end{array}$$

with

$$\widetilde{x} = \begin{bmatrix} x \\ y \end{bmatrix}, \qquad \widetilde{c} = \begin{bmatrix} 0 \\ \mathbf{1} \end{bmatrix}, \qquad \widetilde{A} = \begin{bmatrix} A & -I \\ -A & -I \end{bmatrix}, \qquad \widetilde{b} = \begin{bmatrix} b \\ -b \end{bmatrix}$$

$\ell_\infty\text{-approximation}$ via LP

 ℓ_∞ -approximation problem

minimize
$$||Ax - b||_{\infty}$$

write as

 $\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & -t\mathbf{1} \leq Ax - b \leq t\mathbf{1} \end{array}$

an LP with variables t, x:

$$\begin{array}{ll} \mbox{minimize} & \widetilde{c}^T \widetilde{x} \\ \mbox{subject to} & \widetilde{A} \widetilde{x} \leq \widetilde{b} \end{array}$$

with

$$\widetilde{x} = \begin{bmatrix} x \\ t \end{bmatrix}, \qquad \widetilde{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \qquad \widetilde{A} = \begin{bmatrix} A & -\mathbf{1} \\ -A & -\mathbf{1} \end{bmatrix}, \qquad \widetilde{b} = \begin{bmatrix} b \\ -b \end{bmatrix}$$

Example

minimize $||Ax - b||_p$ for $p = 1, 2, \infty$ ($A \in \mathbb{R}^{100 \times 30}$)

resulting residuals:

histogram of residuals:

- $p=\infty$ gives 'thinnest' distribution; p=1 gives widest distribution
- $p = 1 \mod \text{very small}$ (or even zero) r_i

Interpretation: maximum likelihood estimation

m linear measurements y_1, \ldots, y_m of $x \in \mathbf{R}^n$:

$$y_i = a_i^T x + v_i, \quad i = 1, \dots, m$$

- v_i : measurement noise, IID with density p
- y is a random variable with density $p_x(y) = \prod_{i=1}^m p(y_i a_i^T x)$

log-likelihood function is defined as

$$\log p_x(y) = \sum_{i=1}^m \log p(y_i - a_i^T x)$$

maximum likelihood (ML) estimate of x is

$$\hat{x} = \operatorname*{argmax}_{x} \sum_{i=1}^{m} \log p(y_i - a_i^T x)$$
examples

- v_i Gaussian: p(z) = 1/(√2πσ)e^{-z²/2σ²}
 ML estimate is ℓ₂-estimate x̂ = argmin_x ||Ax y||₂
- v_i double-sided exponential: p(z) = (1/2a)e^{-|z|/a}
 ML estimate is l₁-estimate x̂ = argmin_x ||Ax y||₁
- v_i is one-sided exponential: $p(z) = \begin{cases} (1/a)e^{-z/a} & z \ge 0\\ 0 & z < 0 \end{cases}$

ML estimate is found by solving LP

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T(y - Ax) \\ \text{subject to} & y - Ax \geq 0 \end{array}$$

• v_i are uniform on [-a, a]: $p(z) = \begin{cases} 1/(2a) & -a \le z \le a \\ 0 & \text{otherwise} \end{cases}$ ML estimate is any x satisfying $||Ax - y||_{\infty} \le a$

Linear-fractional programming

$$\begin{array}{ll} \mbox{minimize} & \frac{c^T x + d}{f^T x + g} \\ \mbox{subject to} & Ax \leq b \\ f^T x + g \geq 0 \end{array}$$
 (asume $a/0 = +\infty$ if $a > 0, \ a/0 = -\infty$ if $a \leq 0$)

- nonlinear objective function
- like LP, can be solved very efficiently

equivalent form with linear objective (vars. x, γ):

$$\begin{array}{ll} \mbox{minimize} & \gamma \\ \mbox{subject to} & c^T x + d \leq \gamma (f^T x + g) \\ & f^T x + g \geq 0 \\ & A x \leq b \end{array}$$

The linear programming problem: variants and examples

Bisection algorithm for linear-fractional programming

given: interval
$$[l, u]$$
 that contains optimal γ
repeat: solve feasibility problem for $\gamma = (u + l)/2$
 $c^T x + d \leq \gamma (f^T x + g)$
 $f^T x + g \geq 0$
 $Ax \leq b$
if feasible $u := \gamma$; if infeasible $l := \gamma$
until $u - l \leq \epsilon$

