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Imagine you and a friend purchase identical items at a store, yet only your friend received a discount.
Would your friend’s discount make you feel unfairly treated by the store? And would you be less willing to
purchase from that store again in the future? Based on a large-scale online survey that we ran on Prolific,
it turns out that the answers to the above questions are positive. Motivated by these findings, in this
work we propose a notion of individual fairness in online revenue management and an algorithmic module
(called “Grace Period”) that can be embedded in traditional revenue management algorithms and guarantee
individual fairness. Specifically, we show how to embed the Grace Period in five common revenue management
algorithms including Deterministic Linear Programming with Probabilistic Assignment (DLP-PA), Resolving
Deterministic Linear Programming with Probabilistic Assignment (RDLP-PA), Static Bid Price Control (S-
BPC), Booking Limit (BL), and Nesting (NESTING), thus covering both stochastic and adversarial customer
arrival settings. Embedding the Grace Period does not incur additional regret for any of these algorithms.
This finding indicates that there is no tradeoff between a seller maximizing their revenue and guaranteeing
that each customer feels fairly treated.

1. Introduction
Revenue management plays a pivotal role in various sectors including airline, retail, advertising,
and hospitality, as evidenced by previous research Williamson (1992), Talluri and Van Ryzin (1998,
2004), Talluri et al. (2004). In the most standard version, sequential decision-making for rev-
enue management encompasses the following seller-customer interaction: The seller has access to
limited-capacity resources of potentially more than one types. Customers of different types arrive
sequentially (the order of arrival can be either stochastic or adversarial) over a finite period of
time. Upon arrival, the seller can choose either to accept (i.e., sell the item to them) or reject (i.e.,
not sell) the customer. Acceptance leads to revenue generation equal to the payment made by the
customer, alongside the consumption of specific units of resources based on the customer’s type.
On the other hand, rejection of a customer does not lead to any revenue or resource usage. The
goal of the seller is to maximize the total anticipated revenue throughout the given period, while
adhering to the capacity constraints of all resources.
This work emphasizes the equitable treatment of customers through the requirement of individual

fairness. The concept of fairness is crucial not only from an ethical standpoint but also for its impact
on customer behavior and potential to increase revenue. For example, think about the following
(hypothetical, for now) scenario. Two stores, A and B, offer an identical product at a same price.
However, Store A selectively offers discounts leading to perceived unfairness among customers.
One may think that such perceived unfair treatment may deter customers from buying at Store
A, possibly benefiting Store B. To confirm if customer reactions align with our aforementioned
intuition, we conducted a large-scale online survey on Prolific, detailed in Section 6. Our survey’s
findings validate our priors; customers do indeed perceive various forms of unfair treatment from
sellers and this in turn affects the probability of them buying again from certain stores.
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We next define individual fairness in the context of revenue management.
Definition 1 (Individual Fairness in Revenue Management). Let n be the number of

customer types, with each type i ∈ [n] having ni customers arriving. An algorithm A is (α, δ)-fair
for any choice of α, δ ∈ [0,1] if for each customer of type i, with a probability at least 1− δ, for any
u, v ∈ [ni],

P [i(v)≻A i(u)]≤ α|u− v|,

where i(u), i(v) denote the u-th and v-th customer’s of type i, and i(v) ≻A i(u) denotes that
algorithm A accepts customer i(v) but not i(u).
Intuitively speaking, an algorithm satisfying individual fairness ensures that the probability of

two customers of the same type that arrive closely in time but receive disparate treatments is very
small. Our definition of individual fairness (both the time- and the type-dependent components)
is driven by our survey findings (cf. Section 6), which show that people often perceive unfairness
when they do not obtain a resource that other people that are similar to them receive. As a result,
we aim to upper bound the probability of customers of the same type (i(v) and i(u)) receiving
disparate treatment. As for the time component, our survey findings suggest that individuals
perceive different treatments occurring in the near term as more unfair compared to those in the
distant past. This insight suggests that the probability of two similar customers being treated
differently, P [i(v)≻A i(u)], should be moderated according to the time gap between their arrivals,
specifically using the L1 norm, α|u− v|, as a measure1.
In this paper, our primary objective is to incorporate the principle of individual fairness into

the most commonly used algorithms solving the quantity-based revenue management problem,
including Deterministic Linear Programming with Probabilistic Assignment (DLP-PA), Resolving
Deterministic Linear Programming with Probabilistic Assignment (RDLP-PA), Static Bid Price
Control (S-BPC), Booking Limit (BL), and Nesting (NESTING). We modify each algorithm one
by one to meet individual fairness criteria as defined in Definition 1. In addition to implementing
individual fairness, we also strive to maintain revenue optimization, ensuring that incorporating
fairness does not lead to any loss compared to the original algorithm’s performance2. By adapting
these well-known algorithms, we aim to ensure that any revenue management problems addressed
by them also upholds the principles of individual fairness.

