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Abstract

To address the needs of modeling uncertainty in sensitive machine learning applications, the
setup of distributionally robust optimization (DRO) seeks good performance uniformly across
a variety of tasks. The recent multi-distribution learning (MDL) framework [AHZ23] tackles
this objective in a dynamic interaction with the environment, where the learner has sampling
access to each target distribution. Drawing inspiration from the field of pure-exploration multi-
armed bandits, we provide distribution-dependent guarantees in the MDL regime, that scale
with suboptimality gaps and result in superior dependence on the sample size when compared
to the existing distribution-independent analyses. We investigate two non-adaptive strategies,
uniform and non-uniform exploration, and present non-asymptotic regret bounds using novel
tools from empirical process theory. Furthermore, we devise an adaptive optimistic algorithm,
LCB-DR, that showcases enhanced dependence on the gaps, mirroring the contrast between
uniform and optimistic allocation in the multi-armed bandit literature.
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1 Introduction

Classical statistical learning operates under the assumption that data comes from a single source
[HTF09]. However, the growing use of machine learning in safety-critical applications has brought
forth the demand for more robust models that address stochastic heterogeneity. One well-established
paradigm is distributionally robust optimization (DRO) [RM22], which seeks good performance
uniformly across a collection of distributions. Concretely, let A and X be decision and data spaces,
respectively, and suppose that data is sampled from a distribution within some uncertainty set
U ⊂ P (X ). Then, under a target reward function r : A×X → R, DRO focuses on the problem

max
a∈A

{

µDR (a) := min
Q∈U

EX∼Q [r (a,X)]

}

(DR)

Recent works [BHPQ17, SKHL20, HJZ22] have studied the setting of finite U and tackle it via
interactive dynamics with the environment. More precisely, the emergentmulti-distribution learning
(MDL) framework [AHZ23] assumes sampling access to U , where a learning agent sequentially
selects which distributions to sample from given a fixed sampling budget.

The current literature is populated with distribution-independent rates; i.e., bounds that are
independent of problem parameters. While broad in its applicability, this approach falls short in
capturing the nuances of the underlying environment. Oftentimes, it is more intuitive to analyze
the learner’s performance in a fixed setting, as opposed to considering a worst-case instance for
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each sample size. When domain knowledge is available, a “one-size-fits-all” rate does not provide
any insight on how to take advantage of this information.

To address these drawbacks, in this work, we study distribution-dependent guarantees for the
MDL problem. Motivated by its close ties to the well-studied pure exploration multi-armed ban-
dits (PE-MAB) [BMS11] paradigm, we analyze the simple strategies of uniform and non-uniform
exploration, as well as their optimistic counterpart, ensuring regret guarantees that scale with
suboptimality gaps and decay much faster with the sampling budget.

1.1 Main results

We place MDL algorithms into one of two categories: non-adaptive and adaptive. In the former,
data is collected without any interaction with the environment and, in the latter, the learner
sequentially selects distributions based on previously acquired samples. We introduce two strategies
of the non-adaptive type: uniform (UE) and non-uniform (NUE) exploration (Section 3). As
the names suggest, UE gathers the same number of samples from each distribution, while NUE
can benefit from varied sample sizes. Using tools from empirical process theory, we provide non-
asymptotic regret guarantees that scale with the suboptimality gaps of the problem and decay
exponentially with the sampling budget T (Section 3.1). This stands in contrast to the distribution-
independent rates found in the recent literature, which hold under a worst-case environment and,

thus, only scale with O
(

1√
T

)

. From a novel Bernstein-type concentration inequality, we then show

how NUE can exploit distributional variability to allocate samples more effectively (Section 3.2).
While the non-adaptive methods already display exponentially decreasing regret, adaptivity can

further improve the dependence on instance-specific variables. Motivated by the enhancements of
UCB-E [ABM10] over uniform exploration in the PE-MAB literature, we introduce the analogous
LCB-DR algorithm (Section 4) and showcase how optimism can result in superior dependence on
the suboptimality gaps when compared to UE (Section 4.1).

Let ∆DR (a) := maxa′∈A µDR (a′)− µDR (a) be the suboptimality gap of an action from a finite
set A. Given an algorithm, we denote its output after T sampling rounds by Ao

T . In short, we make
the following contributions:

• With n ∈ N samples from each distribution, we show that UE has a simple regret decay of
order

E [∆DR (Ao
T )] .

∑

a∈A:∆DR(a)>0

∆DR (a) exp
(
−n∆2

DR (a)
)

Moreover, we present the distribution-independent rate E [∆DR (Ao
T )] .

√
|U| log(|U||A|)

T
.

• With nQ ∈ N samples from distribution Q ∈ U over real-valued data, we show that NUE
attains the rate

E [∆DR (Ao
T )] .

∑

a∈A:∆DR(a)>0

∆DR (a) exp



− ∆2
DR (a)

σ2
T +Σ2

T + VT + ∆DR(a)
minQ∈U nQ





where σ2
T ,Σ

2
T and VT are empirical process variance quantities that scale with the variances

of each Q ∈ U and decrease with the nQ.
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• Appealing to the principle of optimism, we devise the LCB-DR algorithm that, in a pre-
specified permutation of the arms

(
a1, a2, . . . , a|A|

)
, for j = 1, . . . , |A|, sequentially performs

a modified version of UCB-E, for Tj rounds, on “losses” {r (aj , XQ)}Q∈U , where XQ ∼ Q, as
a means of identifying the worst-case distribution for aj . We show that this guarantees an
error probability of

P (∆DR (Ao
T ) > 0) .

|A|
∑

j=1

exp



−

(

C2
aj

∧ 1
)(

Tj + T̃j − |Uj |
)

Hj +∆−2
aj ,min





Potentially of independent interest, this bound results from an analysis of UCB-E under a
learner with previously acquired data (see Appendix D). This produces the additional T̃j term,
denoting the count of pre-collected samples from a subset Uj ⊂ U of the distributions. It also
enhances the complexity measure Hj , which aggregates the distribution suboptimality gaps
∆aj

(Q) := E [r (aj , XQ)] −minQ′∈U E [r (aj , XQ′)], with ∆aj ,min being the smallest positive
one, only over Q ∈ Uj rather than all of U , as is found in the standard analysis. Mirroring
the MAB literature, we contrast this bound with that of UE, showing that the comparison is
captured by Ca, defined in Section 2.2.

For ease of exposition, we removed constants and terms decreasing with T inside the exponential, as
well as any quantities outside of it. The formal statements are deferred to the appropriate sections.

1.2 Related work

The predominance of machine learning in society has highlighted the need for robust models that
maintain high-quality performance in a multitude of scenarios. Given the inherent uncertainty
in identifying the environment, much attention has been given to the problem of learning under
distribution shifts [BDBC+09, MMR09], where training data may not necessarily be sampled from
the target distribution. To tackle this, several works [VNS+18, ZMV+21, SKK21] have applied
the framework of DRO [Sca58, DY10, BTdHW+13] by assuming that the shift occurs within a
neighborhood U of some nominal distribution, typically generating data, and solving (DR). There
are many ways to construct U and optimize the objective, and we refer to [SDR21, RM22] for a
thorough review.

A more recent line of work has specialized to finite and unstructured U = {Q1, . . . , Qk}, under
sampling access to each distribution. Agnostic federated learning [MSS19] solves (DR) under mix-
tures of U , providing high-probability bounds on the generalization gap of non-uniform exploration
and an algorithm with empirical optimization guarantees. Collaborative PAC learning [BHPQ17]
focuses on binary classification, with the aim of guaranteeing P (∆DR (Ao

T ) ≤ ǫ) ≥ 1 − δ under a
minimal number of samples T . The original work of [BHPQ17] assumes realizability and subsequent
studies [CZZ18, NZ18, CH22, HJZ22] extended results to the agnostic case and gave improved rates,
along with sample-complexity lower bounds. [AHZ23] later solidified the theory and posed several
open problems, some of which were recently addressed in [Pen23, ZZC+23] via optimal algorithms.

In this work, we turn our attention to the simple regret E [∆DR (Ao
T )]. For finite decision sets

A, an integration of the tails reveals that the regret achieved by [HJZ22] is O

(√
log|A|+k log k

T

)

.

When A ⊂ R
d has Euclidean diameter at most B > 0 and, for each x ∈ X , the function r (·, x) is

both convex and Lipschitz, several studies have proposed comparable rates using game dynamics.
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Group DRO [SKHL20] ensures a rate of O

(

k

√
B2+log k

T

)

and, in the fairness context, [AAK+22]

obtains O
(

B√
T

)

plus a term that uniformly bounds the generalization gap with high-probability.

Subsequently, [SGJ22] was able to attain O

(√
B2+k

T

)

, showing a matching lower bound, and

[ZZYZ23] devised strategies with O

(√
B2+k log k

T

)

regret and additionally studied the setting with

distribution-specific sampling budget constraints.
Since the learner does not incur any costs when gathering data, MDL closely resembles PE-MAB

[BMS11] under the fixed budget regime, where distributions represent the arms. It is standard in
the MAB literature to distinguish between distribution-dependent and independent rates. The
former typically depends on the suboptimality gaps and scales much faster with T . In contrast,
the latter holds for worst-case environments for each T , resulting in slower regret decay. See [LS20,
Ch. 33] for an in-depth discussion. In PE-MAB, [ABM10] introduced the UCB-E strategy, which
improves performance relative to the gaps when compared to uniform exploration. Motivated by
these results, we demonstrate analogous faster distribution-dependent rates in the MDL setting and
explore a similar contrast between UE and LCB-DR.

2 Preliminaries

Notation. We frequently use the notation [k] := {1, . . . , k}, where k ∈ N. For a measurable space
X (we will omit the σ-algebras), we let P (X ) denote the set of all distributions over it. For two
real-valued functions f and g, we let f . g and f & g denote inequalities up to universal constants.
Given values a, b ∈ R, we define a ∨ b := max {a, b} and a ∧ b := min {a, b}.

2.1 Multi-distribution learning

Let X be the space where our data lives in and A the space where we make decisions. Given
data XQ ∼ Q ∈ P (X ), statistical learning aims to maximize the stochastic objective µ (a;Q) :=
E [r (a,XQ)] with respect to a ∈ A, where r : A × X → R is an underlying reward function. In
the MDL paradigm, we capture distributional uncertainty by assuming that the distributions come
from some uncertainty set U ⊂ P (X ) and instead aim to solve the distributionally robust (DR)
problem

max
a∈A

{

µDR (a) := min
Q∈U

µ (a;Q)

}

In particular, we measure the performance of a decision a ∈ A via its suboptimality gap ∆DR (a) :=
µ*
DR −µDR (a), where µ*

DR := maxa∈A µDR (a) is the optimal objective value. Throughout this
work, we operate under the following assumptions.

Assumption 1 (Finite decision/uncertainty sets). |A| = l and |U| = k, where 2 ≤ l, k < ∞.

Assumption 2 (Bounded rewards). The reward function r is bounded in [0, 1].

To solve (DR), we interact with the environment for a total of T ∈ N rounds. In each round
t ∈ [T ], we (i) select a distribution Qt ∈ U and (ii) receive independent data point Xt ∼ Qt.
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After the T rounds, we output a decision Ao
T ∈ A with the goal of minimizing the simple regret

E [∆DR (Ao
T )] or error probability P (∆DR (Ao

T ) > 0). The strategies described in this work are of
the form Ao

T = argmaxa∈A µo
T (a) for an appropriately constructed proxy µo

T : A → R.

