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Abstract

The Container Relocation Problem (CRP) is concerned with finding a sequence of moves of

containers that minimizes the number of relocations needed to retrieve all containers respecting

a given order of retrieval. While the problem is known to be NP-hard, there is much evidence

that certain algorithms (such as the A∗ search [20]) and heuristics perform reasonably well on

many instances of the problem.

In this paper, we first focus on the A∗ search algorithm, and analyze lower and upper bounds

that are easy to compute and can be used to prune nodes and also to determine the gap

between the solution found and the optimum. Our analysis sheds light on which bounds result

in fast computation within a given approximation gap. We also present extensive simulation

results that improve upon our theoretical analysis, and further show that our method finds the

optimum solution on most instances of medium-size bays. On the “hard” instances, our method

finds an approximate solution with a small gap and within a time frame that is fast for practical

applications. We also study the average-case asymptotic behavior of the CRP where the number

of columns grows. We calculate the expected number of relocations in the limit, and show that

the optimum number of relocations converges to a simple and intuitive lower-bound. This gives

strong evidence that the CRP is “easier” in large instances, and heuristics such as [4] finds near

optimal solution.

We further study the CRP with incomplete information by relaxing the assumption that the

order of retrieval of all containers are initially known. This assumption is particularly unrealistic

in ports without an appointment system. In our model, we assume that the retrieval order of

a subset of containers is known initially and the retrieval order of the remaining containers is

observed later at a given specific time. Before this time, we assume a probabilistic distribution

on the retrieval order of unknown containers. We extend the A∗ algorithm and combine it with

sampling technique to solve this two-stage stochastic optimization problem. We show that our

algorithm is fast and the error due to sampling and pruning the nodes is reasonably small. Using
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our framework, we study the value of information and its timing effect on the average number

of relocations.

1 Introduction

With the growth in international container shipping in maritime ports, there has been an increasing

interest in improving the operations efficiency in container terminals on the sea side and land side.

The operations on the sea side include loading export containers on the vessels or discharging

import containers from vessels and loading them onto internal trucks. The import containers are

then transferred to the land side and are stacked in the storage area. These containers are later

retrieved and delivered to external trucks to be distributed in the city.

Due to limited space in the storage area, containers are stacked in tiers on top of each other. As

shown in Figure 1, several columns of containers in a row create a bay of containers. If a container

that needs to be retrieved (target container) is not located at a top most tier and is covered by

other containers, the blocking containers must be relocated to another slot. As a result, during the

retrieval process, one or more relocation moves are performed by the yard cranes. Such relocations

are costly for the port operators and result in delay in the retrieval process. Thus, reducing the

number of relocations is one of the main challenges faced by port operators. Finding the sequence

of moves that minimizes the number of relocations while retrieving containers from a bay in a pre-

defined order is referred to as the Container Relocation Problem (CRP) or the Block Relocation

Problem (BRP). A common assumption of the CRP is that only the containers that are blocking

the target container can be relocated. We refer to the CRP with this setting as the restricted CRP.

Figure 1: Illustration of a bay of containers in storage area

The CRP has been widely studied in the literature and has been shown to be NP-hard [4]. A

few papers have developed mathematical models for the CRP and have solved small-sized instances

of the problem exactly ([4], [14], [1]). In other papers, different heuristics are designed and tested on

real-sized instances ([9], [3], [11], [5]). Many of these heuristics are fast and shown to be empirically

close to optimal for small-sized instances. However, none of them have provable guarantees and their

performance on large-sized instances cannot be well assessed. Among the optimization methods
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that provide exact solution for the CRP, the A∗ algorithm (a branch and bound framework) has

shown to be very effective and able to solve large instances of the problem in a time frame that is

suitable for practical application [20], [22], [16].

In this paper, we apply the A∗ algorithm ([20], [22],[16]) to the CRP, and analyze various upper

and lower bounds. First, we study the properties of a counting lower bound that simply counts the

number of blocking containers in the initial configuration (introduced in [9]). We show that this

bound is non-decreasing on each path of the A∗ tree, implying that the guaranteed optimality gap

given by the A∗ algorithm may only be improved as more levels of the tree are constructed (see

Proposition 2.2). Moreover, we analyze a generalized family of look-ahead lower bounds that also

counts the future relocation moves due to unavoidable blocking (introduced in [22]), and we prove

that this family provide tighter lower-bounds that are still monotone in each path (see Proposition

2.4 and 2.5 and Figure 10). Our result implies that using look-ahead lower bounds (with a slightly

higher computation time compared to the counting bound) can decrease the number of branching

needed to achieve a desired optimality gap.

We also study several properties of the H heuristic presented in [4] which indicates that this

heuristic serves well as an upper bound. In particular, we prove that the A∗ algorithm terminates

after a certain level when the H heuristic is used combined with the appropriate lower bound (see

Proposition 2.8, 2.7, and 2.9). Our numerical simulations show that, the algorithm typically finds

the optimal solution much faster than what is suggested by the theoretical results (see Figures 8

and 9). We also use the idea of branching to design a heuristic called the Tree-Heuristic (TH-L,

see Algorithm 2). We use randomly generated instances to benchmark several existing heuristics

and the new Tree Heuristic against the optimal solution given by the A∗ algorithm. We show that

TH-L has the best performance (smallest optimality gap) on average (see Table 2).

Building upon the previous results, we perform an average case analysis of the CRP in a bay

with finite height. First we compute the expected value of the counting lower bound ([4], see

Proposition 3.1) for an evenly distributed bay. Then we provide an asymptotic result and prove

that as the number of columns grows, in expectation, the optimum number of relocations converges

to the counting lower bound (see Theorem 3.3). The intuition behind this result is that as the

number of columns grows, the probability of finding a good column for a blocking container (i.e.,

a column where the blocking container will never be relocated again) approaches 1. In that case,

the optimal number of relocations is essentially the number of blocking containers in the initial

bay. Furthermore, we strengthen this result by showing experimentally that the expected number

of relocations performed by heuristic H ([4]) also converges to the counting lower bound (see Figure

6a). This further highlights the effectiveness of both heuristics H and TH-L in the case of large

instances.

A critical assumption of the CRP is that the retrieval order of all containers in the bay is

considered to be known in advance. However, in practice, such information is not available far in

advance and the exact departure order of containers becomes known only as their retrieval times
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approach. Here we relax this assumption in the following way: We consider a 2-stage setting,

where the retrieval order of a subset of containers is known initially and the retrieval order of

the remaining containers is revealed all at once at a later time. We refer to this problem as the

CRP with incomplete information. Before the entire information becomes available, we assume

a probabilistic distribution on the unknown retrieval orders. We develop a 2-stage approximate

stochastic optimization algorithm, called ASA*, and use it to solve medium-sized instances of the

CRP with incomplete information. This algorithm is an extension of the A∗ algorithm combined

with sampling and pruning techniques based on the bounds defined earlier. We give theoretical

bounds on the approximation error incurred by this algorithm (see Propositions 4.1, 4.2, and 4.3).

Furthermore, we introduce a myopic heuristic, which is fast and performs well on average compared

to the ASA* algorithm (see Figure 12). We use the heuristic to solve large instances of the problem

and show through experiments that the ratio of expected number of relocations in the incomplete

information setting to that of complete information converges to a constant, as the bay gets larger

(see Figure 13). Moreover, we use the ASA* algorithm and the myopic heuristic to assess the value

of information (see Figure 12). Our experiments show that when the retrieval order of 50%-75% of

containers is known at the beginning, the loss from the missing information is negligible and the

average number of relocations is very close to that of the CRP with full information.

Our algorithms can serve as a decision support tool for port operators as well as an analytical

tool to draw insights on managerial decisions such as determining the size/capacity of the bays

and assessing the value of information. This issue of lack of information is particularly critical as

it captures port operations more realistically. Understanding the value of information could help

port operators design efficient appointment systems for trucks.

1.1 Literature Review

Stahlbock and Voß[15] provide a general survey on port operations literature. For a recent general

review and classification survey of the existing literature on the CRP as well as the stacking problem,

we refer the reader to Lehnfeld and Knust [12].

Many heuristics have been developed for the CRP. Kim and Hong suggest a decision rule that

uses an estimate of expected number of additional relocations for a column [9]. Caserta et al. [3]

propose a binary description of configurations and use it in a four steps heuristic. Lee and Lee [11]

consider an extended objective incorporating working time of cranes in a three phases heuristic.

Caserta et al. [5] derive a meta-heuristic based on the corridor method, which again optimizes

over a restricted set of moves and Caserta et al. in [4] present a heuristic that is defined later in

this paper. Ünlüyurt and Aydın [17] propose a branch and bound approach with several heuristics

based on this idea. Foster and Bortfeld [7] use a tree search procedure to improve a greedy initial

solution. Finally, Petering and Hussein [14] describe a look-ahead heuristic that does not make the

common assumption of the restricted CRP. In our experimental result, we use randomly generated
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instances to compare the performance of these heuristics (and our new TH-L heuristic) to that of

the optimal solution given by the A* algorithm. We show that on average our TH-L outperforms

the existing heuristics.

In the mathematical programming formulations that insure optimality on the entire feasible set

of moves, the first binary formulation was suggested by Kim and Hong [9]. Petering and Hussein [14]

propose another formulation which is more tractable but cannot solve real-sized instances efficiently.

Caserta et al. [4] derive a different Integer Program (IP). Borjian et al. [2] develop an IP formulation

which allows for incorporating a time component into the model. This model is used to jointly

optimize the number of relocations and total service delay. In all these IP formulations, due to the

combinatorial nature of the problem, the number of variables and constraints dramatically increases

as the size of the bay grows, and the IP cannot be solved for large instances. A way to bypass

this problem has been to look at a new type of algorithm called A∗. It was first introduced to this

problem by Zhang et al. [20], studied by Zhu et al. [22], and Tanaka and Takii [16] proposed a new

lower bound for the algorithm. Our paper contributes to this line of research (applying A∗ to CRP)

by theoretically analyzing several lower and upper bounds, also by computing (both theoretically

and via simulation) how the optimality gap behaves as the number of branches increases.

Average case analysis of CRP is fairly new. The only other paper in this direction is the recent

paper by Olsen and Gross [13]. They also provide a probabilistic analysis of the asymptotic

CRP when both the number of columns and tiers grow to infinity. They show that there exists a

polynomial time algorithm that solves this problem close to optimality with high probability. Our

model departs from theirs in two (related) aspects: (i) We keep the maximum height (number of

tiers) a constant whereas in [13] the height also grows. Our assumption is motivated by the fact

that the maximum height is limited by the crane height, and it cannot grow arbitrarily. (ii) We

assume the ratio of the number of containers initially in the bay to the bay size stays constant (i.e.,

the bay is almost full at the beginning). On the other hand, in [13], the ratio of the number of

containers initially in the bay to the bay size decreases (and it approaches zero) as the number of

columns grows. In other words, in the model of [13], in large bays, the bay is under-utilized.

Finally, we mention that another major challenge in port optimization is uncertainty (together

with the value of information) which has not been considered in the literature until very recently.

Zhao and Goodchild [21] model uncertainty in truck arrivals at the terminal. They assume that

trucks arrive in groups and that the information is revealed for the whole group at the same time.

Using this assumption of rolling information, they use a myopic heuristic to get insights on the

trade-off between information and optimality. Ku [10] consider a model where the trucks arrive

in groups, and the retrieval order within in each group is unknown in advance. They propose a

stochastic dynamic programming for this problem. They note that the size of decision tree grows

exponentially with the bay size, making the computation time prohibitive. Thus they develop

a heuristic called Expected Reshuffling Index (ERI) to approximately solve the problem. This

heuristic, moves each blocking container to the column that minimizes the expected number of
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future relocations. In our work, we model uncertainty as a 2-stage stochastic optimization problem,

and we use a generalization of the A∗ algorithm combined with sampling and pruning techniques

to find the near optimal solution of this stochastic optimization problem.