1.1. Main Contributions

“Grace Period” Design. In Section 3, we introduce the Grace Period which we find to be the
workhorse concept for achieving individual fairness in revenue management. At a simplified level,
the Grace Period works as follows: As the seller’s available resources approach depletion, an arriving
customer is either accepted or rejected based on the treatment of the preceding customer. If the
previous customer was accepted, the succeeding customer is likewise accepted with a probability
of (1−α). However, if the previous customer was rejected, the incoming customer is also declined.
This design (which gets utilized only when the resources are almost depleted) forms a grace period
during which the probability of unequal treatment is confined. We remark that the Grace Period
for customers of type i can (and will in general) be different from the Grace Period for customers
of type j (for i ̸= j). The tricky part is to guarantee that despite these distinct grace periods, the
seller does not sell resources beyond their allowable capacity. We showcase how the Grace Period
can be used via an example analysis of the First-Come-First-Serve (FCFS) algorithm.
The rationale for the Grace Period Design lies in its mitigation of unfairness. If we consider

a scenario where the Grace Period Design isn’t applied and we adhere to a first-come-first-serve
model, the pattern of acceptances and rejections is distinctly binary; the early arrivals are accepted,

1 All of our results still hold even if we take another metrics, such as L2 norm: α∥u− v∥2.
2 In Appendix EC.5, we show how our approach can also produce an individually-fair variant of Bid Price Control
with Online Gradient Descent (BPC-OGD), albeit with a small asymptotic loss in revenue.
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followed by a series of rejections as resources are exhausted. In such a scenario, the initial group of
customers who are declined would be unfairly treated (per Definition 1). However, the application of
the Grace Period Design spreads this perception of unfairness more equally among earlier arrivals.
Hence, this design maintains individual fairness among every customer with high probability.

Grace-Period-Enhanced Algorithms for Revenue Management. In Sections 4 and 5, we
integrate the Grace Period design into five well-known algorithms frequently used in revenue man-
agement (RM): DLP-PA, RDLP-PA, S-BPC, BL and NESTING. The first three DLP-PA, RDLP-PA,
S-BPC are used for stochastic customer arrivals, while BL and NESTING are used for adversarial
arrivals. For completeness, we outline each of these algorithms together with the explanation of
why they are not individually fair in Section 2. Based on the different structure of these algorithms,
we employ different methods to incorporate the grace period design into them. For example, in
DLP-PA, each type i customer is accepted with certain probability pi, leading to unfairness because
consecutive type i customers are treated differently with a probability pi(1 − pi), violating our
fairness definition (1) for α< pi(1− pi). To address this, we avoid random decisions for individual
arrivals. Instead, we divide the timeline into segments, accepting a random number of customers
in a first-come-first-serve manner per segment. Grace periods inside each segment ensure fairness
when decisions change from acceptance to rejection within each segment; grace periods between
each segment guarantee fairness when decisions change from rejection to acceptance between the
segments. For clarity, we refer to the new algorithms as GP-Enhanced.

No Trade-off between Revenue Maximization and Individual Fairness. Contrary to the
common belief that there exists a trade-off between maximizing revenue and achieving individual
fairness, we demonstrate that by augmenting standard RM algorithms with the grace period design,
it is possible to attain optimal revenue (asymptotically) while simultaneously ensuring individual
fairness for most of the algorithms.
For settings where the customer arrival process is stochastic, the performance of RM algorithms

is measured in terms of regret with regards to the benchmark of the optimal revenue achievable
(which assumes known realized demand). Table 1 contains a summary of the regret for GP-Enhanced
algorithms for stochastic arrivals versus the traditional non-individually fair counterparts. For
settings where the customer arrival process is adversarial, the performance of RM algorithms is
measured in terms of the competitive ratio; that is, the worst-case ratio (across all possible arrival
instances) between the revenue generated by the algorithm and the hindsight optimal (i.e., the
maximum revenue assuming full knowledge of the realized demand). Table 2 contains a summary
of the competitive ratio for GP-Enhanced algorithms for adversarial arrivals versus the traditional
non-individually fair counterparts.