Remark 2.1: Simple regret v.s. error probability

Note that both performance measures are closely related: since r ∈ [0, 1], we have that
∆DR ∈ [0, 1] and, thus,

∆DR,min P (∆DR (Ao
T ) > 0) ≤ E [∆DR (Ao

T )] ≤ P (∆DR (Ao
T ) > 0)

where ∆DR,min is the minimal positive gap (see Section 2.2).

2.2 Complexity measures

For each decision a ∈ A, we define its worst performing distribution Q∗
a := argminQ∈U µ (a;Q)

and the suboptimality gaps ∆a (Q) := µ (a;Q) − µDR (a). Much of the analysis that follows is
characterized by the minimal positive gaps

∆DR,min := min {∆DR (a) > 0 : a ∈ A} and ∆a,min := min {∆a (Q) > 0 : Q ∈ U}

These quantities are additionally used to define complexity measures

Ha :=
∑

Q∈U :∆a(Q)>0

∆−2
a (Q) and Ca :=







∆DR (a)

∆a,min
a 6= a∗

∆DR,min

∆a∗,min
a = a∗

for each a ∈ A. In pure exploration bandits, Ha is commonly used to characterize the complexity
of identifying the optimal arm (e.g., [ABM10]), which in our setting translates to identifying Q∗

a.
The intuition behind Ca is that it compares the difficulty of the two tasks we face: when Ca ≤ 1
for some a 6= a∗, or ∆DR (a) ≤ ∆a,min, it is more challenging to rule out a as suboptimal than it is
to identify Q∗

a.

2.3 Algorithmic tools

For each distribution Q ∈ U , let XQ,
{

X
(i)
Q

}∞

i=1

iid∼ Q be a sequence of independent data points.

For each (t, a,Q) ∈ N×A× U , we define the empirical mean

µ̂t (a;Q) :=
1

t

t∑

i=1

r
(

a,X
(i)
Q

)

Under a fixed sampling algorithm, let nt (Q) :=
∑t

s=1 I {Qs = Q} denote the number of times that

Q is played up to time t. The data received is then given by Xt = X
(nt(Qt))
Qt

.
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3 Non-adaptive strategies

We begin by describing two simple non-adaptive strategies. In essence, both sample a fixed number
times from each distribution in U and construct a proxy µo

T that is the natural empirical version of
µDR. Proofs of the results are deferred to Appendix C.

3.1 Uniform exploration (UE)

The most straight-forward strategy is the idea of uniform exploration (UE) (Algorithm 1). As the
name suggests, we sample the same number n ∈ N of times from each distribution, for a total of
T = nk samples, and form the empirical proxy

µo
T (a) = min

Q∈U
µ̂n (a;Q)

Algorithm 1 Uniform exploration (UE)

Input: Number of samples n ∈ N

1: Sample n times from each distribution Q ∈ U
2: Construct µo

T (a) = minQ∈U µ̂n (a;Q)
Output: Ao

T = argmaxa∈A µo
T (a)

Theorem 3.1: UE regret

Suppose that n ≥
(

8
∆DR,min

)2

log k. Then, the UE algorithm attains the following simple

regret bound:

E [∆DR (Ao
T )] ≤

∑

a∈A:∆DR(a)>0

∆DR (a) exp



−n

2

[

∆DR (a)− 8

√

log k

n

]2




With some further manipulation, we can additionally obtain a distribution-independent regret
bound.

Corollary 3.1: UE distribution-independent regret

Suppose that n ≥
(

8
∆DR,min

)2

log k. Then, the UE algorithm attains the following

distribution-independent simple regret bound:

E [∆DR (Ao
T )] .

√

k log (kl)

T

3.2 Non-uniform exploration (NUE)

A natural extension of the UE strategy is to sample a different number of times from each distribu-
tion. To address this, non-uniform exploration (NUE) (Algorithm 2) samples nQ ∈ N times from
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each distribution Q ∈ U , for a total of T =
∑

Q∈U nQ samples. Similarly, we define the proxy

µo
T (a) = min

Q∈U
µ̂nQ

(a;Q)

Here, we consider real-valued data in X ⊂ R and define mean µQ := E [XQ] and variance σ2
Q :=

Var (XQ) for each Q ∈ U . Additionally, let us sort the sample sizes in increasing order as follows:
0 =: n(0) ≤ n(1) ≤ · · · ≤ n(k) and let Q(j) denote the corresponding distribution in the jth position:
nQ(j)

= n(j). The regret bound presented will rely on the following variance quantities:

VT :=

k∑

j=1

(
n(j) − n(j−1)

)
E

[

max
r∈{j,...,k}

1

n2
(r)

[
XQ(r)

− µQ(r)

]2

]

Σ2
T := E

[

max
Q∈U

1

n2
Q

nQ∑

i=1

(

X
(i)
Q − µQ

)2
]

σ2
T := max

Q∈U

σ2
Q

nQ

Lastly, we make use of the quantity GT := 8
(

4 log k

minQ∈U nQ
+ LσT

√
2 log k

)

, which we note decreases

with the {nQ}.

Algorithm 2 Non-uniform exploration (NUE)

Input: Number of samples {nQ}Q∈U ⊂ N allocated to each distribution
1: Sample nQ times from each distribution Q ∈ U
2: Construct µo

T (a) = minQ∈U µ̂nQ
(a;Q)

Output: Ao
T = argmaxa∈A µo

T (a)

Theorem 3.2: NUE regret

Suppose that r (a, ·) is L-Lipschitz for each a ∈ A, and that ∆DR,min ≥ GT . Then, the NUE
algorithm attains the following simple regret bound:

E [∆DR (Ao
T )]

≤
∑

a∈A:∆DR(a)>0

∆DR (a) exp



− [∆DR (a)−GT ]
2

16L2 (2σ2
T +Σ2

T + 6VT ) +
2
√
6

minQ∈U nQ
[∆DR (a)−GT ]





As intuition suggests, the definitions imply that sampling more from distributions with higher
variance yields better rates. On the other hand, due to the presence of minQ∈U nQ in the bound,
it may also be favorable to balance this principle with ensuring that no distribution is significantly
undersampled.
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Remark 3.1: Crude bound

Note the variance hierarchy σ2
T ≤ Σ2

T ≤ VT . To unify them and perhaps give a more intuitive

guarantee, we note that bounding the max with a sum yields VT ≤∑Q∈U
σ2
Q

nQ
, which we can

then substitute all three terms with. However, this results in a linear dependence on k that
we aim to avoid.

Remark 3.2: Uniform v.s. non-uniform exploration

As more data is collected and the terms
√

log k

n
and GT become negligibly small, we can

more easily compare the regret decay of each strategy: ignoring constants, the probability
of selecting a suboptimal arm a ∈ A for UE is approximately ≈ exp

(
−n∆2

DR (a)
)
, while,

for NUE, it is ≈ exp

(

− ∆2
DR(a)

σ2
T
+Σ2

T
+VT+

∆DR(a)

minQ∈U nQ

)

. Hence, a non-uniform allocation can prove

beneficial when σ2
T +Σ2

T + VT + ∆DR(a)
minQ∈U nQ

≪ 1
n
.

4 Optimism

As opposed to the non-adaptive strategies covered thus far, the next algorithm we present makes
sampling decisions as it interacts with the environment. For this analysis, we additionally operate
under the following uniqueness assumption.

Assumption 3 (Unique optima). a∗ and Q∗
a are the unique optimal decision and the unique

worst-case distribution for a ∈ A, respectively.

As is standard in UCB-style algorithms, for some choice of parameter ǫ > 0, we define index

LCBt (Q; a, ǫ) := µ̂nt(Q) (a;Q)−
√

ǫ

nt (Q)
∀ (t, a,Q) ∈ N×A× U

which represents a lower confidence bound (LCB) on the true mean µ (a;Q). At a high-level, the
LCB-DR strategy (Algorithm 3) iterates through each decision a ∈ A and performs a modified
version of UCB-E [ABM10] to identify Q∗

a. The modification takes advantage of the fact that data
sampled in a previous round can be reused for the current one. In essence, we analyze UCB-E when
each distribution starts the game with a certain number of pulls. Intuitively, if some distribution
has already been played sufficiently many times, it will not be played again in this round, yielding
an improved sample complexity.

For completeness, we initiate the procedure by sampling from each distribution once; that is,
nk (Q) := 1 for each Q ∈ U . As a result, we define T0 := T̄0 := k to be the total number of samples
gathered before the game starts. The inputs to the algorithm are a permutation (a1, . . . , al) of
A, dictating the order in which decisions are iterated through, and index parameters (ǫ1, . . . , ǫl)
satisfying

ǫj ≥
25

36
∆2

aj ,min (uj−1 − 1) (1)

9



where

u0 := k and uj := k (j + 1) +
36

25

j
∑

r=1

ǫr

(

Har
+∆−2

ar,min

)

The procedure then works as follows: at each round j ∈ [l],

1. Since we reuse samples from previous rounds, some distributions may already have enough
samples by the start of the current round and, thus, may not be sampled from at all. We
define the following set as a proxy for the arms that will be played in this round:

Uj :=

{

Q ∈ U\
{

Q∗
aj

}

: nT̄j−1
(Q) <

36

25
ǫj∆

−2
aj

(Q)

}

∪
{

Q∗
aj

}

Additionally, define

kj := |Uj | , T̃j :=
∑

Q∈Uj

nT̄j−1
(Q) and Hj :=

∑

Q∈Uj\
{

Q∗
aj

}

∆−2
aj

(Q)

2. Allocate

Tj :=
36

25
ǫj

(

Hj +∆−2
aj ,min

)

− T̃j + kj

samples to this round and let T̄j :=
∑j

r=0 Tr denote the total number of samples obtained up
to and including round j ∈ [l].

3. For each t = T̄j−1 + 1, . . . , T̄j, sample

Xt ∼ Qt := argmin
Q∈U

LCBt−1 (Q; aj , ǫj)

In essence, we play the modified UCB-E for Tj rounds on expected rewards {µ (aj ;Q)}
Q∈U .

4. Define

Q̂j := argmin
Q∈U

µ̂nT̄j
(Q) (aj ;Q) and µo

T (aj) := µ̂
nT̄j

(Q̂j)

(

aj ; Q̂j

)

Intuitively, Q̂j and µo
T are proxies for Q∗

aj
and µDR, respectively.

Finally, after gathering T :=
∑l

j=0 Tj total samples, we maximize the proxy objective: Ao
T :=

argmaxa∈A µo
T (a). By analyzing the optimiality of the modified UCB-E algorithm (see Appendix D),

we can then reach the following conclusion.

Theorem 4.1: LCB-DR error probability

Under Assumption 3 and the parameter lower bound (1), the LCB-DR algorithm attains

10



Algorithm 3 LCB-DR

Input: Initial number of samples T0 = T̄0 = k, permutation (a1, . . . , al) of A and index parameters
(ǫ1, . . . , ǫl).