This paper is structured as follows: Section 2 presents the A∗ Algorithm in the full information

case. It describes the method, introduces lower and upper bounds and derives theoretical results for

these bounds. Section 3 presents the asymptotic analysis of the CRP. Section 4 provides a stochastic

scheme for the case of incomplete information and studies the value of information about container

departure times. In Section 5, we present several experimental results for the average case analysis

of the CRP in both the complete and incomplete information cases. Finally, Section 6 concludes

and suggests future research topics. The proofs for all theoretical statements are given in the

Appendix.

2 Optimal solution for the CRP with full information

In this section and for the sake of completeness, we present the A∗ algorithm applied to the CRP,

as previously introduced by [22]. We also discuss bounds developed in the literature ([4] and [22])

and derive new theoretical results on them.

2.1 Description of the algorithm

Before describing the A∗ algorithm, we review the Container Relocation Problem (CRP) and in-

troduce a few notations used throughout the paper: We are given a bay B with C columns and P

tiers, where C ≥ P ≥ 3. Initially N containers are stored in the bay. We label the containers based

on their departure order, i.e., container 1 is the first one to be retrieved. The CRP corresponds to

finding a sequence of moves to retrieve containers 1, 2, . . . ,N (respecting the order) with a minimum

number of relocations. For bay B, we denote the minimum number of relocation by zopt(B).

To find a solution, we use the A∗ algorithm, which is basically a move-based approach using a

special decision tree. This approach takes 4 entries: B is the bay with N containers to be solved

optimally. R(D) and S(D) are functions giving respectively upper and lower bounds on zopt(D) for

any configuration D. In this paper, upper bound functions that are considered also give us feasible

solutions. Finally, N is the maximum number of nodes in the decision tree.

The algorithm returns two results: The best incumbent (in objective function) found by A∗,

denoted zA, to which we associate the sequence of moves needed to find this incumbent called σA

and the gap guaranteed between zA and zopt(B) denoted by γ. Notice that if the algorithm did not

reach N nodes, then the algorithm found an solution (i.e. γ = 0 and zA = zopt(B)).

Let us define the following notations: l is the level of the tree. A node is at level l, if l relocations

have been done from the initial bay to get to this node. This is the reason why this method is called

a move-based approach. Below we describe the algorithm in detail and introduce the notation used

in the description of Algorithm 1.
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Algorithm 1 A∗ Algorithm

1: procedure [zA,γ]=A∗(B,R, S,N )

2: Pre-processing :

3: while target container n is on top do

4: retrieve target container n of B and n← n + 1

5: end while

6: Initialize:

7: zA ←∞, l← 0, Bl ← B, m← 0 (number of nodes)

8: while there exists a non-visited node do

9: for all nodes Bl at level l do

10: Mark node Bl as visited

11: U(Bl) = R(Bl) + l and L(Bl) = S(Bl) + l

12: Updating the incumbent:

13: if U(Bl) < zA then

14: zA ← U(Bl)

15: end if

16: Pruning:

17: if U(Bl) ≤ L(Bl) or L(Bl) ≥ zA then

18: Prune node Bl (i.e. stop branching from this node)

19: else

20: Branching:

21: for Every “Child” of Bl do

22: if m ≥ N then

23: Stop

24: else

25: add a non-visited “Child” to the tree at level l + 1 and m = m + 1

26: end if

27: end for

28: end if

29: end for

30: l← l + 1

31: end while

32: Gap:

33: Lmin = min
D non-visited leaf

(L(D))

34: γ← zA − Lmin

35: end procedure
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The tree represents the sequence of relocation moves. Suppose n is the target container. If

n is not blocked, it can be retrieved since a retrieval is optimal. In that case, no decision has to

be made, therefore no new node is created. If n is blocked, the topmost blocking container needs

to be relocated to another column. This column has to be chosen in order to minimize all future

relocations. In order to do so, we generate all possible feasible moves for the blocking container by

creating children of the corresponding node in a decision tree procedure. Considering all possible

nodes gives the optimal solution.

Building the whole tree of feasible moves would not be tractable since the number of nodes

increases exponentially with the number of relocations. Consequently, we use certain decision rules

to prune the tree with the guarantee of keeping the optimal path in the tree.

Let Bl be any configuration that appears at level l in the tree. By definition,

S(Bl) ≤ zopt(B
l) ≤ R(Bl) (1)

Let us define the cumulative upper and lower bounds as the sum of the bound evaluated at the

current state and the number of relocations already performed (i.e., l relocations have been done

at level l of the tree) U(Bl) = R(Bl)+ l and L(Bl) = S(Bl) + l (line 11 of Algorithm 1). Notice that in

this case

L(Bl) ≤ zopt(B) ≤ U(Bl), for all Bl in the A∗ tree (2)

At any level l, the algorithm prunes paths using the following two rules (line 17 of Algorithm 1):

(i) If L(Bl) = U(Bl), then zopt(B
l) = U(Bl) and we can stop branching on this path. From this

point, we can simply follow the feasible solution given by the upper bound.

(ii) If L(Bl) ≥ zA (i.e. the lower bound L(Bl) is larger than the best solution found so far zA) then

this node can be pruned because the optimal solution for this node is going to be greater

than its lower bound, hence greater than zA. The best incumbent is updated if a Bl such that

U(Bl) < zA is found (lines 13, 14 of Algorithm 1).

By construction, the above rules maintain the optimal path in the A∗ tree.

6

1 5

4 2 3

Figure 2: Bay with 3 tiers, 3 columns and 6 containers
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4 2 3

L=2
U=4

1 5 6

4 2 3

L=3

5

6

4 2 3

U=5 , L=4

5 6

4 2 3

U=4 , L=4

U=5

6

1 5

4 2 3

L=3
5 6

4 2 3

U=5 , L=4

6 5

4 2 3

U=5 , L=4

Figure 3: Example of A∗ algorithm using H as upper bound and S0 as lower bound (defined in

subsection 2.2.1)

Example 1 Figure 3 presents the A∗ where the initial bay is shown in Figure 2. It uses upper

and lower bounds that are presented in Section 2.2. None of the nodes at level 1 can be pruned.

Now let us consider the 4 nodes at level 2 (the 4 rightmost configurations in Figure 3). The third

one uses rule (i) to stop branching from this node since lower and upper bounds are both equal to

4. At this level zA = 4. Therefore we can also prune the first, second and fourth nodes using rule

(ii). Therefore, the tree is complete at level 2. We follow the path until the third node at level 2,

and then follow the feasible solution given by the upper bound.

We know from [4] that the restricted CRP is NP hard. Therefore, there exist some instances for

which the number of nodes needed to find the optimal solution with this method grows exponentially

with the problem size. However to limit the computation time, we set a maximum number of nodes

N allowed in the A∗ tree. If the number of nodes reaches N , we return our best upper-bound as a

feasible solution. In this case, we cannot insure optimality, but we can provide a guaranteed gap

with the optimum solution. Let Lmin be the minimum of the cumulative lower bounds of every leaf

of the tree that is not pruned by A∗. Notice that zopt(B) ≥ Lmin. Thus zA − zopt(B) ≤ zA − Lmin = γ

(line 24 of Algorithm 1).

We show later that given certain properties on the lower bounds, γ is nonincreasing in N . In

any case, there exists N ∗ such that if N > N ∗ then γ = 0. In our numerical average-case analysis
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(Section 5), we show how N and γ are related.

The size of the A∗ tree depends on the local lower and upper bounds used. The closer they

are to the optimal solution at each node, the faster the tree is pruned, hence the faster it solves.

In this paper, we define some of the possible candidates, explain these choices and provide details

about the efficiency of the chosen bounds. Note that the algorithm can also be implemented using

depth first search instead of breadth first search; in this paper, we implement the latter as we find

experimentally that it is the most efficient one on average.

2.2 The Candidate Bounds

2.2.1 The Lower Bounds

The counting lower bound. This bound was introduced by Kim and Hong in [9] and it is based

on the following simple observation. In the initial configuration, if a container is blocking, then it

must be relocated at least once. Thus we count the number of blocking containers in B and we

denote it S0(B). Note that if a container blocks more than one container (for instance, container 6

blocks containers 1 and 4 in Figure 2), we count this container only once.

Observation 2.1. For any configuration B,

S0(B) ≤ zopt(B)

We define L0 as the cumulative bound computed with S0.

As mentioned in section 2.1, we want our algorithm to have the following property: As we increase

N , γ should not increase. One way to enforce this is to insure that given any path of the tree,

the cumulative lower bound is nondecreasing on this path. We will indeed show that L0 follows

this property. Before proceeding let us define a few notations: Let ci be the ith column of the

configuration and min(ci) be the index of the container with the smallest retrieval time in ci. Now

suppose we want to move the blocking container r. If we relocate r to column ci and r < min(ci),

then we call such a move a “good” move and column ci is a “good” column for r. On the other

hand, if r > min(ci), we call this move a “bad” move and ci a “bad” column for r.

Proposition 2.2. For any configuration B, any level l ≥ 0, any configuration Bl in level l of A∗

and any child Bl+1 of Bl, we have L0(Bl+1) ≥ L0(Bl).

The look-ahead lower bounds. Note that the counting lower bound (S0) is only taking into

account the initial configuration of the bay. By definition, a “bad” move implies a future relocation

for the relocated container. Therefore we can construct lower bounds that anticipate “bad” moves

and hence are closer to the optimal solution. This idea has been used by Zhu et al ([22]) to define
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the following family of lower bounds. For the sake of completeness, we redefine the bounds for-

mally. In this paper, we prove in Proposition 2.5 that these lower bounds have the non-decreasing

property as we branch in the A∗ tree.

The basic idea is the following: We want to count unavoidable “bad” moves in any feasible

sequence of moves. In order to do so, we need to keep track of the “maximum of minimums of

each column of B” denoted by MM(B) = max
i∈{1,...,C}

(min(ci)). Suppose r is the first blocking container;

a “bad” move for r is unavoidable if MM(B) ≤ r. As we empty the bay, the maximum of minimums

is changing. More precisely it depends on the sequence of moves that we use. We can, however,

compute an upper bound on this value for every feasible sequence of moves. One way is to assume

that every container that is relocated is discarded from the bay. At any time, the maximum of

minimums in the “discarded” bay will be not smaller than if we computed it given any feasible

sequence of moves. Before introducing formal notations, we give an example.

6

1 5

4 2 3

(a) B = B1

5

4 2 3

(b) B2

4 3

(c) B3

Figure 4: Example of discarded bays with 3 tiers, 3 columns and 6 initial containers

Example 2 Consider the leftmost bay B in Figure 4. First, one can see that S0(B) = 2 since 6

is blocking 1, and 5 is blocking 2. Now in B1, 6 is blocking 1 and MM(B1) is 3; thus 6 has to be

relocated at least twice. Therefore the optimum is at least 1 more than S0. Now consider bay B2

where 1 and 6 have been discarded. 5 is blocking 2 and MM(B2) is 4; thus 5 has to be relocated at

least twice. Therefore the optimum is at least 2 more than S0.

Now we formalize this idea: Let n1 be the smallest container in the bay. Let k be a container

(k ∈ {n1, . . . ,N}) and let Rk(B) be the set of containers blocking k and not blocking any container k′

such that k′ < k.

Let Bn1
= B and let Bn1+1 be the bay where container n1 and containers in Rn1

(B) have all been

discarded from Bn1
. By recursion, we can define a sequence of bays Bk for k ∈ {n1 + 1, . . . ,N}.