- each iteration is an LP feasibility problem
- accuracy doubles at each iteration
- number of iterations to reach accuracy ϵ starting with initial interval of width $u l = \epsilon_0$:

$$k = \lceil \log_2(\epsilon_0/\epsilon) \rceil$$

Generalized linear-fractional programming

$$\begin{array}{ll} \text{minimize} & \max_{i=1,\ldots,K} \frac{c_i^T x + d_i}{f_i^T x + g_i} \\ \text{subject to} & Ax \leq b \\ & f_i^T x + g_i \geq 0, \quad i = 1,\ldots,K \end{array}$$

equivalent formulation:

$$\begin{array}{ll} \text{minimize} & \gamma \\ \text{subject to} & Ax \leq b \\ & c_i^T x + d_i \leq \gamma(f_i^T x + g_i), \quad i = 1, \dots, K \\ & f_i^T x + g_i \geq 0, \quad i = 1, \dots, K \end{array}$$

- efficiently solved via bisection on γ
- each iteration is an LP feasibility problem

Von Neumann economic growth problem

simple model of an economy: m goods, n economic sectors

- $x_i(t)$: 'activity' of sector i in current period t
- $a_i^T x(t)$: amount of good *i* consumed in period *t*
- $b_i^T x(t)$: amount of good *i* produced in period *t*

choose x(t) to maximize growth rate $\min_i x_i(t+1)/x_i(t)$:

```
 \begin{array}{ll} \text{maximize} & \gamma \\ \text{subject to} & Ax(t+1) \leq Bx(t), \quad x(t+1) \geq \gamma x(t), \quad x(t) \geq \mathbf{1} \end{array}
```

or equivalently (since $a_{ij} \ge 0$):

 $\begin{array}{ll} \text{maximize} & \gamma \\ \text{subject to} & \gamma A x(t) \leq B x(t), \quad x(t) \geq \mathbf{1} \end{array} \\ \end{array}$

(linear-fractional problem with variables x(0), γ)

The linear programming problem: variants and examples

Optimal transmitter power allocation

- m transmitters, mn receivers all at same frequency
- transmitter i wants to transmit to n receivers labeled (i, j), $j = 1, \ldots, n$

- A_{ijk} is path gain from transmitter k to receiver (i, j)
- N_{ij} is (self) noise power of receiver (i, j)
- variables: transmitter powers p_k , $k = 1, \ldots, m$

at receiver (i, j):

- signal power: $S_{ij} = A_{iji}p_i$
- noise plus interference power: $I_{ij} = \sum_{k \neq i} A_{ijk} p_k + N_{ij}$
- signal to interference/noise ratio (SINR): S_{ij}/I_{ij}

problem: choose p_i to maximize smallest SINR:

maximize
$$\min_{i,j} \frac{A_{iji}p_i}{\sum_{k \neq i} A_{ijk}p_k + N_{ij}}$$
subject to $0 \le p_i \le p_{\max}$

- a (generalized) linear-fractional program
- special case with analytical solution: m = 1, no upper bound on p_i (see exercises)

The linear programming problem: variants and examples

Lecture 5 Applications in control

- optimal input design
- robust optimal input design
- pole placement (with low-authority control)

Linear dynamical system

$$y(t) = h_0 u(t) + h_1 u(t-1) + h_2 u(t-2) + \cdots$$

- single input/single output: input $u(t) \in \mathbf{R}$, output $y(t) \in \mathbf{R}$
- h_i are called *impulse response* coefficients
- finite impulse response (FIR) system of order k: $h_i = 0$ for i > k

if u(t) = 0 for t < 0,

$$\begin{bmatrix} y(0) \\ y(1) \\ y(2) \\ \vdots \\ y(N) \end{bmatrix} = \begin{bmatrix} h_0 & 0 & 0 & \cdots & 0 \\ h_1 & h_0 & 0 & \cdots & 0 \\ h_2 & h_1 & h_0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h_N & h_{N-1} & h_{N-2} & \cdots & h_0 \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ u(2) \\ \vdots \\ u(N) \end{bmatrix}$$

a linear mapping from input to output sequence

Output tracking problem

choose inputs u(t), t = 0, ..., M (M < N) that

• minimize peak deviation between y(t) and a desired output $y_{\rm des}(t)$, $t=0,\ldots,N$,

$$\max_{t=0,\ldots,N} |y(t) - y_{\mathrm{des}}(t)|$$

• satisfy amplitude and slew rate constraints:

 $|u(t)| \le U, |u(t+1) - u(t)| \le S$

as a linear program (variables: w, u(0), . . . , u(N)):

$$\begin{array}{ll} \text{minimize.} & w \\ \text{subject to} & -w \leq \sum_{i=0}^{t} h_i u(t-i) - y_{\text{des}}(t) \leq w, \quad t = 0, \dots, N \\ & u(t) = 0, \quad t = M+1, \dots, N \\ & -U \leq u(t) \leq U, \quad t = 0, \dots, M \\ & -S \leq u(t+1) - u(t) \leq S, \quad t = 0, \dots, M+1 \end{array}$$

example. single input/output, N = 200

constraints on u:

- input horizon M = 150
- amplitude constraint $|u(t)| \leq 1.1$
- slew rate constraint $|u(t)-u(t-1)| \leq 0.25$

output and desired output:

optimal input sequence u:

Robust output tracking (1)

• impulse response is not exactly known; it can take two values:

$$(h_0^{(1)}, h_1^{(1)}, \dots, h_k^{(1)}), \qquad (h_0^{(2)}, h_1^{(2)}, \dots, h_k^{(2)})$$

• design an input sequence that minimizes the worst-case peak tracking error

$$\begin{array}{ll} \text{minimize} & w \\ \text{subject to} & -w \leq \sum_{i=0}^{t} h_i^{(1)} u(t-i) - y_{\text{des}}(t) \leq w, \quad t = 0, \dots, N \\ & -w \leq \sum_{i=0}^{t} h_i^{(2)} u(t-i) - y_{\text{des}}(t) \leq w, \quad t = 0, \dots, N \\ & u(t) = 0, \quad t = M + 1, \dots, N \\ & -U \leq u(t) \leq U, \quad t = 0, \dots, M \\ & -S \leq u(t+1) - u(t) \leq S, \quad t = 0, \dots, M + 1 \end{array}$$

an LP in the variables w , $u(0), \, \ldots$, u(N)

example

Robust output tracking (2)

$$\begin{bmatrix} h_0(s) \\ h_1(s) \\ \vdots \\ h_k(s) \end{bmatrix} = \begin{bmatrix} \bar{h}_0 \\ \bar{h}_1 \\ \vdots \\ \bar{h}_k \end{bmatrix} + s_1 \begin{bmatrix} v_0^{(1)} \\ v_1^{(1)} \\ \vdots \\ v_k^{(1)} \end{bmatrix} + \dots + s_K \begin{bmatrix} v_0^{(K)} \\ v_1^{(K)} \\ \vdots \\ v_k^{(K)} \end{bmatrix}$$

 \bar{h}_i and $v_i^{(j)}$ are given; $s_i \in [-1, +1]$ is unknown

robust output tracking problem (variables w, u(t)):

min.
$$w$$

s.t. $-w \leq \sum_{i=0}^{t} h_i(s)u(t-i) - y_{des}(t) \leq w, \quad t = 0, ..., N, \quad \forall s \in [-1, 1]^K$
 $u(t) = 0, \quad t = M + 1, ..., N$
 $-U \leq u(t) \leq U, \quad t = 0, ..., M$
 $-S \leq u(t+1) - u(t) \leq S, \quad t = 0, ..., M + 1$

straightforward (and very inefficient) solution: enumerate all 2^K extreme values of \boldsymbol{s}

Applications in control

•

simplification: we can express the 2^{K+1} linear inequalities

$$-w \le \sum_{i=0}^{t} h_i(s)u(t-i) - y_{des}(t) \le w$$
 for all $s \in \{-1, 1\}^K$

as two nonlinear inequalities

$$\sum_{i=0}^{t} \bar{h}_{i} u(t-i) + \sum_{j=1}^{K} \left| \sum_{i=0}^{t} v_{i}^{(j)} u(t-i) \right| \le y_{\text{des}}(t) + w$$

$$\sum_{i=0}^{t} \bar{h}_{i} u(t-i) - \sum_{j=1}^{K} \left| \sum_{i=0}^{t} v_{i}^{(j)} u(t-i) \right| \ge y_{\text{des}}(t) - w$$

and similarly for the lower bound

robust output tracking problem reduces to:

 $\begin{array}{ll} \text{min.} & w \\ \text{s.t.} & \sum_{i=0}^{t} \bar{h}_{i} u(t-i) + \sum_{j=1}^{K} \left| \sum_{i=0}^{t} v_{i}^{(j)} u(t-i) \right| \leq y_{\text{des}}(t) + w, \quad t = 0, \dots, N \\ & \sum_{i=0}^{t} \bar{h}_{i} u(t-i) - \sum_{j=1}^{K} \left| \sum_{i=0}^{t} v_{i}^{(j)} u(t-i) \right| \geq y_{\text{des}}(t) - w, \quad t = 0, \dots, N \\ & u(t) = 0, \quad t = M + 1, \dots, N \\ & -U \leq u(t) \leq U, \quad t = 0, \dots, M \\ & -S \leq u(t+1) - u(t) \leq S, \quad t = 0, \dots, M + 1 \end{array}$

(variables u(t), w)

to express as an LP:

• for t = 0, ..., N, j = 1, ..., K, introduce new variables $p^{(j)}(t)$ and constraints

$$-p^{(j)}(t) \le \sum_{i=0}^{l} v_i^{(j)} u(t-i) \le p^{(j)}(t)$$

• replace $|\sum_i v_i^{(j)} u(t-i)|$ by $p^{(j)}(t)$

example (K = 6)

design for nominal system

robust design

State space description

input-output description:

$$y(t) = H_0 u(t) + H_1 u(t-1) + H_2 u(t-2) + \cdots$$

$$\begin{bmatrix} y(0) \\ y(1) \\ y(2) \\ \vdots \\ y(N) \end{bmatrix} = \begin{bmatrix} H_0 & 0 & 0 & \cdots & 0 \\ H_1 & H_0 & 0 & \cdots & 0 \\ H_2 & H_1 & H_0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ H_N & H_{N-1} & H_{N-2} & \cdots & H_0 \end{bmatrix} \begin{bmatrix} u(0) \\ u(1) \\ u(2) \\ \vdots \\ u(N) \end{bmatrix}$$

block Toeplitz structure (constant along diagonals)

state space model:

$$x(t+1) = Ax(t) + Bu(t),$$
 $y(t) = Cx(t) + Du(t)$

with $H_0 = D$, $H_i = CA^{i-1}B$ (i > 0)

 $x(t) \in \mathbf{R}^n$ is state sequence

alternative description:

$$\begin{bmatrix} 0\\0\\\vdots\\0\\y(0)\\y(1)\\\vdots\\y(N)\end{bmatrix} = \begin{bmatrix} A & -I & 0 & \cdots & 0 & B & 0 & \cdots & 0\\0 & A & -I & \cdots & 0 & 0 & B & \cdots & 0\\\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots\\0 & 0 & 0 & \cdots & -I & 0 & 0 & \cdots & B\\C & 0 & 0 & \cdots & 0 & D & 0 & \cdots & 0\\0 & C & 0 & \cdots & 0 & 0 & D & \cdots & 0\\\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots\\0 & 0 & 0 & \cdots & C & 0 & 0 & \cdots & D \end{bmatrix} \begin{bmatrix} x(0)\\x(1)\\x(2)\\\vdots\\x(N)\\u(0)\\u(1)\\\vdots\\u(N) \end{bmatrix}$$

- we don't eliminate the intermediate variables x(t)
- matrix is larger, but very sparse (interesting when using general-purpose LP solvers)

Pole placement

linear system

$$\dot{z}(t) = A(x)z(t), \qquad z(0) = z_0$$

where $A(x) = A_0 + x_1 A_1 + \dots + x_p A_p \in \mathbf{R}^{n \times n}$

• solutions have the form

$$z_i(t) = \sum_k \beta_{ik} e^{\sigma_k t} \cos(\omega_k t - \phi_{ik})$$

where $\lambda_k = \sigma_k \pm j\omega_k$ are the eigenvalues of A(x)

- $x \in \mathbf{R}^p$ is the design parameter
- goal: place eigenvalues of A(x) in a desired region by choosing x

Low-authority control

eigenvalues of A(x) are very complicated (nonlinear, nondifferentiable) functions of x

first-order perturbation: if $\lambda_i(A_0)$ is *simple*, then

$$\lambda_i(A(x)) = \lambda_i(A_0) + \sum_{k=1}^p \frac{w_i^* A_k v_i}{w_i^* v_i} x_k + o(||x||)$$

where w_i , v_i are the left and right eigenvectors:

$$w_i^* A_0 = \lambda_i(A_0) w_i^*, \quad A_0 v_i = \lambda_i(A_0) v_i$$

'low-authority' control:

- use linear first-order approximations for λ_i
- can place λ_i in a polyhedral region by imposing linear inequalities on x
- we expect this to work only for small shifts in eigenvalues

Example

truss with 30 nodes, 83 bars

$$M\ddot{d}(t) + D\dot{d}(t) + Kd(t) = 0$$

- d(t): vector of horizontal and vertical node displacements
- $M = M^T > 0$ (mass matrix): masses at the nodes
- $D = D^T > 0$ (damping matrix); $K = K^T > 0$ (stiffness matrix)

to increase damping, we attach dampers to the bars:

$$D(x) = D_0 + x_1 D_1 + \dots + x_p D_p$$

 $x_i > 0$: amount of external damping at bar i

eigenvalue placement problem

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^p x_i \\ \text{subject to} & \lambda_i(M,D(x),K) \in \mathcal{C}, \quad i=1,\ldots,n \\ & x \geq 0 \end{array}$$

an LP if C is polyhedral and we use the 1st order approximation for λ_i

eigenvalues

location of dampers