1: for j = 1, . . . , l do

2: Define proxy set Uj =
{

Q ∈ U\
{

Q∗
aj

}

: nT̄j−1
(Q) < 36

25 ǫj∆
−2
aj

(Q)
}

∪
{

Q∗
aj

}

and quantities

kj = |Uj |, T̃j =
∑

Q∈Uj
nT̄j−1

(Q) and Hj =
∑

Q∈Uj\
{

Q∗
aj

} ∆−2
aj

(Q)

3: Allocate Tj =
36
25ǫj

(

Hj +∆−2
aj ,min

)

− T̃j + kj samples to this round and let T̄j =
∑j

r=0 Tr

4: for t = T̄j−1 + 1, . . . , T̄j do

5: Sample Xt ∼ Qt := argminQ∈U LCBt−1 (Q; aj, ǫj)
6: end for

7: Define Q̂j = argminQ∈U µ̂nT̄j
(Q) (aj ;Q) and µo

T (aj) = µ̂
nT̄j

(Q̂j)

(

aj ; Q̂j

)

8: end for

Output: Ao
T = argmaxa∈A µo

T (a)

the following error probability:

P (Ao
T 6= a∗) ≤ 2k

l∑

j=1

uj exp



−

(

C2
aj

∧ 1
)(

Tj + T̃j − kj

)

18
(

Hj +∆−2
aj ,min

)





Intuitively, at each round j ∈ [l], the sample complexity scales with the difficulty of identifying
the worst-case distribution Q∗

aj
, which, as in PE-MAB, is controlled by the suboptimality gaps

{
∆aj

(Q)
}

Q∈U .

Remark 4.1: Random T

Note that the bound of Theorem 4.1 is deterministic, as
Tj+T̃j−kj

Hj+∆−2
aj,min

= 36
25ǫj , but the total

number of samples T = k +
∑l

j=1

[
36
25ǫj

(

Hj +∆−2
aj ,min

)

− T̃j + kj

]

is random.

Remark 4.2: Improvement over UCB-E

We highlight the importance of using samples obtained in previous rounds: as opposed to
the standard UCB-E analysis, we have the additional T̃j contribution, we only offset by
kj ≤ k, and the complexity measure Hj improves upon Haj

by only summing over a subset
of U .

11



Remark 4.3: Selecting Tj

Note that the choice of Tj requires knowledge of unknown quantities, such as Uj and Q∗
aj
.

However, as shown in the statement of Theorem D.1, for the analysis to hold, all we need is

Tj ≥ 36
25ǫj

(

Hj +∆−2
aj ,min

)

− T̃j + kj, although we obtain a different concentration inequality

when substituting ǫj into Hoeffding’s.

4.1 Comparison with UE

Focusing on the dominating terms, the probability of selecting a suboptimal arm a ∈ A is approxi-

mately≈ exp
(

−T∆2
DR(a)
k

)

for UE and, further bounding for simplicity, ≈ exp

(

− (C2
a∧1)(Tj+T̃j−kj)

Ha

)

for LCB-DR with a in the jth permutation position. Assuming large enough sample sizes relative
to l, the comparison between the two strategies essentially boils down to k∆−2

DR (a) (for UE) v.s.
Ha

(
C−2

a ∨ 1
)
(for LCB-DR), where the smaller terms yields the better rate. We break it down into

two cases:

• ∆DR (a) ≤ ∆a,min (or Ca ≤ 1): intuitively, this means that it is more difficult to rule out a

as suboptimal than to identify Q∗
a. Then, LCB-DR’s expression becomes Ha∆

−2
DR (a)∆2

a,min,

and the comparison reduces to that of MAB: k∆−2
a,min (for UE) v.s. Ha (for LCB-DR). In this

case, the latter is always favorable.

• ∆a,min ≤ ∆DR (a) (or Ca ≥ 1): intuitively, this means that it is more difficult to identify Q∗
a

than to rule out a as suboptimal. Then, the comparison is between k∆−2
DR (a) (for UE) v.s.

Ha (for LCB-DR), and either bound can be superior depending on the problem instance.

In essence, optimism is favorable when Ha

k
is smaller than the easier task’s complexity, ∆−2

a,min or

∆−2
DR (a).

5 Discussion

In this work, we delve into the problem of DRO within the MDL framework, an area of growing
popularity in high-stakes machine learning applications. Rooted in empirical process theory and
inspired by the PE-MAB literature, we offer novel insight into the key strategies of uniform and non-
uniform exploration via distribution-dependent bounds. By scaling with instance-specific quantities,
our proposed bounds decay much faster, with respect to sample sizes, than existing ones. We
additionally devise an optimistic method, LCB-DR, that shows improvements over its non-adaptive
counterparts, paralleling classical findings in the MAB setting.

While LCB-DR exhibits favorable rates, we reiterate that tuning certain parameters involves
estimating unknown quantities. This raises the question of whether there exists a more astute way to
select such quantities with minimal prior information. Moreover, the procedure requires specifying
the order to play the arms in. Although the absence of any problem knowledge might preclude
exploiting this sequence effectively, perhaps some preliminary understanding of the distributions
allows potential advantages.

12
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A Expectaion of empirical process maximum

Let U ⊂ P (X ) be a finite set of distributions over a data space X , with 2 ≤ k := |U| < ∞. For
each distribution Q ∈ U , we have an associated sample size nQ ∈ N and define T :=

∑

Q∈U nQ.

When X ⊂ R, we additionally denote the variance of each distribution by σ2
Q := Var (Q) and define

σT := maxQ∈U
σQ√
nQ

.

In the development that follows, we will work with independent X -valued random variables

(XQ)Q∈U , X :=
(

X
(i)
Q

)

Q∈U ,i∈[nQ]
, where XQ,

(

X
(i)
Q

)

i∈[nQ]

iid∼ Q for each Q ∈ U . For a collection

of functions {fQ : X → [−1, 1]}
Q∈U , such that each fQ (XQ) is centered, our primary goal will be

to bound the following quantity:

E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

fQ

(

X
(i)
Q

)
∣
∣
∣
∣
∣

]

In particular, we will show the following bounds.

Theorem A.1

Let {fQ : X → [−1, 1]}
Q∈U be a collection of functions such that E [fQ (XQ)] = 0 for each

Q ∈ U . Then,

E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

fQ

(

X
(i)
Q

)
∣
∣
∣
∣
∣

]

≤ 4

√

log k

minQ∈U nQ

Moreover, if X ⊂ R and each function fQ is L-Lipschitz, then

E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

fQ

(

X
(i)
Q

)
∣
∣
∣
∣
∣

]

≤ 16 log k

minQ∈U nQ

+ 4LσT

√

2 log k

We note that the first bound can be directly obtained by a high-probability bound via Hoeffding’s
inequality, along with a union bound, and a subsequent integration of the tails. The second bound
(Theorem A.3) requires a more careful analysis and, in the process of deriving it, we additionally
show the first result (Corollary A.2).

The proof will follow in two parts: first, in Section A.1, we use symmetrization to bound the
quantity of interest with a notion of Rademacher complexity, and subsequently derive bounds on
this complexity in Section A.2.

A.1 Symmetrization

A standard approach to bound empirical process maxima is via symmetrization. We begin by
defining the Rademacher complexity variant of a class of functions {hQ : X → [−1, 1]}

Q∈U :

RT

(

{hQ}Q∈U

)

:= E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

ǫihQ

(

X
(i)
Q

)
∣
∣
∣
∣
∣

]
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where ǫ1, . . . , ǫmaxQ∈U nQ

iid∼ Rad are independent from X . Note that we place no assumptions on
hQ (XQ) being centered. We begin by stating an auxiliary lemma.

Lemma A.1

For random variable Z ∈ Z and function class F ⊂ R
Z , we have that

sup
f∈F

|E [f (Z)]| ≤ E

[

sup
f∈F

|f (Z)|
]

Proof. For any f ∈ F ,

|E [f (Z)]| ≤ E [|f (Z)|] ≤ E

[

sup
g∈F

|g (Z)|
]

The claim then follows by taking the supremum over f ∈ F on the left-hand side. �

The proof of the following result is virtually the same as that of [Wai19, Theorem 4.10], with
minor modifications, and we present it here for completeness.

Theorem A.2: Symmetrization

For any collection of functions {hQ : X → [−1, 1]}
Q∈U , we have that

E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

{

hQ

(

X
(i)
Q

)

− E [hQ (XQ)]
}
∣
∣
∣
∣
∣

]

≤ 2RT

(

{hQ}Q∈U

)

Proof. Let Y :=
(

Y
(i)
Q

)

Q∈U ,i∈[nQ]
be an independent copy of X and let P denote their common

distribution. Then,

E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

{

hQ

(

X
(i)
Q

)

− E [hQ (XQ)]
}
∣
∣
∣
∣
∣

]

= E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

{

hQ

(

X
(i)
Q

)

− E

[

hQ

(

Y
(i)
Q

)]}
∣
∣
∣
∣
∣

]

=

∫

XT

max
Q∈U

∣
∣
∣
∣
∣
E

[

1

nQ

nQ∑

i=1

[

hQ

(
xi
Q

)
− hQ

(

Y
(i)
Q

)]
]∣
∣
∣
∣
∣
dP (x)

=: (∗1)

Here, we view x :=
(
xi
Q

)

Q∈U ,i∈[nQ]
∈ X T as a T -dimensional vector. For each such vector, define

function class

Fx :=

{

y 7→ 1

nQ

nQ∑

i=1

[
hQ

(
xi
Q

)
− hQ

(
yiQ
)]

: Q ∈ U
}

⊂
{
X T → R

}
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We can then apply Lemma A.1 to obtain

(∗1) =
∫

XT

max
f∈Fx

|E [f (Y )]| dP (x)

≤
∫

XT

E

[

max
f∈Fx

|f (Y )|
]

dP (x) Lem. A.1

=

∫

XT

E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

[

hQ

(
xi
Q

)
− hQ

(

Y
(i)
Q

)]
∣
∣
∣
∣
∣

]

dP (x)

= E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

[

hQ

(

X
(i)
Q

)

− hQ

(

Y
(i)
Q

)]
∣
∣
∣
∣
∣

]

=: (∗2)

Next, define n := maxQ∈U nQ and let ǫ̃1, . . . , ǫ̃n ∈ {−1, 1} be fixed quantities. From symmetry and
independence, we have that

(

hQ

(

X
(i)
Q

)

− hQ

(

Y
(i)
Q

))

Q∈U ,i∈[nQ]

d
=
(

ǫ̃i

[

hQ

(

X
(i)
Q

)

− hQ

(

Y
(i)
Q

)])

Q∈U ,i∈[nQ]

Hence, if we define Rademacher variables ǫn
iid∼ Rad that are independent from X and Y , we can

conclude that

(∗2) =
1

2n

∑

ǫ̃n∈{−1,1}n

E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

ǫ̃i

[

hQ

(

X
(i)
Q

)

− hQ

(

Y
(i)
Q

)]
∣
∣
∣
∣
∣

]

= E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

ǫi

[

hQ

(

X
(i)
Q

)

− hQ

(

Y
(i)
Q

)]
∣
∣
∣
∣
∣

]

≤ E

[

max
Q∈U

{∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

ǫihQ

(

X
(i)
Q

)
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

ǫihQ

(

Y
(i)
Q

)
∣
∣
∣
∣
∣

}]

≤ E

[

max
Q∈U

{∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

ǫihQ

(

X
(i)
Q

)
∣
∣
∣
∣
∣

}

+max
Q∈U

{∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

ǫihQ

(

Y
(i)
Q

)
∣
∣
∣
∣
∣

}]

= 2E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

ǫihQ

(

X
(i)
Q

)
∣
∣
∣
∣
∣

]

= 2RT

(

{hQ}Q∈U

)

�

A.2 Bounds on the Rademacher complexity

For the symmetrization trick to be useful, we need to bound RT

(

{hQ}Q∈U

)

. To this end, we begin

by defining the Rademacher complexity of a set Θ ⊂ R
n:

R̂ (Θ) := E

[

sup
θ∈Θ

|〈ǫn, θ〉|
]

18



where ǫn = (ǫ1, . . . , ǫn)
iid∼ Rad. The process {〈ǫn, θ〉}θ∈Θ is sub-Gaussian and, for finite Θ, the

Rademacher complexity admits a particularly simple bound, shown next. For a deeper dive into
the field, see, e.g., [Wai19, Chapter 5].