For p ∈N, we now define the pth look-ahead lower bound (denoted by Sp(B)):

Sp(B) = S0(B) +

min(p+n1−1,N)
∑

k=n1

∑

r∈Rk(B)

χ(r > MM(Bk)), (3)

where χ(·) is the indicator function. The corresponding cumulative lower bound is denoted by Lp(B).

11



Observation 2.3. For every configuration B and p ∈ 1, . . . ,N,

Sp(B) ≤ zopt(B)

Proposition 2.4. For p ∈ 1, . . . ,N and any bay B, we have Lp(B) ≥ Lp−1(B).

This result shows that as we increase p, Sp gets closer to the optimal solution. In Section 5,

we numerically study the effect of the choice of lower bounds in the A∗ algorithm in terms of the

number of nodes needed to solve a random set of instances. We observe that on average, most of

the gain comes from the first look ahead.

We remark that SN(B) = SN−C(B) simply because when we reach N-C, there is always at least

one empty column. Note that if k is the smallest integer such that Bk has an empty column, then

the lower bound does not change, i.e., SN(B) = Sk−1(B). Thus, in practice, the process of computing

the lower bounds terminates much before N − C.

In the next proposition, we show that similar to L0, the cumulative upper bound Lp has the

desirable monotone property, i.e., they do not decrease as we branch in the A∗ tree.

Proposition 2.5. For any p ∈ 1, . . . ,N, configuration B, level l ≥ 0, configuration Bl in level l and

any child Bl+1 of Bl in the A∗ tree, we have Lp(Bl+1) ≥ Lp(Bl).

In general it is hard to find the rate at which the lower bound increases on a given path. In

Section 5, we show how the lower bound SN increases on the optimal path of random instances.

2.2.2 The Upper Bound

Any feasible solution can be used as an upper bound. Thus, we use heuristics to construct feasible

solutions that serve as upper bounds.

Ideally we would want a heuristic that is close to the optimal solution and at the same time

easy to compute. Note that we need to compute an upper bound at every node. The heuristic

proposed by Casserta et al. ([4]) seems to meet those criteria. For completeness, we redefine this

heuristic. In this article we prove several properties of the upper bound that we will use in later

parts (see Propositions 2.7, 2.8 and 2.9).

The Heuristic H ([4]) Suppose n is the target container located in column c, and r is the

topmost blocking container in c. We use the following rule to determine c∗, the column where r

should be relocated to. Recall that min(ci) is the minimum of column ci. We set min(ci) = N + 1 if

ci is empty. We have:

c∗ =























argmin
ci∈{1,...,C}\c

{min(ci) : min(ci) > r} if ∃ ci such that min(ci) > r

argmax
ci∈{1,...,C}\c

{min(ci)} otherwise
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The rule says: if there is a column where min(ci) is greater than r (r can do a “good” move),

then choose such a column where min(ci) is minimized, since columns with larger minimums can

be useful for larger blocking containers. If there is no column satisfying min(ci) > r (r can only

do “bad” moves), then choose the column where min(ci) is maximized in order to delay the next

unavoidable relocation of r as much as possible. We will refer to this heuristic as heuristic H and

denote its number of relocations by zH(B).

Example 2 Consider the bay B in Figure 2. Using heuristic H, the sequence is going to be:

relocation of 6 to column c3, retrieval of 1, relocation of 5 to column c1, retrieval of 2, relocation of

6 to column c2, retrieval of 3, relocation of 5 to column c2, retrievals of 4,5 and 6. Thus zH(B) = 4.

Notice that we had S2(B) = 4, so heuristic H is optimal for this initial configuration.

By definition, H is a feasible solution, so it is an upper bound on the optimal solution.

Observation 2.6. For any configuration B, we have zopt(B) ≤ zH(B).

The heuristic H has a certain number of useful properties stated below.

Proposition 2.7. In a bay with C columns, for any configuration B with at most C containers, we

have

S0(B) = zopt(B) = zH(B). (4)

Proposition 2.8. In a bay with C columns, for any configuration B with at most C+ 1 containers,

we have S1(B) = zopt(B) = zH(B).

This result implies that if we use heuristic H as an upper bound and the S1 lower bound in the

A∗ approach, the tree will stop at most after N − C − 1 retrievals with the guarantee of an optimal

solution.

We provide two similar bounding results on H.

Proposition 2.9. In a bay with C columns, for any configuration B with at most C+ k containers,

we have:

• zH(B) ≤ zopt(B) + 2, if k = 2

• zH(B) ≤ zopt(B) +
k(k+1)

2 , if 3 ≤ k ≤ C.

Remark 2.10. The following example shows that this upper bound can increase as we branch in the

A∗ tree. In Figure 5, bay (a) shows the initial configuration and bay (b) is one of its two “children”.

It is easy to check that heuristic H needs 7 relocations for bay (a) and 8 for bay (b).
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(b)

Figure 5: Heuristic H can increase on a path of A∗ tree

3 An asymptotic analysis of CRP

In this section, we study CRP for random large bays and we show that as the number of columns

in the bay grows, the problem gets “easier” in the sense that the gap between the optimal solution

and our simplest lower bound (S0), does not increase on average, and in fact it is bounded by a

constant. The basic intuition is that, as the number of columns grows, for any blocking container,

we can find a “good” column with high probability. This implies that each blocking container is

only relocated once with high probability.

Throughout this section, we assume that initial configurations have P tiers, C columns, N con-

tainers and that there are exactly h containers in each column, where h ≤ P − 1. For more clarity

we denote by BC such a bay with C columns.We assume that the initial configuration is a uniform

sample among all possible such configurations. Notice that in that case, when C grows to infinity,

N = h × C also grows to infinity.

First let us explain how a uniformly random bay is generated. We view a bay as an array of

P × C columns. The slots are numbered from bottom to top, and left to right from 1 to PC. For

example, let P = 4 and C = 7, the second topmost slot of the third column is 11. The goal is to

get a bay B with uniform probability, meaning each container is equally likely to be anywhere in

the configuration, with the restriction that there are h containers per column. We first generate

uniformly at random a permutation of {1, . . . ,N} called π. Then we assign a slot for each container

with the following relation: B( j, i) = π(h × (i − 1) + j) for j ≤ h and B( j, i) = 0 for j ≥ h + 1. One

can see that each bay is generated with probability 1
N! . There is a one to one mapping between

configurations with C columns and permutations of {1, . . . , hC}, denoted by ShC. Finally, we denote

the expectation of random variable X over this uniform distribution by EC[X].

Now we compute the expected counting lower bound.

Proposition 3.1. Let S0 be the counting lower bound (defined in Section 2), we have

EC [S0(BC)] = αh × C, (5)
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where αh is the expected number of blocking containers in one column and can be computed as

αh =

h−1
∑

k=1

k × pk,h (6)

and pk,h = P[there are k blocking containers in a column with h containers] can be computed by re-

crusion as

∀h ≥ 0, p0,h =
1

h!
and ∀k ≥ 1, pk,h =

k
∑

j=1

1

h
pk− j+1,h− j

Remark 3.2. Note that αh only depends on the distribution of the relative order of the h containers

in one column (and not on the actual labels). Thus the expected number of blocking containers in

one column only depends on its height.

The major result of this part is the following. In the asymptotic case where the number of

columns increases to infinity, the expected optimal number of relocations is asymptotically propor-

tional to the expected number of blocking containers (the counting lower bound).

Theorem 3.3. Let S0 be the counting lower bound (defined in Section 2) and zopt be the optimal

number of relocations. Then for C ≥ h + 1, we have

1 ≤
EC

[

zopt(BC)
]

EC [S0(BC)]
≤ f (C) (7)

where

f (C) = 1 +
K

C
→

C→ ∞
1 (8)

where K is a constant defined by equation (19).

The proof of Theorem 3.3 is given in the Appendix. Here we just give an intuition of the

proof. We show that as C grows, with high probability EC+1[zopt(BC+1)] − EC

[

zopt(BC)
]

is exactly

αh. Therefore, for C large enough, EC

[

zopt(BC)
]

essentially behaves like αh × C, which is equal to

EC[S0(BC)] (according to Proposition 3.1).

In the next corollary, we show that the optimal solution of the unrestricted CRP has a similar

asymptotic behavior. We remind that the unrestricted CRP refers to the problem where we can

also relocate non-blocking containers.

Corollary 3.4. Let zgen(BC) be the optimal number of relocations for the unrestricted CRP. For

C ≥ h + 1, we have

1 ≤
EC

[

zgen(BC)
]

αhC
≤ f (C) (9)

where f is the function defined in Theorem 3.3.
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The above theorem gives insights on how the expected optimal solution of the CRP behaves

asymptotically on random bays. To conclude this section, we show experimentally that the same

result holds for heuristic H, i.e., the ratio of E [zH(BC)] and E [S0(BC)] converges to 1 as C goes to

infinity. For each size C, we compute both expectations over a million instances, take their ratio

and plot the result in Figure 6a. Notice that we have 1 ≤ E[zopt(BC)]
E[S0(BC)] ≤

E[zH(BC)]
E[S0(BC)] , so Figure 6a also

shows experimentally that Theorem 3.3 holds.

0 20 40 60 80 100
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(a) Convergence of the ratio
E[zH (BC)]
E[S0(BC)]

0 200 400 600 800 1000
C: Number of columns

0.2

0.4

0.6

0.8

1

1.2

1.4

E
[H

-S
0]

(b) Convergence of the difference E [zH(BC)] −
E [S0(BC)]

Figure 6: Simulations for the Asymptotic Theorem

First, note that Figure 6a implies that the relative gap between heuristic H and S0 shrinks to

0 as C increases. Moreover we have
E[zH(BC)]−E[zopt(BC)]

E[zopt(BC)]
≤ E[zH(BC)]−E[S0(BC)]

E[S0(BC)] and thus the relative gap

of H with optimality also converges to 0 as C grows to infinity.

In the proof of Theorem 3.3, we also study the function g(C) = EC

[

zopt(BC)
]

− EC [S0(BC)].

Note that g(C) ≤ EC [zH(BC)] − EC [S0(BC)] where the right-hand side of the inequality is the

function plotted in Figure 6b. The plot shows that g(C) ≤ 1.25 for all C, meaning that g(C) is

bounded as we proved in Theorem 3.3. Moreover, the plot implies that heuristic H is on average

at most 1.25 away from the optimal solution, so heuristic H is relatively more efficient in the case

of large bays. Intuitively, the probability of having a good column converges to 1, as we increase

the number of columns; hence the problem tends to become easier as C grows.

Finally, in the proof, we note that the rate of convergence for the optimal solution to S0 is at

least 1
C . Interestingly, we can infer from Figure 6a. that the rate of convergence of the ratio for

heuristic H is also proportional to 1
C .

4 CRP with Incomplete Information

The A∗ algorithm as explained in Section 2, relies on the assumption that the departure order of

containers is known in advance. However, in practice, we often only know the departure order of
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some of the containers (those that are going to depart in the near future).

In this section, we explain how the A∗ algorithm can be adapted in a Dynamic Programming

(DP) framework for solving the CRP in the case that some of the decisions should be made with

incomplete information. We use the A∗ algorithm to obtain an approximate solution for this

problem. In what follows, we describe the setting of the problem, introduce some notations, and

explain the algorithm for the CRP with incomplete information. Moreover, we show how to bound

the approximation error. In Section 5, we present the results of computational experiments.

The CRP with incomplete information involves retrieving N containers from a bay with C

columns and P tiers, where partial information about the departure order of the containers is

initially available. To model the CRP with incomplete information, we discretize time into time

steps of equal length and assume that each move (a relocation or a retrieval) takes exactly one

time step. Further we assume that the label (or index) of a container indicates the earliest time

that it can be retrieved (i.e., container n can be retrieved at time n or later). Usually, very little

information is available about the containers that are going to be retrieved far in the future. Thus,

it is reasonable to assume that at any given time step t, we only know the departure order of a

certain number of containers in the bay (the containers that are going to be retrieved within a

short time horizon after t). We refer to such containers in the bay as known containers. Similarly,

we refer to the remaining containers in the bay as unknown containers. By definition, all unknown

containers have larger indices (i.e., later departure times) than the known containers.

As time passes, some of the known containers are retrieved and as more information becomes

available, some of the unknown containers become known. In general, the information might be

updated multiple times during the retrieval process (every time that the arrival time of a truck is

provided by the truck driver, the information gets updated and some unknown containers become

known). In the most general case, the information can be updated every time step. Alternatively,

we can consolidate several small pieces of information into one or a few pieces, and assume that

the information is revealed at Γ different times during the retrieval process (i.e., Γ is the number

of time that information is updated). In this case, we have a multi-stage problem and Γ sets of

decisions need to be made.

In this paper, we focus on a 2-stage setting; we assume that a subset of containers is initially

known and that the departure order of all the remaining ones becomes known at time t∗. We denote

the set of known containers by K and assume that containers {1, 2, . . . , |K|} are those known at time

zero. Similarly, the set of unknown containers is denoted by U, and containers {|K| + 1, . . . ,N}
become known at time step t∗ > 0. We refer to this setting as the 2-stage CRP since there are two

types of decisions that need to be made: first-stage decisions (retrievals and relocations before time

step t∗) and second-stage decisions (retrievals and relocations after time step t∗). We assume that

before t∗, we have probabilistic information about the containers in U, meaning that we know the

probability of realization of each possible departure order. Such information can be obtained from

historical data or from an appointment system that provides some estimate of departure times of
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the containers (for example a time window for retrieving each container). We denote the set of

possible departure orders of the containers in U (possible scenarios) by Q. From now on, we assume

that all scenarios are equally likely, i.e., the probability of each scenario is
1

|Q| , and the number of

scenarios is (N − |K|)!. Note, however, that we could use the algorithm to solve the CRP with any

other probability distribution on the departure order of unknown containers.

We use a 2-stage stochastic optimization technique to solve this problem, where in the first-stage

we minimize E[z] as follows:

min
σ1,...,σt∗−1

E[z] =
∑

q∈Q

1

|Q|z(B(q)). (10)

where B(q) is the resulting bay when scenario q is realized, z(B(q)) is the total number of

relocations for B(q), and σ1, . . . , σt∗−1 are the first-stage decisions. The 2-stage problem can be

solved with the A∗ algorithm as follows:

(1). We build the tree with t∗ − 1 moves for time-steps 1, 2, . . . , t∗ − 1, in a similar way as

illustrated in Figure 3; we denote this tree by T[1,t∗−1].

(2). For each node at level t∗ − 1, we need to compute the expected number of remaining

relocations. We enumerate all possible scenarios and solve the CRP with complete information

corresponding to each scenario, using the A∗ algorithm.

(3). We find p∗ (the optimal path or sequence of moves) that minimizes the expected total

number of relocations over all paths.

(4). Once p∗ up to time-step t∗ − 1 is selected and we observe the information at t∗, we use the

A∗ algorithm to solve a specific instance through the end.

Notice that to find the optimal path for time interval [1, t∗ − 1], we need to solve up to (C −
1)(t∗−1)(N − |K|)! instances in Step (2) with the A∗ algorithm. Although A∗ is fast, the number of

scenarios is prohibitively large and enumerating all scenarios is not feasible due to limited resources

of memory and long computation time. We next explain how we use sampling and pruning to

overcome these issues. We also quantify the error incurred as a result of sampling and pruning. We

refer to the resulting algorithm as ASA∗ (Approximate Stochastic A∗).

Limiting the number of possible scenarios on each path. We overcome this issue by

sampling S scenarios on each path and computing the number of relocations for the sampled

departure orders rather than for all possible orders. For each path p, let z̄ be the number of

relocations averaged over samples. Also let E[z] be the true mean. To determine the number of

samples needed to get a good approximation, we use the following version of Hoeffding’s inequality:

P(|E[z] − z̄| > δ) ≤ 2 exp

(

−2Sδ2

(rmax − rmin)2

)

, (11)
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where δ is a pre-specified level of desired precision, and rmax/rmin are lower/upper bounds on

random variable z.

Note that we can set rmin = 0; for rmax, we do not have a tight bound, but we can use N(P − 1)

as an upper bound (since each of the N containers is blocked by at most P − 1 containers). Let us

denote the desired probability for bounding the error (i.e., RHS of (11)) by ǫ. For a given δ and ǫ,

the required number of samples can be computed as follows.

S ≥
r2

max ln ǫ2
−2δ2

. (12)

By sampling from the possible scenarios on each path, we can significantly reduce the number

of scenarios (and thus the computation time). For example, for a bay with 7 columns, 4 tiers,

21 containers, and |K| = 6, the total number of possible scenarios on any of the paths at time t∗

is about 1011. Using inequality (12), the total number of scenarios would be around 30,000 for

δ = 0.5, ǫ = 0.05, and rmax = 63. Note that by sampling, we incur an error and ASA∗ may choose

a suboptimal path pASA where E[zpASA
] > E[zp∗ ] (recall that p∗ is the optimal path that would

be chosen without sampling). In the next proposition, we show that such an error, denoted by

e1
∆
= E[zpASA

] − E[zp∗ ], is bounded in expectation (over a uniform distribution on the initial bay).

Proposition 4.1. Suppose for each path, we estimate the number of relocations using S independent

samples, where S is given in (12). Also suppose ASA∗ chooses path pASA as the optimal path, and

e1 = E[zpASA
] − E[zp∗ ]. We have E[e1] ≤ 2δ

√

π

− ln(
ǫ

2
)
.

Pruning the paths of T[1,t∗−1]. To address this issue, we use the upper bound and lower

bounds to prune the nodes of T[1,t∗−1], similar to the A∗ algorithm. However, since some of the

containers are unknown before t∗, we have to compute the expectations (E[L] and E[U]). Again,

we use the idea of sampling and we estimate these values by computing L and U using S samples,

where S is obtained from Inequality (12). Because of the sampling error, we may prune an optimal

path by mistake, resulting in an error that is illustrated in Figure 7. This error is the difference

between E(Up̂) (the true upper bound of the path with the minimum estimated upper bound), and

E(Lp̃) (the true lower bound of the path selected by ASA∗ for pruning). Intuitively, this is because

E(Up̃) is the worst we would achieve if we prune p̃ (by mistake), and E(Lp̂) is the best we could

achieve if we do not prune p̃.

In the next two propositions, we show that the error due to pruning is bounded, whether we

prune some paths once at t∗ − 1 (resulting in error e2) or prune some paths at several time-steps

before t∗ − 1 (resulting in error e3).

Proposition 4.2. Suppose that for each path p at time-step t∗ − 1, we estimate the expected lower

and upper bounds (Lp and Up) from S samples, where S is given in (12). Also, suppose ASA∗
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Figure 7: Illustration of the error due to pruning: the thick line segment is the error as a result of

pruning the optimal path by mistake.

chooses to prune one or more paths. We have E[e2] ≤ 2δ

√

π

− ln(
ǫ

2
)
.

Proposition 4.3. Suppose we prune some paths at m time-steps t1, t2, ..., tm < t∗ − 1. At each

time of pruning and for each path p, we estimate the expected lower and upper bounds (Lp and Up)

from S samples where S is given in (12). Also, suppose that at each time, i, of pruning, ASA∗

chooses to prune one or more paths (denoted by p̃i). The expected total loss, E[e3], is bounded

by m
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, where U
max

p̂ = max{Up̂1
, . . . ,Up̂m},

di = Lp̃i
−Up̂i

, dmin = min{d1, . . . , dm}.

In Propositions 4.1-4.3, we bound the loss that can be incurred by pruning some paths at time

t∗ − 1 (e1 and e2) or at t < t∗ − 1 (e3). Notice that for fixed δ and ǫ, the errors e1 and e2 are

independent of the bay size if we increase the number of samples S according to (12); thus if we

prune paths only at t∗ − 1, the loss remains unchanged and the relative loss (as a percentage of

total relocations) decreases as the bay gets larger. Therefore, for large bays and “hard-to-solve”

configurations, one can pick larger δ and ǫ that result in a smaller number of samples, and the

relative error would still be small.

Table 1 shows e1, e2 and e3. The losses are very small even for combinations of δ and ǫ that

result in reasonably small number of samples. For example, for δ ≤ 1 and ǫ < 0.1, E[e1] and E[e2]

are no more than 2. Because e1 and e2 are independent of the bay size, the relative error (
e1 + e2

E[z]
)

decrease as the bay gets larger (E[z] is the average number of relocations when full information is

available). For the e3, this measure is almost constant for different bay sizes and can be controlled

by changing ǫ, δ, and m (number of times that we do pruning at t < t∗ − 1),
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δ ǫ E[e1] and E[e2]

0.1 0.01 0.15

0.1 0.05 0.18

0.1 0.1 0.2

0.5 0.01 0.77

0.5 0.05 0.92

0.5 0.1 1.02

1 0.01 1.54

1 0.05 1.85

1 0.1 2.05

C E[e3] % error(E[e3]
E[z] )

10 0.91 0.07

15 1.36 0.073

20 1.81 0.074

25 2.26 0.075

30 2.72 0.076

35 3.17 0.076

40 3.62 0.076

45 4.07 0.076

50 4.52 0.076

Table 1: Left table: Expected loss due to sampling and pruning at t∗ − 1, for C = 7, P = 4, and

N = 21; Right table: Expected loss due to pruning at t < t∗ − 1 for ǫ = 0.05, δ = 0.5, dmin = 1,

U
max

p̂ = 2N, and m = 5

In Section 5, we use ASA∗ to solve the CRP with incomplete information for a bay with 7

columns and 4 tiers and with different amounts of information initially available. Moreover, we

introduce a heuristic for this problem and compare the results of ASA∗ with those of the heuristic.

5 Experimental Results

In this section, several experimental results are presented to further understand the effectiveness

of our algorithms in both complete and incomplete information settings.

In the complete information case, we study thoroughly the A∗ algorithm and the effect of

parameters on the efficiency and performance of the algorithm. First we show that using the Nth

look-ahead lower bound improves dramatically the computational tractability of the algorithm.

Moreover, our experiments shows that on the optimal path of the tree, the Nth look-ahead lower

bound reaches the optimum solution after a few levels. We also show the trade-off between N
(maximum number of nodes in the tree) and the number of instances solved optimally. Further we

introduce a new class of heuristics, the Tree Heuristic (TH-L), compare it with 3 existing heuristics

([9], [4], [14]) and show that it outperforms the existing heuristics.

In the incomplete information setting, we show through experiments that the ASA∗ algorithm

is fast and efficient and most of the instances are solvable within a reasonable time for medium-

sized instances. We introduce a myopic heuristic which expands on the H heuristic in [4]. Using

the ASA∗ algorithm and the heuristic, we study the value of information. Our simulations results

show that while more information results in fewer relocations, the marginal value of information

decreases with the level of information. We also use the myopic heuristic to examine the effect of
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the level of information on the number of relocations for different bay sizes. We show that for any

level of information, the ratio of relocations with incomplete information and complete information

converges to a constant as the bay gets larger.

5.1 Experimental results for complete information

In most of the experiments, we consider medium-sized instances of the CRP. We consider bays of

size 4 tiers and 7 columns with 21 containers (P = 4 = h + 1, C = 7 and N = 21 = hC with 3

containers per column). We generate randomly 100,000 instances using the uniform distribution

on bays described in Section 4.