Lemma A.2: Bounding the Rademacher complexity of a finite set

Let Θ ⊂ R
n satisfy 2 ≤ |Θ| < ∞. Then,

R̂ (Θ) ≤ 2DΘ

√

log |Θ|

where DΘ := maxθ∈Θ ‖θ‖2.

Proof. Note that since each ǫi is 1-sub-Gaussian,

E

[

eλ〈ǫ
n,θ〉
]

=

n∏

i=1

E
[
eλǫiθi

]
≤

n∏

i=1

e
λ2θ2

i
2 = e

λ2‖θ‖2
2

2 ≤ e
λ2D2

Θ
2

for any θ ∈ Θ and λ ∈ R. That is, 〈ǫn, θ〉 is a centered DΘ-sub-Gaussian variable and we can, thus,
apply the standard maximal inequality (e.g., [BLM13, Theorem 2.5]) to obtain the claim. �

We can relate both notions of Rademacher complexity introduced thus far to conclude the
following result.

Corollary A.1

For a collection of functions {hQ : X → [−1, 1]}
Q∈U , define the random variable

D
(

{hQ}Q∈U

)

:= max
Q∈U

√
√
√
√
√

nQ∑

i=1




hQ

(

X
(i)
Q

)

nQ





2

Then, we have that

RT

(

{hQ}Q∈U

)

≤ 2
√

log kE
[

D
(

{hQ}Q∈U

)]

Proof. Fix x :=
(
xi
Q

)

Q∈U ,i∈[nQ]
∈ X T . Let n := maxQ∈U nQ and define vectors θxQ ∈ R

n by

[
θxQ
]

i
:=

{
hQ(xi

Q)
nQ

i ≤ nQ

0 otherwise
∀i ∈ [n] , Q ∈ U

and define the set of all such vectors Θx :=
{
θxQ : Q ∈ U

}
, so that |Θx| = k ≥ 2. Then, note that

R̂ (Θx) = E

[

max
θ∈Θx

|〈ǫn, θ〉|
]

= E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

ǫihQ

(
xi
Q

)

∣
∣
∣
∣
∣

]

19



Moreover, since DΘx = maxQ∈U

√

∑nQ

i=1

(
hQ(xi

Q)
nQ

)2

, Lemma A.2 yields

RT

(

{hQ}Q∈U

)

= E

[

R̂
(
ΘX
)]

≤ E

[

2DΘX

√

log |ΘX |
]

= 2
√

log kE
[

D
(

{hQ}Q∈U

)]

�

We can then readily obtain the first bound of interest.

Corollary A.2

Let {fQ : X → [−1, 1]}
Q∈U be a collection of functions such that E [fQ (XQ)] = 0 for each

Q ∈ U . Then,

E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

fQ

(

X
(i)
Q

)
∣
∣
∣
∣
∣

]

≤ 4

√

log k

minQ∈U nQ

Proof. Since each fQ ∈ [−1, 1], we have that

D
(

{fQ}Q∈U

)

≤
√

max
Q∈U

1

nQ

=

√

1

minQ∈U nQ

Hence, combining Theorem A.2 and Corollary A.1 yields

E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

fQ

(

X
(i)
Q

)
∣
∣
∣
∣
∣

]

≤ 2RT

(

{fQ}Q∈U

)

≤ 4
√

log kE
[

D
(

{fQ}Q∈U

)]

≤ 4

√

log k

minQ∈U nQ

�

To obtain the second bound, we require a more refined analysis. We begin by introducing two
simple auxiliary lemmas.

Lemma A.3

Let b, c > 0 and suppose that x2 ≤ bx+ c. Then, x ≤ b +
√
c.

Proof. Define quadratic p (z) := z2 − bz − c, so that p (x) ≤ 0. Since p (0) = −c < 0, consider its
roots r1 < 0 < r2. Then, p is positive on (r2,∞) and, thus,

x ≤ r2 =
b+

√
b2 + 4c

2
≤ b+

√
c

�
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Lemma A.4: Variance of Lipschitz functions

Let Z ∈ Z ⊂ R be a random variable, and suppose that f : Z → R is L-Lipschitz. Then,

Var (f (Z)) ≤ 2L2Var (Z)

Proof. Let Z ′ be an independent copy of Z. Then,

Var (f (Z)) = E

[

(f (Z)− E [f (Z ′)])
2
]

= E

[

E [f (Z)− f (Z ′)|Z]
2
]

≤ E

[

(f (Z)− f (Z ′))
2
]

Jensen’s

≤ L2
E

[

(Z − Z ′)
2
]

Lipschitzness

= 2L2 {Var (Z) + E [(Z − E [Z]) (E [Z]− Z ′)]} Z
(d)
= Z ′

= 2L2Var (Z) Z ⊥⊥ Z ′

�

Borrowing ideas from [GN21, Corollary 3.5.7], we then conclude the second target bound.

Theorem A.3

Suppose that X ⊂ R. Let {fQ : X → [−1, 1]}
Q∈U be a collection of functions such that

E [fQ (XQ)] = 0 and fQ is L-Lipschitz for each Q ∈ U . Then,

E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

fQ

(

X
(i)
Q

)
∣
∣
∣
∣
∣

]

≤ 16 log k

minQ∈U nQ

+ 4LσT

√

2 log k

Proof. We begin with the following observation: from Jensen’s, we obtain

C :=
√

log kE
[

D
(

{fQ}Q∈U

)]

≤
√

(log k)E

[

D
(

{fQ}Q∈U

)2
]
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Next, we bound the expectation on the right-hand side:

E

[

D
(

{fQ}Q∈U

)2
]

= E




max

Q∈U

nQ∑

i=1




fQ

(

X
(i)
Q

)

nQ





2





= E




max

Q∈U

nQ∑

i=1










fQ

(

X
(i)
Q

)

nQ





2

− E

[(
fQ (XQ)

nQ

)2
]

+ E

[(
fQ (XQ)

nQ

)2
]











≤ max
Q∈U

{

E
[
f2
Q (XQ)

]

nQ

}

︸ ︷︷ ︸

=:(∗1)

+E



max
Q∈U

∣
∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1







f2
Q

(

X
(i)
Q

)

nQ

− E

[

f2
Q (XQ)

nQ

]






∣
∣
∣
∣
∣
∣





︸ ︷︷ ︸

=:(∗2)

From Lemma A.4 and the fact that E [fQ (XQ)] = 0, we know that

(∗1) = max
Q∈U

Var (fQ (XQ))

nQ

≤ 2L2max
Q∈U

σ2
Q

nQ

= 2L2σ2
T

As for (∗2), we can apply Theorem A.2 on functions hQ (x) :=
f2
Q(x)

nQ
to conclude that

(∗2) ≤ 2RT

(

{hQ}Q∈U

)

Thm. A.2

≤ 4
√

log kE
[

D
(

{hQ}Q∈U

)]

Cor. A.1

= 4
√

log kE






max
Q∈U

√
√
√
√
√

nQ∑

i=1




fQ

(

X
(i)
Q

)

nQ





4






≤ 4
√

log kE






max
Q∈U







1

nQ

√
√
√
√
√

nQ∑

i=1




fQ

(

X
(i)
Q

)

nQ





2












f4
Q ≤ f2

Q

≤ 4
√

log kmax
Q∈U

{
1

nQ

}

E

[

D
(

{fQ}Q∈U

)]

=
4

minQ∈U nQ

C

In other words, we have that

C2 ≤ (log k)E

[

D
(

{fQ}Q∈U

)2
]

≤ 4 log k

minQ∈U nQ

C + 2L2σ2
T log k

Then, Lemma A.3 implies that

C ≤ 4 log k

minQ∈U nQ

+ LσT

√

2 log k
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Combining this with Theorem A.2 and Corollary A.1, we conclude that

E

[

max
Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

fQ

(

X
(i)
Q

)
∣
∣
∣
∣
∣

]

≤ 2RT

(

{fQ}Q∈U

)

≤ 4C ≤ 16 log k

minQ∈U nQ

+ 4LσT

√

2 log k

�

B Empirical process concentration inequalities

Again, suppose that U ⊂ P (X ) is a collection of k distributions, and define independent variables

X :=
(

X
(i)
Q

)

Q∈U ,i∈[nQ]
, where nQ ∈ N and

(

X
(i)
Q

)

i∈[nQ]

iid∼ Q for each Q ∈ U . Our object of

interest in this section is the random variable

Zf := min
Q∈U

1

nQ

nQ∑

i=1

f
(

X
(i)
Q

)

for a function f : X → R. As will become clear later, our primary goal will be to obtain concentra-
tion inequalities on Zf,g := Zf − Zg.

B.1 McDiarmid

To obtain the UE regret bound, we will apply a very simple concentration inequality, called McDi-
armid’s inequality (e.g., see [BLM13, Theorem 6.2]). Here, we specialize to

Zf = min
Q∈U

1

n

n∑

i=1

f
(

X
(i)
Q

)

Let us define the function Φf :
(
X k
)n → [0, 1] by Φf (x1, . . . ,xn) := minQ∈U

1
n

∑n

i=1 f
(
xi
Q

)
, where

each xi =
(
xi
Q

)

Q∈U ∈ X k. Then, we can write Zf = Φf (X), where we view X as n vectors of

dimension k. Next, we show that Φf satisfies the bounded differences property when f is bounded.

Proposition B.1: Bounded differences

Suppose that f : X → [0, 1]. Then,

max
i∈[n]

sup
x1,...,xn,y∈X k

|Φf (x1, . . . ,xn)− Φf (x1, . . . ,xi−1,y,xi+1, . . . ,xn)| ≤
1

n

Proof. Let us begin with a simple observation: for real-valued functions g, h : Z → R, where Z is
any domain, we have that

inf
z′∈Z

g (z′)− inf
z∈Z

h (z) = sup
z∈Z

{

inf
z′∈Z

g (z′)− h (z)

}

≤ sup
z∈Z

{g (z)− h (z)} ≤ sup
z∈Z

|g (z)− h (z)|
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By symmetry, it then follows that |infz′∈Z g (z′)− infz∈Z h (z)| ≤ supz∈Z |g (z)− h (z)|. Next, fix
any index i ∈ [n] and inputs x1, . . . ,xn,y := (yQ)Q∈U ∈ X k, and define vectors x := (x1, . . . ,xn)

and x′ := (x1, . . . ,xi−1,y,xi+1, . . . ,xn). Then, from our initial observation, we know that

|Φf (x)− Φf (x
′)| = 1

n

∣
∣
∣
∣
∣
∣

min
Q′∈U







n∑

j=1

f
(

x
j
Q′

)






− min

Q∈U






f (yQ) +

∑

j∈[n]:j 6=i

f
(

x
j
Q

)







∣
∣
∣
∣
∣
∣

≤ 1

n
max
Q∈U

∣
∣
∣
∣
∣
∣

n∑

j=1

f
(

x
j
Q

)

−



f (yQ) +
∑

j∈[n]:j 6=i

f
(

x
j
Q

)





∣
∣
∣
∣
∣
∣

≤ 1

n
max
Q∈U

∣
∣f
(
xi
Q

)
− f (yQ)

∣
∣

≤ 1

n

�

When the inequality in Proposition B.1 holds, we say that Φf satisfies the bounded differences
property with constant parameter 1

n
. This immediately implies the next claim.