The effect of lower bounds on the size of the A∗ Tree. In Section 2, we introduced a

family of lower bounds (S0, S1,. . . ,SN). Clearly SN is more computationally expensive to use than

S0, but we proved that SN was a tighter lower bound. We show here that using SN improves the

performance of the A∗ algorithm significantly.

For each instance, we solve it using 4 types of lower bounds S0, S1, S2 and S21 (here N = 21).

For each of them we record the number of nodes needed to solve the instance optimally. Figure 8

presents the results. First, we show in the box-plots, the distribution of the number of nodes for

each of those lower bounds. Second, we give the average number of nodes. We give two main

insights from this experiment. First, the average number of nodes needed to solve with S21 is 1/3

of the number of nodes with S0. Also, we point out that using S1 and S2 instead of S0 decreases

the average number of nodes by 1/3 and 1/2, respectively. The fact that the number of nodes is

decreasing as we use tighter lower bounds is not surprising and it is aligned with what we proved

in Section 2. The more surprising insight from the experiment is that introducing lower bounds

that look just one or two steps ahead (i.e., S1 and S2) makes a great improvement in terms of

performance of the A∗ approach, without affecting the computation time significantly.

Second, it can be seen that the box is concentrated around 0 for each lower bound, which implies

that most instances are solved within a few hundred nodes. What influences the average number

of nodes are the “hard-to-solve” cases where a large number of nodes is needed. Using S21 instead

of S0 makes the A∗ algorithm more efficient by decreasing the number of nodes by a factor of 3 for

those cases. From now on, we use S21 as the lower bound. Recall that actually we only need to

compute Sk for k ≤ N − C, as Sk+1, . . . , SN are all equal to Sk. Taking advantage of this property

further improves computational tractability.

The convergence rate of the lower bound. After introducing the lower bounds, we have

shown in Propositions 2.2 and 2.5 that on any given path, the lower bound is non-decreasing. The

efficiency of the algorithm mainly depends on the rate of increase of the lower bound on each path.

If this rate is high, then the algorithm has a greater chance to find the optimal solution with fewer
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Figure 8: The effect of the Lower Bound on A∗

nodes, as the tree is pruned faster. The lower bounds can either “collapse” with the upper bounds,

or exceeds the best incumbent available.

In this experiment and for the sake of clarity, we only focus on the rate of convergence of the

lower bound on the optimal path. For each instance, we find the optimal path, and at each level l,

we compute the difference between S21(Bl) and zopt(B
l). We average this difference on all instances

and plot the results in Figure 9
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Figure 9: The convergence rate of the lower bound on the optimal path

First of all, we can see that even at level 0 (meaning at the root node), the average difference

is less than 0.25. This shows that on average the lower bound is close to optimal, therefore it does
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not need to increase a lot to reach the optimal solution. Second, we can see that after level 10, the

average gap is less than 0.001, meaning that after 10 relocations, in most cases, the lower bound

has reached optimality on the optimal path. Therefore, this path will terminate at level 10 if the

upper bound also collapsed to the optimal. Finally, the trend of the curve shows that the gap

between optimal and the lower bound decreases faster at the beginning of the tree. A simple way

to explain this is that the lower bound increases when a future “bad” move can be predicted. But

such bad moves become harder to predict as the bay gets emptier (there are more empty columns

in the bay).

The effect of N . By construction, the A∗ method is tunable. In this experiment, we study

the impact of N on the average guaranteed gap with optimality, and the percentage of instances

solved optimally. Notice that from Propositions 2.2 and 2.5, we know that the guaranteed gap is

a non-increasing function of N . We solve each instance with different N and we record the gap

with the optimal solution obtained by the A∗ algorithm. We show the results in Figure 10. On the

left, we give the average gap as a function of N and on the right, we show the percent of instances

solved optimally.
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a function of N

Figure 10: The Effect of N

First, we observe that the average guaranteed gap at the root node is very small (less than 0.4).

Also, in more than 70% of instances, the optimal solution is found at the root node. Second, as we

increase N , the gap sharply decreases and the number of instances solved to optimality increases.

This experiment is very useful from a practical a point of view in order to determine N . We

can set an average gap that we allow in our solutions and infer the minimum N that is needed to

achieve this performance on average. For example for bays of 4 by 7, if we allow for a gap of 0.05

on average, we can set our N to 100.

This experiment is related to the first experiment. As shown in Figure 8, most instances only

require few hundreds of nodes, but there are some that require hundreds of thousands. This explains
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the “concavity” of the function in the left plot and the “convexity” of the function in the right

plot. In conclusion, this experiment highlights the trade-off between the quality of the solution

(represented by the average guaranteed gap) and its tractability (represented by N).

Benchmark of a new heuristic and existing heuristics. Many heuristics have been devel-

oped for the CRP. From a practical point of view, heuristics are valuable since they are fast and

easy to implement in container terminals. Therefore, it is relevant to evaluate their performance

to advise operators. In order to benchmark existing heuristics, one can measure:

• The distribution of the difference between heuristics and the optimal solution; and

• The expected performance ratio of the heuristic defined as

PR(heuristic) =
zheuristic − zopt

zopt
, (13)

where zheuristic is the number of relocations in the heuristic solution. PR shows the relative

gap with optimality for a given heuristic.

From Figure 8, if we set N to 400, 000, then all 100, 000 instances are solved optimally using the

A∗ algorithm. In addition to heuristic H, we study two other existing heuristics presented by Kim

and Hong (KH from [9] which uses the estimation of future relocation) and Petering and Hussein

(LA-5 from [14] that takes into account “repositioning moves”, i.e. repositioning containers that

are not in the same column as the target container).

Gap with Heuristic H Heuristic KH Heuristic LA-5 Heuristic TH-2

Optimal Distribution Distribution Distribution Distribution

0 87.0% 31.8% 83.5% 95.7%

1 11.4% 21.4% 13.7% 3.98%

2 1.4% 21.3% 2.0% 0.3%

≥ 3 0.2% 11.4% 0.3% 0.02%

E [PR] 1.44% 16.0% 1.81% 0.44%

Table 2: Benchmarks of Heuristics on 100,000 instances

We use the same idea as in the A∗ algorithm and introduce a new class of heuristics that can

improve any existing heuristics; we refer to this class as Tree Heuristic (TH-L). The basic idea of

TH-L is to take the L best columns and branch on them to construct a decision tree. The L best

columns can be chosen using any of the existing heuristics that compute a score for each column.

Using this principle and considering several good candidates for each relocation, we are less likely
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to make a mistake. Here, we implement the TH-L with the H heuristic. The algorithm is presented

in Algorithm 2. In our experiment, we set L = 2. Note that TH results in less or the same number

of relocations compared to H since the path of H is included in the tree of TH-L.

Algorithm 2 Tree Heuristic

1: procedure [ZTH] = TreeHeuristic(B, L)

2: ZTH ← 0

3: while B is not empty do

4: Retrieval :

5: if target container n is on top of its column then

6: Retrieve n form B

7: Relocation:

8: else

9: r ← topmost blocking container

10: C1 ← sort arg increasingly
ci∈{1,...,C}\c

{min(ci)|min(ci) > r}

11: C2 ← sort arg decreasingly
ci∈{1,...,C}\c

{min(ci)|min(ci) < r}

12: C3 ← [C1,C2]

13: S← C3[1 : L]

14: ZTH = ZTH +min
s∈S
{TreeHeuristic (B where r moves to column s,L)}

15: end if

16: end while

17: end procedure

Results for the four heuristics are summarized in Table 2. First, H is optimal in most instances

(87%). This is one of the main reasons that heuristic H was chosen as an upper bound in the A∗

method. Second, TH-2 is indeed closer to optimality than H, KH and LA-5, in distribution and in

terms of the average performance ratio.

Finally, notice that the percentages for LA-5 do not sum to 100% since there are cases for which

LA-5 is better than A∗, which is because LA-5 considers “repositioning moves”, i.e., it solves for

the unrestricted CRP. As a result, for 0.5% of the 100,000 instances, LA-5 solves the instance with

one relocation less than A∗.

In our last experiment for complete information, we study how the parameter L affects the

performance of the TH-L heuristic. We consider the same 100,000 instances and solve them with

L varying from 1 to 6, and we record their performance ratio. Notice that TH with L=6 considers

all possibilities for the blocking container therefore it gives the same solution as the A∗ without the

use of bounds. Thus PR(TH-6) = 0. Further note that L = 1 gives heuristic H.

The main observation is that the marginal gain of branching is maximum when we increase L

from 1 to 2. By considering two promising columns instead of one, TH-2 finds better solutions
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L 1 2 3 4 5 6

PR (TH-L) 1.44% 0.44% 0.27% 0.20% 0.16% 0%

Table 3: Effect of parameter L on the performance of heuristic TH-L

for most instances where H was not optimal. Note that increasing L (considering more candi-

date columns) will further improve the solution; however the gain from more branching is small

considering the exponentially increasing cost of computation.

5.2 Experimental results for the CRP with Incomplete Information

Number of nodes and computation time for ASA∗. Stochastic optimization methods that

are based on enumerating scenarios are usually computationally expensive. The ASA∗ algorithm,

however, is fast and tractable due to the use of sampling and pruning that allow for suppressing

many nodes in the tree. More importantly, the ASA∗ is tunable in the sense that one can set ǫ and

δ to change the number of nodes and thereby solve an instance within a desired amount of time,

and yet ensure that the loss from using large ǫ or small δ is bounded (as shown in propositions

4.1-4.3).

Figure 11a shows the cumulative distribution of the number of nodes (after pruning) for the

tree up to t∗=11, for a bay with 7 columns, 4 tiers, 3 containers per column, and |K| = 11 (Recall

that t∗ is the time step at which the set of unknown containers become known and |K| is the number

of containers that are initially known). We implement ASA∗ with δ = 0.5 and ǫ = 0.05. It can be

seen that for half of the instances, the tree up to t∗ has 100 or fewer nodes. Also, about 90% of

instances have 200 or fewer nodes. Note that the nodes of the trees that are constructed after time

t∗ for solving instances corresponding to different scenarios do not have too much of an effect on

computation time because the A∗ algorithm is very fast. Figure 11b shows the cumulative density

of the average computation time. It can be seen that half of the instances are solved in less than

two minutes and 90% of the instances are solved in 15 minutes or less.

Although the ASA∗ algorithm is fast for medium-sized bays, it might not be tractable for large

bays. We next introduce a myopic heuristic and use both ASA∗ and the heuristic to provide several

insights on the value of information.

Myopic Heuristic. This is an extension of the heuristic H that we explained in Section 2.

Similar to the setting that we explained in Section 4, the problem is to retrieve N containers from

a bay with C column and P tiers. In the incomplete information setting, the departure order of

containers {1, 2, . . . , |K|} are known at time zero; the departure order of containers {|K|, |K|+1, . . . ,N}
become known at time step t∗ > 0.

Suppose n is the target container located in column c. If n is not blocked by any container, it

is retrieved without any relocation. Otherwise, let r be the topmost blocking container in column
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(a) ASA∗ implemented with δ = 0.5 and ǫ = 0.05 (b) Experiments were done on desktop computer with

Intel i73770s processor (3.90 GHz) and 16Gb RAM.

Figure 11: Tractability of the ASA∗ algorithm

c, and c∗ be the column where r should be relocated. The myopic heuristic determines c∗ using the

same rules as the H heuristic explained in Section 2, except that we assign an index of N + 1 to all

unknown containers and we set min(ci) = N + 2 if ci is empty. Ties are broken arbitrarily. In the

following experiments we study myopic heuristic and compare its performance to that of ASA*.