Corollary B.1

For any two functions f, g : X → [0, 1], the function Φf−Φg satisfies the bounded differences
property with constant parameter 2

n
.

Proof. Using the same variables x and x′ as in the proof of Proposition B.1, we obtain

|[Φf (x)− Φg (x)]− [Φf (x
′)− Φg (x

′)]| ≤ |Φf (x)− Φf (x
′)|+ |Φg (x)− Φg (x

′)| ≤ 2

n

�

Via McDiarmid’s, this property then directly yields the following concentration result.

Corollary B.2

Let f, g : X → [0, 1]. Then,

P (Zf,g − E [Zf,g] ≥ t) ≤ exp

(

−nt2

2

)

∀t ≥ 0

Proof. Since Zf,g = (Φf − Φg) (X) and X has independent components, we simply apply Corol-
lary B.1 and McDiarmid’s. �
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B.2 Bernstein

In contrast to McDiarmid’s inequality, our next goal is to derive a more involved bound that
additionally scales with the variance. To this end, we sort the sample sizes: 0 =: n(0) ≤ n(1) ≤
· · · ≤ n(k) and let Q(j) ∈ U be such that nQ(j)

= n(j). Our analysis then relies on the following:

VT :=

k∑

j=1

(
n(j) − n(j−1)

)
E

[

max
r∈{j,...,k}

1

n2
(r)

[
XQ(r)

− µQ(r)

]2

]

Σ2
T := E

[

max
Q∈U

1

n2
Q

nQ∑

i=1

(

X
(i)
Q − µQ

)2
]

σ2
T := max

Q∈U

σ2
Q

nQ

Theorem B.1

Suppose that X ⊂ R and f, g : X → [0, 1] are L-Lipschitz. Then,

P (Zf,g − E [Zf,g] ≥ t) ≤ exp



− t2

16L2 (2σ2
T +Σ2

T + 6VT ) +
2
√
6t

minQ∈U nQ



 ∀t ≥ 0

B.2.1 Preliminaries

To prove Theorem B.1, we must first state some standard results and definitions from the theory
of concentration of measure. We do not prove most results stated, and refer to [BLM13] for further
reference.

We say that a random variable X ∈ R is sub-gamma on the right tail with parameters ν, c > 0
if

logE
[

eλ(X−E[X])
]

≤ ν2λ2

2 (1− cλ)
∀λ ∈

[

0,
1

c

)

We denote the class of such variables by Γ+ (ν, c). Due to the decaying tail, we get the following
concentration bound.

Proposition B.2: Sub-gamma concentration

Let X ∈ Γ+ (ν, c). Then,

P (X − E [X ] ≥ t) ≤ exp

(

− t2

2 (ν2 + ct)

)

∀t ≥ 0

Proof. See [BLM13, Section 2.4]. �
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Next, we introduce the notion of self-bounding functions: we say that a nonnegative function
f : Xn → R+ has the self-bounding property if there exists functions

{
fi : Xn−1 → R

}

i∈[n]
such

that

f (x)− fi
(
x\i
)
∈ [0, 1] and

n∑

i=1

[
f (x)− fi

(
x\i
)]

≤ f (x)

for all i ∈ [n] and x ∈ Xn, where we define x\i := (x1, . . . , xi−1, xi+1, . . . , xn). A simple observation
about such functions is that they are closed under convex combinations.

Lemma B.1: Convex combination of self-bounding functions

Suppose that f and g satisfy the self-bounding property and let α ∈ [0, 1]. Then, αf +
(1− α) g also satisfies the self-bounding property.

Proof. Let {fi} and {gi} be the functions satisfying the self-bounding property, and define h :=
αf + (1− α) g and hi := αfi + (1− α) gi. Then, for any i ∈ [n] and x ∈ Xn,

h (x)− hi

(
x\i
)
= α

[
f (x)− fi

(
x\i
)]

+ (1− α)
[
g (x) − gi

(
x\i
)]

∈ [0, 1]

and

n∑

i=1

[
h (x)− hi

(
x\i
)]

= α

n∑

i=1

[
f (x)− fi

(
x\i
)]

+ (1− α)
n∑

i=1

[
g (x) − gi

(
x\i
)]

≤ αf (x) + (1− α) g (x)

= h (x)

�

The reason for introducing such functions is that they possess a favorable bound on their
cumulant-generating function (cgf).

Proposition B.3: Cgf of self-bounding functions

Suppose that f : Xn → R+ has the self-bounding property and let Xn = (X1, . . . , Xn) be
independent random variables. Then,

logE
[

eλf(X
n)
]

≤
(
eλ − 1

)
E [f (Xn)] ∀λ ∈ R

Proof. See [BLM13, Theorem 6.12]. �

The last tool we need employs symmetrization once again. For the next result and the develop-
ment that follows, we omit the parentheses in a2+ := (a+)

2
; that is, we take the positive part before

squaring.
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Proposition B.4: Exponential Efron-Stein

Suppose that Xn = (X1, . . . , Xn) are independent random variables and let Wn =
(W1, . . . ,Wn) be independent copies of them. Given a nonnegative function f : Xn → R+,
define variables Z := f (Xn) and its symmetrized counterpart

Z ′
i := f (X1, . . . , Xi−1,Wi, Xi+1, . . . , Xn) ∀i ∈ [n]

Additionally, let

V + :=

n∑

i=1

E

[

(Z − Z ′
i)

2
+

∣
∣
∣X

n
]

Then, we have that

logE
[

eλ(Z−E[Z])
]

≤ θλ

1− θλ
logE

[

e
λV +

θ

]

for any θ, λ > 0 such that θλ < 1.

Proof. See [BLM13, Theorem 6.16]. �

Proof of Theorem B.1. To conclude our main result, we begin with a more general setup: let X :=
(

X
(i)
Q

)

Q∈U ,i∈[n]
, where n ∈ N, be a collection of independent X -valued random variables, and let

X(i) :=
(

X
(i)
Q

)

Q∈U
for each i ∈ [n]. We de not impose any assumptions on their distributions. Our

random variables of interest will be

Zf := min
Q∈U

n∑

i=1

fQ

(

X
(i)
Q

)

and Zf,g := Zf − Zg

for collections of functions f =
{

fQ : X →
[

0, b√
6

]}

Q∈U
and g =

{

gQ : X →
[

0, b√
6

]}

Q∈U
, where

b > 0. Define

µf,i,Q := E

[

fQ

(

X
(i)
Q

)]

and σ2
f,i,Q := Var

(

fQ

(

X
(i)
Q

))

Similarly, consider the variance variants:

Vf :=

n∑

i=1

E

[

max
Q∈U

[

fQ

(

X
(i)
Q

)

− µf,i,Q

]2
]

Σ2
f := E

[

max
Q∈U

n∑

i=1

[

fQ

(

X
(i)
Q

)

− µf,i,Q

]2
]

σ2
f := max

Q∈U

n∑

i=1

σ2
f,i,Q

Following the analysis of [BLM13, Theorem 12.2], we will use the tools provided and proceed in 5
steps:

27



1. Upper bound V +.

2. Apply exponential Efron-Stein along with the bound on V +.

3. Show the self-boundedness of certain functions and apply the cgf bound.

4. Show that Zf,g is sub-gamma and apply the tail bound.

5. Specialize the analysis to the original setting.

B.2.2 Bounding V +

For each pair (i, Q) ∈ [n] × U , let W
(i)
Q be an independent copy of X

(i)
Q and define W (i) :=

(

W
(i)
Q

)

Q∈U
. Moreover, define

Yi :=
(

X(1), . . . , X(i−1),W (i), X(i+1), . . . , X(n)
)

∀i ∈ [n]

and function Φf,g :
(
X k
)n → R by

Φf,g (x1, . . . ,xn) := min
Q∈U

n∑

i=1

fQ
(
xi
Q

)
− min

Q′∈U

n∑

i=1

gQ′

(
xi
Q′

)

where xi =
(
xi
Q

)

Q∈U ∈ X k for each i ∈ [n]. In what follows, we will use the more compact notation

x = (x1, . . . ,xn). Note that Zf,g = Φf,g (X) and

Z ′
i := Φf,g (Yi)

= min
Q∈U






fQ

(

W
(i)
Q

)

+
∑

j∈[n]:j 6=i

fQ

(

X
(j)
Q

)






− min

Q′∈U






gQ′

(

W
(i)
Q′

)

+
∑

j∈[n]:j 6=i

gQ′

(

X
(j)
Q′

)







Given functions h = {hQ : X → R}
Q∈U , define minimizer Q̂h :

(
X k
)n → U by

Q̂h (x) := argmin
Q∈U

n∑

i=1

hQ

(
xi
Q

)

so that

Φf,g (x) =

n∑

i=1

f
Q̂f (x)

(

xi

Q̂f (x)

)

−
n∑

i=1

g
Q̂g(x)

(

xi

Q̂g(x)

)

and

n∑

i=1

f
Q̂f (x)

(

xi

Q̂f (x)

)

−
n∑

i=1

gQ
(
xi
Q

)
≤ Φf,g (x) ≤

n∑

i=1

fQ′

(
xi
Q′

)
−

n∑

i=1

g
Q̂g(x)

(

xi

Q̂g(x)

)
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for any x ∈
(
X k
)n

and Q,Q′ ∈ U . Choosing Q = Q̂g (X) and Q′ = Q̂f (Yi) below then yields

Zf,g − Z ′
i = Φf,g (X)− Φf,g (Yi)

≤
n∑

j=1

f
Q̂f (Yi)

(

X
(j)

Q̂f (Yi)

)

−
n∑

j=1

g
Q̂g(X)

(

X
(j)

Q̂g(X)

)

−



f
Q̂f (Yi)

(

W
(i)

Q̂f (Yi)

)

+
∑

j∈[n]:j 6=i

f
Q̂f (Yi)

(

X
(j)

Q̂f (Yi)

)





+



g
Q̂g(X)

(

W
(i)

Q̂g(X)

)

+
∑

j∈[n]:j 6=i

g
Q̂g(X)

(

X
(j)

Q̂g(X)

)





= f
Q̂f (Yi)

(

X
(i)

Q̂f (Yi)

)

− f
Q̂f (Yi)

(

W
(i)

Q̂f (Yi)

)

+ g
Q̂g(X)

(

W
(i)

Q̂g(X)

)

− g
Q̂g(X)

(

X
(i)

Q̂g(X)

)

Then,

(Zf,g − Z ′
i)

2

+

≤
[

f
Q̂f (Yi)

(

X
(i)

Q̂f (Yi)

)

− f
Q̂f (Yi)

(

W
(i)

Q̂f (Yi)

)

+ g
Q̂g(X)

(

W
(i)

Q̂g(X)

)

− g
Q̂g(X)

(

X
(i)

Q̂g(X)

)]2

≤ 2
[

f
Q̂f (Yi)

(

X
(i)

Q̂f (Yi)

)

− f
Q̂f (Yi)

(

W
(i)

Q̂f (Yi)

)]2

+ 2
[

g
Q̂g(X)

(

X
(i)

Q̂g(X)

)

− g
Q̂g(X)

(

W
(i)

Q̂g(X)

)]2

(B.1)

Recall that our goal is to bound V + =
∑n

i=1 E

[

(Zf,g − Z ′
i)

2
+

∣
∣
∣X
]