Value of information. To study the effect of the level of information initially available (|K|), we
take 1000 random instances of a bay with 7 columns, 4 tiers, N = 21 containers, and 3 containers

per column. We solve each instance with 6 levels of information: |K| = ⌈0.25N⌉, ⌈0.375N⌉, ⌈0.5N⌉,
⌈0.625N⌉, ⌈0.75N⌉, and ⌈0.9N⌉, using the ASA∗ algorithm and the myopic heuristic (⌈x⌉ is the

smallest integer larger than x). For all cases, we fix t∗ at ⌈0.25N⌉ + 1 to ensure that at every time-

step before t∗, at least one container is known. For each of the 12 cases, we compute the average

of relocations over the 1000 instances. We then compare the relative gap of each case with the

average relocation for the CRP with full information:
E[zASA∗ ]−E[zopt]

E[zopt]
and

E[zMH]−E[zopt]

E[zopt]
, where zMH is

the number of relocations obtained by the myopic heuristic.

Figure 12a shows the relative gap in relocations for different levels of information. With the

ASA∗ algorithm (implemented with δ = 0.5 and ǫ = 0.05), the gap is about 8% when 25% of the

containers (6 containers) are known at time zero. The gap reduces to 3% when half of the containers

are initially known and is almost zero when 90% of containers are known at time zero. The same

behaviour can be observed for the heuristic. In both cases, the marginal value of information

becomes smaller when more information is available. This is more significant for the heuristic. For

example, when the level of information increases from 25% to 50%, there is a significant drop in

the gap; then the gap decreases more slowly and approaches zero at 100% information. Note that
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with 100% information, the myopic heuristic is the same as the H heuristic.

To get an insight into the value of information for the myopic heuristic, recall that it behaves

similar to the H heuristic as long as min(ci) for all columns are known. Since all unknown containers

have larger indices than the known containers, knowing at least one container in each column is

sufficient to obtain the same min(ci) as in the heuristic H. Thus, after some point, having more

information does not have much of effect on the number of relocations when we use the myopic

heuristic.

Figure 12b shows how the gap between the myopic heuristic and ASA∗ shrinks as the level of

information increases. When 25% of the containers are initially known, using the myopic heuristic

results in 12% more relocations on average (compared to ASA∗). This gap drops to less than 2%

when all containers are known. Note that when more than 50% of the containers are initially

known, the solution provided by the myopic heuristic is reasonably close to the solution of ASA∗

(less than 5%). Therefore, the myopic heuristic can be used in practice as it is easy to implement

and efficient.

(a) Value of information: relative gap in relocations text

with the case of full information

(b) Comparing the myopic heuristic and the ASA∗ algo-

rithm: relative gap in relocations for different levels of

information

Figure 12: Experiment results for 7×4 bay

It is interesting to see the effect of different levels of information on the number of relocations in

larger bays. Figure 13 shows the average relative gap in relocations for bays of different sizes. For

each bay size, the average relative gap is computed for 100,000 instances, using the myopic heuristic.

The most important observation is that the ratio of E[zMH] and E[zH] does not constantly increase

with bay size. And, for each information level, this ratio converges to a constant as the bay gets

larger. Two other observations can be made from Figure 13. First, the converging ratio for large

bays drops fast as the level of information increases. For example, when 25% of containers are
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initially known, the ratio converges to 1.4. This number drops to 1.03 when the level of information

is 75%. Second, the rate of convergence is much faster when more information is available. For

example, when 75% or more of the containers are initially known, the ratio is almost constant

independent of the bay size. When 25% of the containers are known, the ratio converges to 1.4 for

bays with 40 or more columns. Last, note that the asymptotic behaviour of the myopic heuristic

in Figure 13, is as an upper bound on the performance of the ASA∗ algorithm.

What is shown in Figure 13 provides useful insights for port operators. Considering the gain

(fewer relocations) at each level of information, port operators can design appointment systems

that capture this gain by offering faster or discounted service to the customers who provide their

arrival time in advance.

Figure 13: Asymptotic behaviour of myopic heuristic: E[zMH]
E[zH] approaches a constant as the bay gets

larger.

Comparing the myopic heuristic with existing heuristic. To the best of our knowledge,

only a few recent papers studied CRP with incomplete information, and developed heuristic algo-

rithms for this problem [10, 21]. Here we compare our myopic heuristic with the RDH (revised

difference heuristic of [21]) and show that myopic outperforms the RDH. Zhao et al. [21] show the

percentage savings of RDH over a nearest relocation strategy for different bay sizes and for different

amounts of information initially available. The greatest savings is about 50% and is realized for a

bay with 12 columns and 7 maximum height, with 50 or more containers initially known (see Figure

13 of [21]). The total number of containers is not indicated for this simulation, so we assume the

bay is full with 72 containers. (With 50 known containers, the level of information is about 70%).

For a bay with 12 columns and 3 containers per column, the maximum savings is about 40% and

is realized when 22 or more containers are known (i.e., when the information level is about 60%).
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Figure 14: Percentage of saving of myopic heuristic over nearest relocation strategy.

In Figure 14, we show the percentage savings of the myopic heuristic over the nearest location

strategy for bays with different numbers of columns, with 4 tiers and 3 containers per column.

The savings are shown for 4 different levels of information. It can be seen that when level of

information is 50%, the saving is about 48%, which is greater than the saving for RDH when even

more information (about 70%) is available. When the level of information is 25%, the savings of

the myopic heuristic is about 35%, whereas for the same setting, RDH results in less than 25%

savings over the nearest relocation strategy.

6 Conclusion

Managing the relocation moves is one of the main challenges in the storage yard of container

terminals and has a direct effect on the costs and efficiency of yard operations. The Container

Relocation Problem (CRP) is notorious for its computational intractability and most research

studies have designed heuristics in order to solve the problem, particularly for large bays.

In this paper, we revisited a fast and efficient method, the A∗ algorithm that provides optimal

solution for the CRP. We proved several properties of the method as applied to the CRP and

assessed its performance and computational tractability through experiments. We also studied the

asymptotic behavior of optimal solutions of the CRP and showed that the ratio of the optimal

number of relocations and a simple counting lower bound converges to 1 as the bay gets very

large. This gives strong evidence that CRP is easier in large bays. Moreover, we showed through

experiments that the H heuristic (introduced in [4]) has the same behavior. An important result

of our experiments is that it is recommended to apply the heuristic H to large blocks of containers

(several bays) in order to minimize the loss from using a heuristic rather than optimization methods
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(that are computationally expensive). We also presented an improvement over H heuristic, and show

through experiments that it outperforms existing heuristics.

Further, we extended our study to the CRP with incomplete information, which is an important

case in practice because the retrieval order of containers are usually not known far in advance.

We introduced a two-stage approximate stochastic optimization framework (ASA∗) that optimizes

the expected number of relocations given a probabilistic distribution on the departure order of

containers. We also presented a myopic heuristic that is very fast and efficient for the CRP with

incomplete information. We used ASA∗ and the heuristic to study the value of information for

different bay sizes and showed that the relative gap between ASA∗ and the heuristic shrinks as

the level of information increases. In fact, when the available information is more than 50%, the

myopic heuristic is very efficient and can be used in practice. We also showed that the ratio of the

number of relocations between heuristic H and the myopic heuristic converges to a constant fast

as bays get larger, which again implies that the loss from using the myopic heuristic is minimized

when applied to large bays.

Our paper opens directions to many further studies in both complete information setting and

the incomplete one. A very interesting problem in the complete information case is to generalize

our model to a setting where stacking and retrieving processes overlap in time. In such a setting,

the goal would be to jointly optimize the number of relocation for stacking and retrieving. We

believe that one of the major questions of this problem is how to prioritize between stacking and

retrieving at a given time. In the incomplete information case, one can easily generalize our two-

stage stochastic optimization problem to a multi-stage setting where ASA* could be extended.

However, as we increase the number of stages, the computation time grows rapidly. Additional

assumptions and/or other efficient heuristics would be needed to ensure a reasonable running time.

Finally, another interesting problem is to study the case where no information about any containers

is known in advance. Intuitively, it appears that the policy of placing the container on the emptiest

column should be the optimal solution; however this remains to be proven.

Other storage systems such as steel plate stacking and warehousing systems face the relocation

problem with complete and incomplete information (see Kim et al. [8], Zäpfel and Wasner [19] for

the former, and Chen et al. [6] for the latter). We believe that the frameworks proposed in this

paper could also be applicable to those problems.
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[18] Vondrák, J. M. J. (2001). The Probabilistic Method: Lecture Notes. (KAM-DIMATIA series.

Charles Univ).
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Appendix

Proof of Proposition 2.2. Between level l and l + 1, one move has been operated (r moved to

column ci). If r < min(ci) (‘good” move) then r was a blocking container in Bl but not in Bl+1, thus

S0(Bl+1) = S0(Bl) − 1. If r > min(ci), we have S0(Bl+1) = S0(Bl). So S0(Bl+1) = S0(Bl) − χ(r < min(ci))

where χ is the indicator function. Therefore L0(Bl+1) = S0(Bl+1) + (l + 1) = S0(Bl) − χ(r < min(ci)) +

1 + l ≥ S0(Bl) + l = L0(Bl). �

Proof of Proposition 2.4. We have Lp(B) − Lp−1(B) =
∑

r∈Rp(B) χ(r > MM(Bp)). Since χ is a non

negative function, the results follows. �

Proof of Proposition 2.5. Intuitively, this property comes from the fact that Sp(Bl+1) ≥ Sp(Bl)−
1. Indeed, if this holds, we have

Lp(Bl+1) = Sp(Bl+1) + l + 1 ≥ Sp(Bl) − 1 + l + 1 = Sp(B) + l = Lp(B)

So let us prove Sp(Bl+1) ≥ Sp(Bl) − 1. Let r be the container that is relocated between Bl and Bl+1.

We have two cases:

• If r can do a good move, r has only been counted once in Sp(Bl) as it is a blocking container

in Bl and it might or might not contribute to Sp(Bl+1). Therefore Sp(Bl+1) ≥ Sp(Bl) − 1.

• If r cannot do a good move, it has been counted twice in Sp(Bl). But since it cannot do a

good move, it is necessarily a blocking container in Bl+1 so it counts at least once in Sp(Bl+1).

Thus Sp(Bl+1) ≥ Sp(Bl) − 1.

This completes the proof. �

Proof of Proposition 2.7. Using heuristic H, a container is relocated only if it is blocking. For

any blocking container, there exists at least one empty column which means there is a possible

good move. So each blocking container is relocated at most once, i.e, zH(B) = S0(B). Since S0(B) ≤
zopt(B) ≤ zH(B) = S0(B) and we have equation (4). �

Proof of Proposition 2.8. For simplicity of proofs we assume that n1, the target container in

the bay is 1. If 1 is not blocked then it is retrieved. In that case, there are C containers left and

thus we use Proposition 2.7 (note that in that case S1(B) = S0(B)).

Then let us suppose 1 is blocked by some containers. If there is more than one blocking

container, all except the last one can be relocated to empty columns. So we come back to the case

where 1 is only blocked by container r, and there is no empty column.

Now we consider two cases: If r can do a good move and H relocates r to a good column and then

retrieves 1. We call B′ the new configuration. By Proposition 2.7, we have zH(B′) = S0(B′) = S1(B′).

Notice that zH(B) = zH(B′) + 1 and S1(B) = S1(B′) + 1 and the result follows.
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Now suppose r cannot do a good move. This can only happen if r = C + 1 and all the other

columns have exactly one container. It is easy to check that in that case, zH(B) = S1(B). �

Proof of Proposition 2.9. First let us introduce some notations. Let B be the initial configura-

tion and B′ be the configuration obtained after retrieving container 1 using heuristic H. We denote

R1 the set of containers blocking container 1 in B.

Now let us consider the case k = 2. Note that using Proposition 2.8 we have zH(B′) = S1(B′)

and S1(B′) ≤ S0(B′) + 1. There are four possibilities to consider:

• If |R1| = 0, then it is easy to see that zH(B) = zH(B′) = zopt(B
′) = zopt(B).