. We begin with the second term:

by adding and subtracting µg,i,Q̂g(X), expanding the square and noting that the cross term is 0

under the conditional expectation, we get that

n∑

i=1

E

[[

g
Q̂g(X)

(

X
(i)

Q̂g(X)

)

− g
Q̂g(X)

(

W
(i)

Q̂g(X)

)]2
∣
∣
∣
∣
X

]

=

n∑

i=1

{[

g
Q̂g(X)

(

X
(i)

Q̂g(X)

)

− µg,i,Q̂g(X)

]2

+ E

[[

g
Q̂g(X)

(

W
(i)

Q̂g(X)

)

− µg,i,Q̂g(X)

]2
∣
∣
∣
∣
X

]}

≤ max
Q∈U

{
n∑

i=1

[

gQ

(

X
(i)
Q

)

− µg,i,Q

]2
}

︸ ︷︷ ︸

=:Γg

+max
Q∈U

{
n∑

i=1

E

[[

gQ

(

W
(i)
Q

)

− µg,i,Q

]2
]}

︸ ︷︷ ︸

=σ2
g

Note that we were able to upper bound via a maximization outside of the sum since the Q indices
were fixed w.r.t. i. The first term in (B.1) is not so readily bounded due to the dependence of Yi

on i. Hence, we rely on a weaker approach: for each i ∈ [n], we have that
[

f
Q̂f (Yi)

(

X
(i)

Q̂f (Yi)

)

− f
Q̂f (Yi)

(

W
(i)

Q̂f (Yi)

)]2

≤ 2
[

f
Q̂f (Yi)

(

X
(i)

Q̂f (Yi)

)

− µf,i,Q̂f (Yi)

]2

+ 2
[

f
Q̂f (Yi)

(

W
(i)

Q̂f (Yi)

)

− µf,i,Q̂f (Yi)

]2

≤ 2max
Q∈U

{[

fQ

(

X
(i)
Q

)

− µf,i,Q

]2
}

+ 2max
Q∈U

{[

fQ

(

W
(i)
Q

)

− µf,i,Q

]2
}
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Summing and taking conditional expectations then yields

n∑

i=1

E

[[

f
Q̂f (Yi)

(

X
(i)

Q̂f (Yi)

)

− f
Q̂f (Yi)

(

W
(i)

Q̂f (Yi)

)]2
∣
∣
∣
∣
X

]

≤ 2

n∑

i=1

max
Q∈U

{[

fQ

(

X
(i)
Q

)

− µf,i,Q

]2
}

︸ ︷︷ ︸

=:Tf

+2

n∑

i=1

E

[

max
Q∈U

{[

fQ

(

W
(i)
Q

)

− µf,i,Q

]2
}]

︸ ︷︷ ︸

=Vf

Finally, by putting everything together, we can obtain the upper bound

V + ≤ 2
(
Γg + σ2

g

)
+ 4 (Tf + Vf )

where E [Γg] = Σ2
g and E [Tf ] = Vf .

B.2.3 Efron-Stein

Next, we apply exponential Efron-Stein (Proposition B.4): for λ ∈
[
0, b−1

)
, we have that

logE
[

eλ(Zf,g−E[Zf,g ])
]

≤ bλ

1− bλ
logE

[

eλb
−1V +

]

≤ bλ

1− bλ
logE

[

eλb
−1[2(Γg+σ2

g)+4(Tf+Vf )]
]

=
bλ

1− bλ

{

logE
[

ebλ[
1
3 (6b

−2Γg)+ 2
3 (6b

−2Tf)]
]

+ λb−1
(
2σ2

g + 4Vf

)}

(B.2)

B.2.4 Self-boundedness

To bound the cgf of 1
3

(
6b−2Γg

)
+ 2

3

(
6b−2Tf

)
, we will show the self-boundedness of

h(1) (x) := 6b−2 max
Q∈U

n∑

i=1

[
gQ
(
xi
Q

)
− µg,i,Q

]2
and h(2) (x) := 6b−2

n∑

i=1

max
Q∈U

[
fQ
(
xi
Q

)
− µf,i,Q

]2

so that the function 1
3h

(1) + 2
3h

(2) is also self-bounded by Lemma B.1 and we can thus bound the

cgf of
(
1
3h

(1) + 2
3h

(2)
)
(X) = 1

3

(
6b−2Γg

)
+ 2

3

(
6b−2Tf

)
using Proposition B.3. We begin by showing

that h(1) is self-bounded: let

h
(1)
i

(
x\i
)
:= 6b−2max

Q∈U

∑

j∈[n]:j 6=i

[

gQ

(

x
j
Q

)

− µg,j,Q

]2

∀i ∈ [n]

and define the maximizing distribution in h(1):

Q̃ (x) := argmax
Q∈U

n∑

i=1

[
gQ
(
xi
Q

)
− µg,i,Q

]2
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Fix some x ∈
(
X k
)n

and i ∈ [n]. Clearly, we have that h(1) (x) ≥ h
(1)
i

(
x\i
)
. Moreover,

h(1) (x)− h
(1)
i

(
x\i
)
= 6b−2





n∑

j=1

[

gQ̃(x)

(

x
j

Q̃(x)

)

− µg,i,Q̃(x)

]2

−max
Q∈U







∑

j∈[n]:j 6=i

[

gQ

(

x
j
Q

)

− µg,j,Q

]2











≤ 6b−2
[

gQ̃(x)

(

xi

Q̃(x)

)

− µg,i,Q̃(x)

]2

≤ 1

where the last line follows from our assumption that gQ ∈
[

0, b√
6

]

. We can add up the bounds to

get

n∑

i=1

[

h(1) (x)− h
(1)
i

(
x\i
)]

≤ 6b−2
n∑

i=1

[

gQ̃(x)

(

xi

Q̃(x)

)

− µg,i,Q̃(x)

]2

= h(1) (x)

Together, these show that h(1) is self-bounded. To show the same for h(2), consider the functions

h
(2)
i

(
x\i
)
:= 6b−2

∑

j∈[n]:j 6=i

max
Q∈U

[

fQ

(

x
j
Q

)

− µf,j,Q

]2

Again, we have that h(2) (x) ≥ h
(2)
i

(
x\i
)
and

h(2) (x)− h
(2)
i

(
x\i
)
= 6b−2max

Q∈U

[
fQ
(
xi
Q

)
− µf,i,Q

]2 ≤ 1

n∑

i=1

[

h(2) (x)− h
(2)
i

(
x\i
)]

= h(2) (x)

That is, h(2) is also self-bounded. As a result, Proposition B.3 implies that

logE
[

ebλ[
1
3 (6b

−2Γg)+ 2
3 (6b

−2Tf)]
]

≤
(
ebλ − 1

)
E

[
1

3

(
6b−2Γg

)
+

2

3

(
6b−2Tf

)
]

=
(
ebλ − 1

)
b−2

(
2Σ2

g + 4Vf

)

≤ λb−1
(
4Σ2

g + 8Vf

)
(B.3)

provided that λ ∈
[
0, b−1

)
, where in the last line we have used the inequality ex ≤ 1+2x for x ≤ 1.

B.2.5 Sub-gamma tail

Finally, we can combine Equations (B.2) and (B.3) to get that

logE
[

eλ(Zf,g−E[Zf,g ])
]

≤ λ2

1− bλ

(
2σ2

g + 4Σ2
g + 12Vf

)
=

(
4σ2

g + 8Σ2
g + 24Vf

)
λ2

2 (1− bλ)

for all λ ∈
[
0, b−1

)
. That is, Zf,g ∈ Γ+

(√

4σ2
g + 8Σ2

g + 24Vf , b
)

, which we know from Proposi-

tion B.2 yields the tail bound

P (Zf,g − E [Zf,g] ≥ t) ≤ exp

(

− t2

2
(
4σ2

g + 8Σ2
g + 24Vf + bt

)

)

∀t ≥ 0 (B.4)
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B.2.6 Original setting

Recall that our original variables of interest live in some set X0 ⊂ R, and that sample sizes nQ

may vary. Let n := maxQ∈U nQ and consider the space X = X0 ∪ {x0} for the setup of this proof,

where x0 6∈ X0. Suppose that
(

X
(i)
Q

)

i∈[nQ]

iid∼ Q and X
(nQ+1)
Q = · · · = X

(n)
Q = x0 almost surely.

Let f : X0 → R be the L-Lipschitz function from the statement of Theorem B.1, and consider its
extension f̃ : X → R given by

f̃ (x) :=

{

f (x) x ∈ X0

0 x = x0

We apply the analysis above to the functions fQ := f̃

nQ
, ensuring that

Zf = min
Q∈U

1

nQ

nQ∑

i=1

f
(

X
(i)
Q

)

where the variables follow the appropriate distributions, as in the original goal. Note that fQ ∈
[

0, 1
nQ

]

, so that we can set b =
√
6

minQ∈U nQ
. We analogously define everything for g. Next, we apply

Lemma A.4 under the Lipschitzness assumption to obtain

σ2
g = max

Q∈U

{

nQ Var

(
g (XQ)

nQ

)}

≤ 2L2max
Q∈U

σ2
Q

nQ

= 2L2σ2
T

For each Q ∈ U , let XQ ∼ Q be independent from
(

X
(i)
Q

)

i∈[nQ]
. Then,

Σ2
g = E

[

max
Q∈U

1

n2
Q

nQ∑

i=1

[

g
(

X
(i)
Q

)

− E [g (XQ)]
]2
]

= E

[

max
Q∈U

1

n2
Q

nQ∑

i=1

E

[

g
(

X
(i)
Q

)

− g (XQ)
∣
∣
∣X

(i)
Q

]2
]

≤ L2
E

[

max
Q∈U

1

n2
Q

nQ∑

i=1

E

[(

X
(i)
Q −XQ

)2
∣
∣
∣
∣
X

(i)
Q

]]

Lipschitzness + Jensen’s

= L2
E

[

max
Q∈U

1

n2
Q

nQ∑

i=1

[(

X
(i)
Q − µQ

)2

+ σ2
Q

]]

E

[(

X
(i)
Q − µQ

)

(µQ −XQ)
∣
∣
∣X

(i)
Q

]

= 0

≤ L2

{

E

[

max
Q∈U

1

n2
Q

nQ∑

i=1

(

X
(i)
Q − µQ

)2
]

+max
Q∈U

σ2
Q

nQ

}

= L2
(
Σ2

T + σ2
T

)
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It remains to bound Vf : recall that 0 = n(0) ≤ n(1) ≤ · · · ≤ n(k) and n(j) = nQ(j)
, so that

Vf =

n∑

i=1

E

[

max
Q∈U

[

fQ

(

X
(i)
Q

)

− µf,i,Q

]2
]

=

k∑

j=1

(
n(j) − n(j−1)

)
E

[

max
r∈{j,...,k}

1

n2
(r)

[
f
(
XQ(r)

)
− E

[
f
(
XQ(r)

)]]2

]

With a similar symmetrization trick, we can further bound each expectation in the sum: let X ′
Q be

an independent copy of XQ. Then,

E

[

max
r∈{j,...,k}

1

n2
(r)

[
f
(
XQ(r)

)
− E

[
f
(
XQ(r)

)]]2

]

= E

[

max
r∈{j,...,k}

1

n2
(r)

E

[

f
(
XQ(r)

)
− f

(

X ′
Q(r)

)∣
∣
∣XQ(r)

]2
]

(1)

≤ L2
E

[

max
r∈{j,...,k}

1

n2
(r)

E

[(

XQ(r)
−X ′

Q(r)

)2
∣
∣
∣
∣
XQ(r)

]]

(2)

≤ L2
E

[

max
r∈{j,...,k}

1

n2
(r)

{[
XQ(r)

− µQ(r)

]2
+ σ2

Q(r)

}
]

≤ 2L2
E

[

max
r∈{j,...,k}

1

n2
(r)

[
XQ(r)

− µQ(r)

]2

]

where, in (1), we have applied Lipschitzness and Jensen’s and, in (2), we note again that the cross
term cancels when expanding the square. Hence, we get that

Vf ≤ 2L2
k∑

j=1

(
n(j) − n(j−1)

)
E

[

max
r∈{j,...,k}

1

n2
(r)

[
XQ(r)

− µQ(r)

]2

]

= 2L2VT

Plugging these values back into the bound (B.4) then yields the claim.
�

C Proofs of Section 3

Recall our non-adaptive proxy objective

µo
T (a) = min

Q∈U

1

nQ

nQ∑

i=1

r
(

a,X
(i)
Q

)

where, for UE, nQ = n for all Q ∈ U . For a ∈ A, define generalization gaps

Da := µDR (a)− µo
T (a) = min

Q∈U
µ (a;Q)− min

Q′∈U
µ̂nQ′ (a;Q

′)

Using the same argument as in the proof of Proposition B.1, we note that

|Da| ≤ max
Q∈U

∣
∣µ (a;Q)− µ̂nQ

(a;Q)
∣
∣ = max

Q∈U

∣
∣
∣
∣
∣

1

nQ

nQ∑

i=1

[

E [r (a,XQ)]− r
(

a,X
(i)
Q

)]
∣
∣
∣
∣
∣
=: Ua

Then from the theory of Appendix A, we can conclude the following bounds.
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Theorem C.1

For any a ∈ A, we have that

E [Ua] ≤ 4

√

log k

minQ∈U nQ

Additionally, when X ⊂ R and r (a, ·) is L-Lipschitz for each a ∈ A, it follows that

E [Ua] ≤
16 log k

minQ∈U nQ

+ 4LσT

√

2 log k

Proof. We apply Theorem A.1 on functions fQ (x) := E [r (a,XQ)]−r (a, x). Note that fQ ∈ [−1, 1]
since r ∈ [0, 1]. Moreover, if r (a, ·) is L-Lipschitz, then so is fQ, as we only add a constant to it. �

Let E [Ua] ≤ B be any of the bounds from Theorem C.1. Then, we get that

E [µo
T (a∗)− µo

T (a)] = ∆DR (a) + E [µDR (a)− µo
T (a)]− E

[

µ*
DR −µo

T (a∗)
]

= ∆DR (a) + E [Da]− E [Da∗ ]

≥ ∆DR (a)− |E [Da]| − |E [Da∗ ]|
≥ ∆DR (a)− E [|Da|]− E [|Da∗ |]
≥ ∆DR (a)− 2E [Ua]

≥ ∆DR (a)− 2B

for all a ∈ A. Hence,

P (Ao
T = a) ≤ P (µo

T (a) ≥ µo
T (a∗))

= P (µo
T (a)− µo

T (a∗)− E [µo
T (a)− µo

T (a∗)] ≥ E [µo
T (a∗)− µo

T (a)])

≤ P (µo
T (a)− µo

T (a∗)− E [µo
T (a)− µo

T (a∗)] ≥ ∆DR (a)− 2B) (C.1)

What remains is to apply the concentration inequalities of Appendix B.

C.1 Proof of Theorem 3.1

Here, we use the UE proxy µo
T (a) = minQ∈U

1
n

∑n

i=1 r
(

a,X
(i)
Q

)

. We can then obtain the following

concentration inequality.

Corollary C.1: UE concentration inequality

We have that

P (µo
T (a)− µo

T (a′)− E [µo
T (a)− µo

T (a′)] ≥ t) ≤ exp

(

−nt2

2

)

for all t ≥ 0 and a, a′ ∈ A.
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Proof. Note that in the notation of Appendix B.1, Zr(a,·) = µo
T (a). Since r (a, ·) ∈ [0, 1] for each

a ∈ A, the claim follows by applying Corollary B.2. �

Next, note that under the assumption n ≥
(

8
∆DR,min

)2

log k, we get that ∆DR (a) ≥ 8
√

log k

n

for all a ∈ A with a positive gap. Hence, for all such a, plugging in the bound B = 4
√

log k

n
into

Equation (C.1) yields

P (Ao
T = a) ≤ P

(

µo
T (a)− µo

T (a∗)− E [µo
T (a)− µo

T (a∗)] ≥ ∆DR (a)− 8

√

log k

n

)

Eq. (C.1)

≤ exp



−n

2

[

∆DR (a)− 8

√

log k

n

]2


 Cor. C.1

This directly yields the desired regret bound:

E [∆DR (Ao
T )] =

∑

a∈A:∆DR(a)>0

∆DR (a)P (Ao
T = a)

≤
∑

a∈A:∆DR(a)>0

∆DR (a) exp



−n

2

[

∆DR (a)− 8

√

log k

n

]2




C.2 Proof of Corollary 3.1

An alternative way of writing the UE regret bound is as follows:

E [∆DR (Ao
T )] =

∑

a∈A:∆DR(a)≤∆

∆DR (a)P (Ao
T = a) +

∑

a∈A:∆DR(a)>∆

∆DR (a)P (Ao
T = a)

≤ ∆+
∑

a∈A:∆DR(a)>∆

∆DR (a) exp



−n

2

[

∆DR (a)− 8

√

log k

n

]2




for any ∆ ≥ 0. In other words,

E [∆DR (Ao
T )] ≤ inf

∆≥0






∆+

∑

a∈A:∆DR(a)>∆

∆DR (a) exp



−n

2

[

∆DR (a)− 8

√

log k

n

]2









(C.2)

Next, we introduce a simple technical lemma.

Lemma C.1

Let α, β > 0. Then, the function f (x) := x exp
(

−α (x− β)
2
)

is decreasing for x ≥
1
2

(

β +
√

β2 + 2
α

)

.
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Proof. Notice that

f ′ (x) = exp
(

−α (x− β)
2
)

− 2αx (x− β) exp
(

−α (x− β)
2
)

= [1− 2αx (x− β)] exp
(

−α (x− β)
2
)

Now, note that the function x 7→ 2αx (x− β)−1 is quadratic, convex and has roots 1
2

(

β +
√

β2 + 2
α

)

and 1
2

(

β −
√

β2 + 2
α

)

. Since the former is larger, it follows that the quadratic is nonnegative for

larger values. In other words, f ′ (x) ≤ 0 whenever x ≥ 1
2

(

β +
√

β2 + 2
α

)

. �

As a result, we can show the following inequality.

Lemma C.2

Provided that l ≥ 2 and ∆DR (a) ≥ 8
√
log k+

√
2 log l√

n
, we have that

∆DR (a) exp



−n

2

[

∆DR (a)− 8

√

log k

n

]2


 ≤ 8
√
log k +

√
2 log l

l
√
n

Proof. Note that the left-hand side of the claim is of the form f (∆DR (a)), where f is defined as in

Lemma C.1 with α := n
2 and β := 8

√
log k

n
, so that we know it is decreasing for x ≥ K, where

K :=
1

2

(

β +

√

β2 +
2

α

)

=
1

2

[

8

√

log k

n
+

√

64 log k

n
+

4

n

]

=
8
√
log k +

√
64 log k + 4

2
√
n

≤ 8
√
log k + 1√

n

√
a+ b ≤

√
a+

√
b

≤ 8
√
log k +

√
2 log l√

n

√

2 log l ≥ 1

The result then follows by plugging in 8
√
log k+

√
2 log l√

n
into f to get the right-hand side of the

claim. �
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Finally, we can set ∆ := 8
√
log k+

√
2 log l√

n
in Equation (C.2) and apply Lemma C.2 to obtain

E [∆DR (Ao
T )] ≤

8
√
log k +

√
2 log l√

n
+ |{a ∈ A : ∆DR (a) > ∆}| 8

√
log k +

√
2 log l

l
√
n

≤ 16
√
log k + 2

√
2 log l√

n

.

√

log (kl)

n

where in the last line we have used the fact that
√
a+

√
b ≤

√

2 (a+ b). Substituting n = T
k
then

yields the result.

C.3 Proof of Theorem 3.2

Returning to the general NUE proxy µo
T (a) = minQ∈U

1
nQ

∑nQ

i=1 r
(

a,X
(i)
Q

)

, let us further assume

that X ⊂ R. Then, we conclude the following result.

Corollary C.2: NUE concentration inequality

Suppose that r (a, ·) is L-Lipschitz for each a ∈ A. Then, we have that

P (µo
T (a)− µo

T (a′)− E [µo
T (a)− µo

T (a′)] ≥ t) ≤ exp



− t2

16L2 (2σ2
T +Σ2

T + 6VT ) +
2
√
6t

minQ∈U nQ





for all t ≥ 0 and a, a′ ∈ A.

Proof. Once again, using the definitions of Appendix B, we get that Zr(a,·) = µo
T (a). Since r (a, ·) ∈

[0, 1] is L-Lipschitz for each a ∈ A, the claim follows by applying Theorem B.1. �

As in the UE analysis, provided that ∆DR,min ≥ GT = 8
(

4 log k

minQ∈U nQ
+ LσT

√
2 log k

)

, we can

plug B = 16 log k

minQ∈U nQ
+ 4LσT

√
2 log k into Equation (C.1) to conclude that

P (Ao
T = a) ≤ P (µo

T (a)− µo
T (a∗)− E [µo

T (a)− µo
T (a∗)] ≥ ∆DR (a)−GT ) Eq. (C.1)

≤ exp



− [∆DR (a)−GT ]
2

16L2 (2σ2
T +Σ2

T + 6VT ) +
2
√
6

minQ∈U nQ
[∆DR (a)−GT ]



 Cor. C.1

for all a ∈ A with positive gap. This in turn yields the regret bound

E [∆DR (Ao
T )] =

∑

a∈A:∆DR(a)>0

∆DR (a)P (Ao
T = a)

≤
∑

a∈A:∆DR(a)>0

∆DR (a) exp



− [∆DR (a)−GT ]
2

16L2 (2σ2
T +Σ2

T + 6VT ) +
2
√
6

minQ∈U nQ
[∆DR (a)−GT ]




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D Modified UCB-E

Our goal is to perform a minimization variant of UCB-E [ABM10] for T rounds on the set of
“arms” U . Since we will analyze all random variables under a fixed high-probability event, we treat
all quantities here as deterministic. In particular, we work with µ (Q) , µ̂t (Q) ∈ [0, 1] for each Q ∈ U
and t ∈ {n0 (Q) , . . . , n0 (Q) + T }, where n0 (Q) ≥ 1 is the number of pulls from arm Q ∈ U that we
start the game with. We assume a unique optimal arm Q∗ := argminQ∈U µ (Q), with µ∗ := µ (Q∗),
and define suboptimality gaps ∆ (Q) := µ (Q) − µ∗ and ∆min := minQ∈U\{Q∗} ∆(Q). For some

choice of plays {Qt}Tt=1, let

nt (Q) := n0 (Q) +
t∑

s=1

I {Qs = Q}

denote the number of times distribution Q has been played at time t ∈ [T ]. Additionally, we define
the following subset of arms:

U0 :=

{

Q ∈ U\ {Q∗} : n0 (Q) <
36

25
ǫ∆−2 (Q)

}

∪ {Q∗}

along with its cardinality k0 := |U0|, total initial sample size T̃0 :=
∑

Q∈U0
n0 (Q) and the complexity

notion it defines: H0 :=
∑

Q∈U0\{Q∗} ∆
−2 (Q). The intuition is that U0 is a proxy for the set of

arms played:

U ′ := {Q ∈ U : nT (Q) > n0 (Q)}

The UCB-E algorithm works by defining indices (adjusted here for lower confidence bounds)

LCBt (Q; ǫ) := µ̂nt(Q) (Q)−
√

ǫ

nt (Q)
∀Q ∈ U

given a parameter ǫ > 0 and, at each time step t ∈ [T ], playing

Qt := argmin
Q∈U

LCBt−1 (Q; ǫ)

After T rounds, we output

Q̂ := argmin
Q∈U

µ̂nT (Q) (Q)

Theorem D.1: Modified UCB-E optimality

Suppose that

|µ (Q)− µ̂t (Q)| < 1

5

√
ǫ

t
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for all Q ∈ U and t ∈ {n0 (Q) , . . . , n0 (Q) + T }, and that

ǫ ≥ 25

36
∆2

min [n0 (Q
∗)− 1]

T ≥ 36

25
ǫ
(
H0 +∆−2

min

)
− T̃0 + k0

Then, it follows that Q̂ = Q∗ and

1

5

√
ǫ

nT (Q∗)
≤ ∆min

2

Proof. First, notice that for any t ∈ {0, . . . , T } and Q ∈ U , we have by assumption that

∣
∣µ (Q)− µ̂nt(Q) (Q)

∣
∣ <

1

5

√
ǫ

nt (Q)
(D.1)

since nt (Q) ∈ {n0 (Q) , . . . , n0 (Q) + T }. We can then conclude the following lemma.