• If |R1| = 1, we know that S0(B′) ≤ S0(B). Therefore zH(B) = 1 + zH(B′) = 1 + S1(B′) ≤
1 + S0(B′) + 1 ≤ S0(B) + 2 ≤ zopt(B) + 2.

• If |R1| > 2, then there are at least |R1| − 2 columns that are empty in B. Therefore the |R1| − 2

topmost containers blocking 1 find necessarily a ”good” column in B. Hence this case can be

reduced to the case where |R1| = 2.

• If R1 = 2, then we claim that S1(B′) ≤ S0(B). If this is true, then zH(B) = zH(B′) + 2 =

S1(B′)+ 2 ≤ S0(B)+ 2 ≤ zopt(B)+ 2. Now let us denote r1 and r2 the two containers blocking 1

in B.

– If r1 ≤ C or r2 ≤ C then S0(B′) ≤ S0(B) − 1 and therefore S1(B′) ≤ S0(B′) + 1 ≤ S0(B).

– If r1 > C and r2 > C, then if one of them finds an empty column then again S0(B′) ≤
S0(B)−1. Otherwise it means that all columns have one container and C+1 and C+2 are

on top of 1. In those two bays we can verify that zH(B) = 4 ≤ 2+ 2 = S0(B)+ 2 ≤ zopt + 2.

This concludes the case k = 2.

For 3 ≤ k ≤ C, the proof is simpler and works by induction. For k = 2, the previous paragraph

proves a stronger inequality. Let us suppose it is true for k − 1, and B has C + k containers. We

have by induction hypothesis, zH(B′) ≤ S0(B′) + k(k−1)
2 . We have three cases:

• If |R1| = 0, then zH(B) = zH(B′) ≤ S0(B′) + k(k−1)
2 ≤ S0(B) +

k(k+1)
2 ≤ zopt(B) +

k(k+1)
2 .

• If |R1| > k, then there are at least (C − 1) − (C + k − (|R1| + 1)) = |R1| − k empty columns and

therefore S0(B′) ≤ S0(B) + k − |R1| which implies zH(B) = |R1| + zH(B′) ≤ |R1| + S0(B′) + k(k−1)
2 ≤

|R1| + S0(B) + k − |R1| + k(k−1)
2 = S0(B) +

k(k+1)
2 ≤ zopt(B) +

k(k+1)
2 .

• If 0 < |R1| ≤ k, then since S0(B′) ≤ S0(B) we have zH(B) = |R1|+ zH(B′) ≤ |R1|+ S0(B′)+ k(k−1)
2 ≤

k + S0(B) +
k(k−1)

2 = S0(B) +
k(k+1)

2 ≤ zopt(B) +
k(k+1)

2 .

which concludes the proof.

�
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Proof of Proposition 3.1. Let Si
0
(BC) be the number of blocking containers in column i. By the

linearity of expectation, we have

EC [S0(BC)] = EC















C
∑

i=1

Si
0(BC)















=

C
∑

i=1

E

[

Si
0(BC)

]

= αh × C,

where αh = E

[

S1
0
(BC)

]

. The last equality comes from the fact that each column is identically

distributed.

Now let us compute αh. By definition, αh =
∑h−1

k=1 kpk,h. Let us start with p0,h. Given h randomly

chosen containers, the probability that they are placed in the first column in a descending order

(meaning there is no blocking container) is p0,h =
1
h! . Now for 1 ≤ k ≤ h − 1, we compute pk,h by

recursion (conditioning on the position of the smallest container). Let n∗ be the smallest container

among these h containers. n∗ is located in jth topmost tier with probability 1
h . Conditioned on that

event, it means that ( j − 1) containers are blocking n∗. So if j > k + 1, then the event of having

k blocking container is not possible. Therefore for j ≤ k + 1 there should be (k − ( j − 1)) blocking

containers below the jth topmost tier and this happens with probability pk−( j−1),h− j (since there are

h − j tier below the jth topmost tier). Summing over all j (possible positions of n∗), we have

pk,h =

k
∑

j=1

1

h
pk− j+1,h− j,

which completes the proof �

Proof of Theorem 3.3. Since for all configurations BC, zopt(BC) ≥ S0(BC) then
EC[zopt(BC)]
EC[S0(BC)] ≥ 1.

Moreover, we have:

EC

[

zopt(BC)
]

EC [S0(BC)]
= 1 +

EC

[

zopt(BC)
]

− EC [S0(BC)]

EC [S0(BC)]

= 1 +
1

αhC

(

EC

[

zopt(BC)
]

− αhC
)

= 1 +
g(C)

αhC
(14)

where

g(C) = EC

[

zopt(BC)
]

− αhC. (15)

In Lemma 6.1, we study how EC

[

zopt(BC)
]

evolves and we show that it increases almost linearly in

α which shows that the function g(.) is essentially bounded.

Lemma 6.1. Let zopt(BC) be the optimal number of relocations for configuration BC, then there

exists a constant θ (defined in equation (37)) such that:

EC+1

[

zopt(BC+1)
]

≤ EC

[

zopt(BC)
]

+ αh + h(P − 1)(C + 1)e−θ(C+1),∀C ≥ h + 1 (16)
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Using Lemma 6.1, we have for all C ≥ h + 1:

EC+1

[

zopt(BC+1)
]

≤ EC

[

zopt(BC)
]

+ αh + h(P − 1)(C + 1)e−θ(C+1)

=⇒ EC+1

[

zopt(BC+1)
]

− αh(C + 1) ≤ EC

[

zopt(BC)
]

− αhC + h(P − 1)(C + 1)e−θ(C+1)

=⇒ g(C + 1) ≤ g(C) + h(P − 1)(C + 1)e−θ(C+1)

=⇒ g(C) ≤ g(h + 1) + h(P − 1)

C
∑

i=h+2

(

ie−θi
)

≤ g(h + 1) + h(P − 1)

∞
∑

i=1

(

ie−θi
)

=⇒ g(C) ≤ g(h + 1) +
eθh(P − 1)

(eθ − 1)
2
= K′. (17)

Therefore using equations (14) and (17), we have

EC

[

zopt(BC)
]

EC [S0(BC)]
≤ 1 +

K

C
= f (C), (18)

where

K =
K′

α
=

g(h + 1) +
eθh(P−1)

(eθ−1)
2

α
(19)

which completes the proof of the theorem. �

Proof of Lemma 6.1. Now we need to prove equation (16). Define a column to be “special” if

all its containers are not smaller than ω = (h−1)(C+1)+1. Now let us consider the following event:

Ω =

{

The bay with C + 1 columns has at least one “special” column
}

. (20)

The intuition is the following: the probability of having a “special” column grows quickly to 1

as a function of C implying that the event Ω happens with high probability. Now, conditioned on

Ω, we more easily express the difference between bays of size C+ 1 and C in the following way. We

claim that

EC+1

[

zopt(BC+1)|Ω
]

≤ EC

[

zopt(BC)
]

+ αh, (21)

Let BC+1 be a given bay of size C+1 that verifies Ω. Since columns in bays can be interchanged,

we suppose that a “special” column is the first (leftmost) column of the bay. We also denote

n1, n2, . . . , nh the containers of the first column. We know that n1, n2, . . . , nh ≥ ω and n1 , n2 ,

. . . , nh. Finally let BC be the bay BC+1 without its first column (see Figure 15).

First we prove that

zopt(BC+1) ≤ zopt(BC) + S0













































n1

. . .

nh













































. (22)
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Figure 15: Bay decomposition of BC+1 (The part on the right has C columns)

To prove equation (22), we construct a feasible sequence σ for the bay of size C + 1 for which the

number of relocations is equal to the right side of equation (22). Let σopt(BC) the optimal sequence

for BC, t′ be the first time step when the target container in σopt(BC) is larger than min{n1, n2, . . . , nh}
and B′

C
be the bay obtained at t′ using σopt(BC). Let the first t′ − 1 moves of σ be the first t′ − 1

moves of σopt(BC). Note that B′
C
has at most C−h containers due to the choice of ω. By Proposition

2.7, the number of relocations performed by σopt(BC) from t′ until the end is S0(B′
C

). Therefore

zopt(BC) = # relocations up to t′ done by zopt(BC) + S0(B′C). (23)

After t′, we run heuristic H on B′
C+1
=













































n1

. . .

nh























∪ B′
C























.

We claim that zσ is exactly the right side of equation (22). There are at most C containers in

B′
C+1

, therefore using Proposition 2.7, we know that if we apply the heuristic H to this configuration,

then the number of relocations done by H is S0(B′
C+1

) = S0(B′
C

) + S0


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
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
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






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



n1
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nh













































. Therefore

zopt(BC+1) ≤ zσ(BC+1) = # relocations up to t′ done by zopt(BC) + S0(B′C) + S0


























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
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











n1
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nh













































,

and we have

zopt(BC+1) ≤ zopt(BC) + S0






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
















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









n1
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nh













































, (24)

which proves equation (22).

Now we can take the expectation from both sides of equation (21) over a uniform distribution

of the rest of the hC containers that are not in the first column. We claim that the first term on
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the right hand-side of equation (24) is exactly EC

[

zopt(B)
]

. For any configuration that appears in

BC, we can map it to a unique configuration where all containers are between 1 and hC. Thus,

EC























zopt(BC+1)

∣

∣

∣

∣
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∣

∣
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




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


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nh


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

























≤ EC

[

zopt(BC)
]

+ S0
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
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










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
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
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nh


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






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











. (25)

Next, we take the expectation of both sides of equation (25) over possible first columns, which

is a “special” column. Now notice that if BC+1 is generated uniformly in the sets of bays of size

C + 1, then conditioned on Ω, the probability of having a certain column [n1, . . . , nh]T is identical

for any n1 , . . . , nh ≥ ω and it is given by

P


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
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
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=
(C − h)!

C!
. (26)

Moreover, if we withdraw this first column from BC+1 and look at the last C columns (after renum-

bering the containers so that the numbers lie between 1 and hC), then this bay is also uniformly

distributed in the sets of bays with C columns. Therefore we can write:

EC+1

[

zopt(BC+1)|Ω
]

=

∑

(n1,...,nh)
ni, n j

ni≥ ω
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(27)

=

∑

(n1,...,nh)
ni, n j

ni≥ ω
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≤ EC

[
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]

∑
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The equality between 27 and 28 comes from the fact that if we know that BC+1 has a “special” col-

umn, then we do not need to condition onΩ. Equation 29 uses the fact that
∑

n1, ..., nh
ni≥ ω

P













































n1

. . .

nh























∣

∣

∣

∣

∣

∣

∣

∣

∣

Ω























=

1.
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Note that, given any (n1, . . . , nh) such that ni , n j, we have

E























S0













































n1

. . .

nh



































































= αh,

when the expectation is over a random order of (n1, . . . , nh). This is true regardless of the set

(n1, . . . , nh) that is drawn from (See Remark 3.2). This implies that the second term in the right

hand side of equation (29) is equal to αh; Therefore, we get equation (21).

Lemma 6.2 states that the event Ω has a probability that increases exponentially fast to 1 as a

function of C.

Lemma 6.2. Let Ω be the event defined by equation (20), then there exists a constant θ > 0 such

that

P(Ω) ≤ e−θ(C+1) (30)

where θ is given by equation (37).

Now we want to focus on the event Ω. We give an upper bound on EC+1

[

zopt(BC+1)|Ω
]

. For any

configuration, in order to retrieve one container, we need at most P − 1 relocations (since at most

P − 1 containers are blocking it), thus for any configuration, the optimal number of relocations is

at most P − 1 times the number of containers (h(C + 1)) which gives us h(P − 1)(C + 1) as an upper

bound on the optimal number of relocations. We use this universal bound to get

EC+1

[

zopt(BC+1)|Ω
]

≤ h(P − 1)(C + 1). (31)

Finally using Lemma 6.2, we have

EC+1

[

zopt(BC+1)
]

= EC+1

[

zopt(BC+1)|Ω
]

P(Ω) + EC+1

[

zopt(BC+1)|Ω
]

P(Ω)

≤ EC+1

[

zopt(BC+1)|Ω
]

+ EC+1

[

zopt(BC+1)|Ω
]

× e−θ(C+1)

≤ EC

[

zopt(BC)
]

+ αh + h(P − 1)(C + 1)e−θ(C+1) ,

which completes the proof of Lemma 6.1. �

Proof of Lemma 6.2. Recall that

Ω =

{

The bay with C + 1 columns has at least one “special” column
}

.

We know that each bay of size C + 1 can be mapped to a permutation π of Sh(C+1) taken

uniformly at random. Let q(.) be the function from Sh(C+1) to R
+ defined by

q : π 7−→ number of “special” columns in the resulting bay of π.
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Note that

P

(

Ω

)

= P
(

q(π) = 0
)

.

First we compute the expected value of q(.)

EC+1[q] = EC+1















C+1
∑

i=1

χ (ci is a “special” column)















EC+1[q] = (C + 1) × P ({c1 is a “special” column}) , (32)

where we use linearity of expectation and the fact that columns are identically distributed.

A simple counting implies that 1:

P ({c1 is a “special” column}) = (C + 1)[(C + 1) − 1] . . . [(C + 1) − h + 1]

h(C + 1)[h(C + 1) − 1] . . . [h(C + 1) − h + 1]

≥
(

(C + 1) − h + 1

h(C + 1)

)h

≥
(

2

h(h + 1)

)h

,

(33)

where we use C + 1 ≥ h + 1 to show the last inequality.

Therefore we know that

EC+1[q] ≥ (C + 1) ×
(

2

h(h + 1)

)h

. (34)

We claim that q(.) is well concentrated around its mean. In order to do so, we prove that q(.)

is 1-Lipschitz. Define ρ the distance between two permutations π1, π2 ∈ Sh(C+1) as ρ(π1, π2) =

| {i ∈ [h(C + 1)] : π1(i) , π2(i)} |. We want to prove that

|q(π1) − q(π2)| ≤ ρ(π1, π2),∀ (π1, π2) ∈ Sh(C+1). (35)

Let π1, π2 ∈ Sh(C+1). Let us first consider the case where ρ(π1, π2) = 2. (Notice that if ρ(π1, π2) , 0

then ρ(π1, π2) ≥ 2). In that case, we have i, j ∈ {1, . . . , n} such that π1(i) = π2( j) and π1( j) = π2(i).

Let B1 and B2 be the configurations generated by π1 and π2. Having ρ(π1, π2) = 2 corresponds to

the fact that if we swap 2 containers in B1, we get B2 and we denote those containers a = π1(i) and

b = π1( j). We have three cases:

• a and b are both in “special” columns in B1. In this case, swapping them will not change

anything since both their new columns in B2 will also be “special” and hence |q(π1)−q(π2)| = 0.

1Notice that when C→∞, the probability is equivalent to (
1

h
)h which would guarantee a faster convergence rate.
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• a and b are both in columns that are not “special” columns in B1. If a, b ≥ ω or a, b < ω then

we do not create any new special column in B2. Now suppose that a ≥ ω and b < ω, then the

column of a in B2 might be a “special” column, but the column of b in B2 cannot be “special”.

Therefore in that case, |q(π1) − q(π2)| ≤ 1.

• a is in a “special” column in B1 but b is not. Now we know that a ≥ ω. If b < ω then

the column of b in B2 cannot be “special” but the column of a might be and in that case

|q(π1)− q(π2)| ≤ 1. If b ≥ ω, then the column of b in B2 is “special” and the column of a in B2

is not “special” which gives us |q(π1) − q(π2)| = 0. Note that the proof is identical if b is in a

“special” column in B1 but a is not.

So far we have shown that

If ρ(π1, π2) = 2, then |q(π1) − q(π2)| ≤ 1. (36)

Now we suppose that ρ(π1, π2) = k where 2 ≤ k ≤ h(C + 1). Note that we can construct a

sequence of permutations (π′
1
, π′

2
, . . . , π′

k
) such that π′

1
= π1, π

′
k
= π2 and ρ(π′

i
, π′

i+1
) = 2.

Now using this fact and equation (36),

|q(π1) − q(π2)| =
∣

∣

∣

∣

∣

∣

∣

k−1
∑

i=1

q(π′i ) − q(π′i+1)

∣

∣

∣

∣

∣

∣

∣

≤
k−1
∑

i=1

|q(π′i ) − q(π′i+1)| ≤
k−1
∑

i=1

1 = k − 1 ≤ k = ρ(π1, π2),

which proves that q(.) is 1-Lipschitz.

Now we use Theorem 8.3.3 of Matoušek and Vondrák [18] which states that P
(

q ≤ EC+1[q] − t
) ≤

e−
t2

8h(C+1) and apply it with t = EC+1[q] and equation (34) to get

P
(

q = 0
)

= P
(

q ≤ EC+1[q] − EC+1[q]
) ≤ e−

(EC+1[q])2

8h(C+1) ≤ e−θ(C+1),

where

θ =
1

8h

(

2

h(h + 1)

)2h

> 0, (37)

which concludes the proof. �

Proof of Corollary 9. Using that S0(BC) ≤ zgen(BC) ≤ zopt(BC), we have 1 ≤ EC[zgen(BC)]
EC[S0(BC)] ≤

EC[zopt(BC)]
EC[S0(BC)] ≤ f (C). Finally we know that EC [S0(BC)] = αhC. �

Proof of Proposition 4.1. We can write E[e1] as follows:

E[e1] = (E[E[zpASA
] − z̄pASA

]) − (E[E[zp∗ ] − z̄p∗]) + E[z̄pASA
− z̄p∗ ] ≤ E[|E[zpASA

] − z̄pASA
|] + E[|E[zp∗ ] − z̄p∗ |].(38)
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The above inequality holds because ASA∗ chose pASA, and thus we have z̄pASA
< z̄p∗ . Moreover,

we can compute E[|E[zpASA
]− z̄pASA

|] and E[|E[zp∗ ]− z̄p∗ |] using their CDF. We denote |E[zpASA
]− z̄pASA

|
by ∆. Note that 0 ≤ ∆ ≤ rmax and inequality (11) gives a bound on its CDF, when estimating z̄pASA

with S samples. For E[∆], we have:

E[∆] =

∫ rmax

0

1 − F∆(x)dx (39)

≤
∫ rmax

0

2 exp(
−2Sx2

r2
max

)dx (40)

= 2

∫ rmax

0

(
ǫ

2
)

x2

δ2 dx ≤ 2

∫ ∞

0

(
ǫ

2
)

x2

δ2 dx = δ

√

π

− ln(
ǫ

2
)
. (41)

We can compute E[|E[zp∗ ] − z̄p∗ |] in a similar way.

The first equality in (41) is obtained by substituting S with the expression in (12). Using the

bound on E[∆] and inequality (38), we can compute E[e1] as follows:

E[e1] ≤ 2δ

√

π

− ln(
ǫ

2
)
. (42)

�

Proof of Proposition 4.2. For an arbitrary initial bay B, let p̂ be the path with the minimum

estimated upper bound. Notice that pruning p̃ may be a mistake if the true mean of Lp̃ is less

than the true mean of Up̂, i.e., E[Lp̃] < E[Up̂]; in such a case, e2 ≤ E[Up̂] − E[zp̃] ≤ E[Up̂] − E[Lp̃].

Otherwise e2 is zero; thus we have e2 ≤ (E[Up̂] − E[Lp̃])+.

Let us denote Lp̃ − E[Lp̃] and E[Up̂] − Up̂ by xL and xU, respectively. Also, let d be Lp̃ − Up̂.

The true and estimated values of the upper bound and lower bound, and the loss are illustrated in

Figure 7; e2 is shown by the thick line segment. For any bay with an arbitrary initial configuration,

we can bound e2 as follows:

e2 ≤
(

(E[Up̂] −Up̂) + (Up̂ − Lp̃) + (Lp̃ − E[Lp̃])
)+

= (xU − d + xL)+. (43)

The expected loss, E[e2], can be bounded as shown in (46).

E[e2] = E[(xL + xU − d)+] ≤ E[(xL + xU)+] ≤ E[|xL + xU |] (44)

≤ E[|xL | + |xU |] = E[|xL|] + E[|xU |] (45)

≤ 2δ

√

π

− ln(
ǫ

2
)
. (46)
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The first inequality in 44 holds because d is always positive. Inequality 45 results from the

triangular inequality, and the last inequality is obtained by replacing E[|xL |] and E[|xU |] by the

expression in (41).

�

Proof of Proposition 4.3. For an arbitrary initial bay B, let p̂max be the path that maximizes

E[Up̂] among p̂1, . . . , p̂m. We bound e3 (the expected loss due to prununig) as follows:

e3 ≤ P(mistake at t1 ∪ · · · ∪mistake at tm)(E[zp̂max ] − E[zp∗]) (47)

≤ m P(mistake at t1)(E[Up̂max ] − 0) (48)

= m P(mistake at t1)(E[Up̂max ] −Up̂max +Up̂max ) (49)

≤ m P(mistake at t1)(|xU | +U
max

p̂ ). (50)

Notice that inequality 48 is obtained by using the union bound. Moreover, we replace the

probability of mistakes at each step by the maximum probability. Without loss of generality we

assume that maximum probability is at t1. Also note that we do not know which path is p̂max

because we have not observed E[Up̂1
], . . . ,E[Up̂m]. Nevertheless, regardless of the path, we can

replace E[Up̂max]−Up̂max with |xU| (by definition) to obtain (50). Also, we can bound Up̂max by U
max

p̂ .

Now we compute P(mistake at t1). Let us denote |xL| and |xU | by x and y, respectively. Also,

let w = x+ y and fW(w) be the PDF of w. Notice that the probability of making a mistake depends

on the value of d; the maximum probability corresponds to the stage with the smallest value of d

and can be computed as follows:

P(mistake at t1) = P(x + y − dmin > 0) =

∫ ∞

dmin

fW(w)dw =

∫ ∞

dmin

∫ w

0

fX(w − y) fY(y) dy dw. (51)

fX(x) and fY(y) can be obtained from (11), and the above integral can be bounded as follows:

∫ ∞

dmin

∫ w

0

fX(w − y) fY(y) =

∫ ∞

dmin

∫ w

0

4
(− ln( ǫ2 )

δ2

)2
y(w − y)(

ǫ

2
)

(y2
+(w−y)2)

δ2

= (
ǫ

2
)

d2
min
δ2 +

dmin

δ

√

−ln( ǫ2 )π

2
(
ǫ

2
)

d2
min
2δ2 Erf(

dmin

√

−ln( ǫ2 )
√

2δ
)

≤ (
ǫ

2
)

d2
min
δ2 +

dmin

δ

√

−ln( ǫ2 )π

2
(
ǫ

2
)

d2
min
2δ2 . (52)

From 50, 52, and expression 41 for E[|xU |], it follows that:

E[e3] ≤ m
(

(
ǫ

2
)

d2
min
δ2 +

dmin

δ

√

√

−ln(
ǫ

2
)π

2
(
ǫ

2
)

d2
min
2δ2

)(

δ

√

π

− ln(
ǫ

2
)
+U

max

p̂

)

, (53)

where U
max

p̂ = max{Up̂1
, . . . ,Up̂m}, and dmin = min{d1, . . . , dm}.
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