Lemma D.1

Fix t ∈ [T ]. If Qt = Q 6= Q∗, then

nt−1 (Q) <
36

25
ǫ∆−2 (Q)

Proof. We have that

µ∗ > µ̂nt−1(Q∗) (Q
∗)− 1

5

√
ǫ

nt−1 (Q∗)
Eq. (D.1)

≥ LCBt−1 (Q
∗; ǫ)

≥ LCBt−1 (Q; ǫ) Qt = Q

= µ̂nt−1(Q) (Q)−
√

ǫ

nt−1 (Q)

> µ (Q)− 6

5

√
ǫ

nt−1 (Q)
Eq. (D.1)

Rearranging then yields the claim. �

As a direct consequence, we can conclude that our proxy set U0 indeed contains the arms played.

Corollary D.1

U ′ ⊂ U0.

Proof. Fix Q ∈ U ′\ {Q∗} and let t ∈ [T ] denote any round in which Qt = Q. From Lemma D.1 we
then get that n0 (Q) ≤ nt−1 (Q) < 36

25ǫ∆
−2 (Q). �
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Next, we show that suboptimal arms in the proxy set do not have too many samples by the end
of the procedure.

Proposition D.1

nT (Q) <
36

25
ǫ∆−2 (Q) + 1 ∀Q ∈ U0\ {Q∗}

Proof. If Q ∈ U0\ (U ′ ∪ {Q∗}), then

nT (Q) = n0 (Q) <
36

25
ǫ∆−2 (Q) <

36

25
ǫ∆−2 (Q) + 1

Otherwise, fix any Q ∈ U ′\ {Q∗} and let t ∈ [T ] be the largest time step such that Qt = Q (i.e.,
the last round in which Q is played). Lemma D.1 then implies that

nT (Q) = nT−1 (Q) = · · · = nt (Q) = nt−1 (Q) + 1 <
36

25
ǫ∆−2 (Q) + 1

�

This, in turn, implies that the optimal arm has sufficiently many samples and, in fact, is in U ′.

Proposition D.2

nT (Q∗) >
36

25
ǫ∆−2

min + 1

Proof. We have that

nT (Q∗) = T + n0 (Q
∗)−

∑

Q∈U ′\{Q∗}
[nT (Q)− n0 (Q)]

= T + n0 (Q
∗)−

∑

Q∈U0\{Q∗}
[nT (Q)− n0 (Q)] Cor. D.1

= T + T̃0 −
∑

Q∈U0\{Q∗}
nT (Q)

> T + T̃0 −
∑

Q∈U0\{Q∗}

[
36

25
ǫ∆−2 (Q) + 1

]

Prop. D.1

= T + T̃0 −
36

25
ǫH0 − k0 + 1

≥ 36

25
ǫ∆−2

min + 1

where the last line follows from our lower bound assumption on T . �
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Corollary D.2

We have that Q∗ ∈ U ′.

Proof. This immediately follows from Proposition D.2 and our lower bound assumption on ǫ:

nT (Q∗) >
36

25
ǫ∆−2

min + 1 ≥ n0 (Q
∗)

�

We are then able to show that, by the end of the game, every arm has sufficiently many samples.

Proposition D.3

nT (Q) ≥ 4

25
ǫ∆−2 (Q) ∀Q ∈ U\ {Q∗}

Proof. Let Q ∈ U\ {Q∗}. Since Q∗ ∈ U ′ by Corollary D.2, let t ∈ [T ] be the last round such that
Qt = Q∗. Then,

µ (Q)− 4

5

√
ǫ

nT (Q)
≥ µ (Q)− 4

5

√
ǫ

nt−1 (Q)

> LCBt−1 (Q; ǫ) Eq. (D.1)

≥ LCBt−1 (Q
∗; ǫ)

> µ∗ − 6

5

√
ǫ

nt−1 (Q∗)
Eq. (D.1)

= µ∗ − 6

5

√
ǫ

nT (Q∗)− 1
nT (Q∗) = nt (Q

∗) = nt−1 (Q
∗) + 1

> µ∗ −∆(Q) Prop. D.2 and ∆min ≤ ∆(Q)

The claim then follows by rearranging the terms. �

Let Q ∈ U\ {Q∗}. From Propositions D.2 and D.3, we note that

nT (Q) ≥ 4

25
ǫ∆−2 (Q) and nT (Q∗) ≥ 36

25
ǫ∆−2

min + 1 >
4

25
ǫ∆−2

min

Rearranging the terms then yields

1

5

√
ǫ

nT (Q)
≤ ∆(Q)

2
and

1

5

√
ǫ

nT (Q∗)
≤ ∆min

2
≤ ∆(Q)

2
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The second inequality is one of our desired results. To obtain the other, we observe that

µ̂nT (Q) (Q)− µ̂nT (Q∗) (Q
∗) = µ̂nT (Q) (Q)− µ (Q) + ∆ (Q) + µ∗ − µ̂nT (Q∗) (Q

∗)

> ∆(Q)− 1

5

√
ǫ

nT (Q)
− 1

5

√
ǫ

nT (Q∗)
Eq. (D.1)

≥ ∆(Q)− ∆(Q)

2
− ∆(Q)

2
= 0

Since this holds for all Q ∈ U\ {Q∗}, it follows that Q̂ = Q∗.
�

E Proof of Theorem 4.1

Suppose that we are operating under permutation (a1, . . . , al) and parameters (ǫ1, . . . , ǫl) satisfying
the bound (1). To show our desired result, we will define a high-probability event, under which the
modified UCB-E analysis ensures the correctness of LCB-DR’s decision.

E.1 Concentration inequality

From the boundedness of r ∈ [0, 1], Hoeffding’s inequality implies that

P

(

|µ (a;Q)− µ̂t (a;Q)| < 1

5

√
ǫ

t

)

≥ 1− 2 exp

(

− 2ǫ

25

)

for all a ∈ A, Q ∈ U , t ∈ N and ǫ ≥ 0. Fix some j ∈ [l]. Then, taking union bounds yields

P




⋂

Q∈U

⋂

t∈[uj ]

{

|µ (aj ;Q)− µ̂t (aj ;Q)| < Caj
∧ 1

5

√
ǫj

t

}




≥ 1− 2kuj exp



−
2
(

C2
aj

∧ 1
)

ǫj

25





= 1− 2kuj exp



−

(

C2
aj

∧ 1
)(

Tj + T̃j − kj

)

18
(

Hj +∆−2
aj ,min

)





where the last line follows by rearranging terms in the definition of Tj. We then define the high-
probability event of interest:

Aj :=
⋂

Q∈U

⋂

t∈[uj ]

{

|µ (aj ;Q)− µ̂t (aj ;Q)| < Caj
∧ 1

5

√
ǫj

t

}
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E.2 Modified UCB-E analysis

Here, we apply the UCB-E analysis of Appendix D. Note that

T̄j =

j
∑

r=0

Tr = k +

j
∑

r=1




36

25
ǫr



 Hr
︸︷︷︸

≤Har

+∆−2
ar,min



−T̃r
︸︷︷︸

≤0

+ kr
︸︷︷︸

≤k



 ≤ uj

Hence, nT̄j−1
(Q) + Tj ≤ T̄j ≤ uj , for any Q ∈ U and, thus, under event Aj ,

|µ (aj ;Q)− µ̂t (aj ;Q)| < Caj
∧ 1

5

√
ǫj

t
≤ 1

5

√
ǫj

t

for all Q ∈ U and t ∈
{

nT̄j−1
(Q) , . . . , nT̄j−1

(Q) + Tj

}

. Moreover, since T̄0 = u0, we have from the

lower bound (1) on (ǫ1, . . . , ǫl) that

ǫj ≥
25

36
∆2

aj ,min (uj−1 − 1) ≥ 25

36
∆2

aj ,min

(
T̄j−1 − 1

)
≥ 25

36
∆2

aj ,min

(

nT̄j−1

(

Q∗
aj

)

− 1
)

for all j ∈ [l]. We can then conclude the following result.

Theorem E.1

For any j ∈ [l], under event Aj , it follows that Q̂j = Q∗
aj

and

|µDR (aj)− µo
T (aj)| <







∆DR (aj)

2
aj 6= a∗

∆DR,min

2
aj = a∗

Proof. If we set T = Tj , ǫ = ǫj , n0 = nT̄j−1
, µ = µ (aj ; ·) and µ̂t = µ̂t (aj ; ·) in the setup of

Appendix D, then we can immediately see that Q̂j = Q∗
aj

by Theorem D.1, as its assumptions are
satisfied under Aj . Moreover, we have that

|µDR (aj)− µo
T (aj)| =

∣
∣
∣
∣
µ
(

aj , Q
∗
aj

)

− µ̂
nT̄j

(

Q∗
aj

)

(

aj, Q
∗
aj

)
∣
∣
∣
∣

Q̂j = Q∗
aj

<
Caj

∧ 1

5

√
ǫj

nT̄j

(

Q∗
aj

) event Aj and nT̄j
≤ T̄j ≤ uj

≤ Caj

∆aj ,min

2
Thm. D.1

=







∆DR (aj)

2
aj 6= a∗

∆DR,min

2
aj = a∗

�
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E.3 LCB-DR correctness

Under the event
⋂l

j=1 Aj , we know that

µo
T (a∗)− µo

T (a) = µo
T (a∗)− µ*

DR +∆DR (a) + µDR (a)− µo
T (a)

> ∆DR (a)− ∆DR,min

2
− ∆DR (a)

2
Thm. E.1

≥ 0 ∆DR,min ≤ ∆DR (a)

for every a 6= a∗. That is, Ao
T = argmaxa∈A µo

T (a) = a∗ and, thus, P (Ao
T = a∗) ≥ P

(
⋂l

j=1 Aj

)

.

The result then follows from a union bound on the high-probability events {Aj}lj=1.
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