Table 1 Regret of Original Algorithms and Grace Period Enhanced Algorithms under Stochastic Arrival

Original Algorithm Regret of Original Algorithm Regret of Grace Period Enhanced Algorithm

DLP-PA O(
√
T ) O(

√
T ) (Theorem 2)

RDLP-PA O(T 1/3) O(T 1/3) (Theorem 2)

S-BPC O(
√
T ) O(

√
T ) (Theorem 3)

Table 2 Competitive Ratio of Original Algorithms and Grace Period Enhanced Algorithms under Adversarial
Arrival. C ∈ [0,1] is a setting-specific value that is specified in the analysis.

Original Algorithm
Competitive Ratio of

Original Algorithm
Competitive Ratio of Grace Period

Enhanced Algorithm
BL C C −O(logm/m) (Theorem 4)
NESTING C C −O(logm/m) (Theorem 5)
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No Additional Computational Cost for Implementing Individual Fairness. One might
conjecture that simultaneously achieving optimal revenue and being individually fair might neces-
sitate additional computational cost for the algorithm. However, this is not the case. In all GP-
Enhanced algorithms, we have preserved the algorithms’ original structure to the maximum extent
possible, maintaining the order of computational complexity equivalent to that of the original
algorithm.

Survey Highlighting the Significance of Individual Fairness in RM. We conducted an
online survey between October and November 2023 on Prolific about people’s perception of unfair
treatment in RM. Our findings suggest: (i) When customers witness behavior in a store that
is considered “unfair” (as described in Definition 1) before they shop, their inclination to buy
decreases. (ii) A customer who has bought from a store in the past and then experiences what
they perceive as unfair treatment is likely to decrease their purchasing from that store in the
future. (iii) Individuals perceive different treatment happening in the near term as more unfair
compared to those in the distant past. With these observations, we can evaluate the importance
of individual fairness to business and validate the mathematical definition of individual fairness
metrics in Definition 1.

1.2. Other Related Work

Group Fairness. While a considerable volume of literature exists concerning fairness in RM
algorithms, much of it primarily aims to achieve group fairness (Aminian et al. 2023, Balseiro
et al. 2021, Cayci et al. 2020, Donahue and Kleinberg 2020, Ma et al. 2020, Manshadi et al. 2021).
Group fairness in decision-making entails ensuring that every group (or type) of customer is treated
equitably. However, group fairness does not guarantee individual fairness. This is because, firstly,
individuals might not be aware of the groups to which they belong. Secondly, individuals within
each group can be treated inequitably based on their specific contexts and features.

Individual Fairness from the Regulator’s Perspective. Individual fairness can be catego-
rized into two types, each viewed from distinct perspectives. The first one considers the regulator’s
perspective (Arsenis and Kleinberg 2022), suggesting that the acceptance probability for each arriv-
ing customer should be equal. The second type looks at fairness from the customer’s perspective,
seeking to reduce the likelihood of individuals experiencing envy and subsequently minimize the
loss associated with such envy. Our research, along with Sinclair et al. (2022), Gupta and Kamble
(2021), Guruswami et al. (2005), Bérczi et al. (2023), falls under this latter category of metrics.
These two dimensions of individual fairness differ due to their distinctive focuses. Consider an

example: two customers arrive, and the first algorithm accepts both customers A and B with a
probability of 0.5. The second algorithm accepts both customers A and B with a probability of
0.1. It appears that both algorithms uphold individual fairness from the regulator’s perspective.
However, the probability that customer 1 is rejected and customer 2 is accepted under the first
algorithm is (1− 0.5) · 0.5 = 0.25, whereas for the second algorithm, it is (1− 0.1) · 0.1 = 0.09. This
implies that the second algorithm would potentially lead to lower feelings of envy and unfairness
among customers, thus demonstrating the difference in the two metrics of individual fairness.

Modern Revenue Management Models. Due to the limitations of the traditional network
revenue management model, researchers have diversified its approach for greater relevance and
depth. Despite these advancements, the resolution of these contemporary models often relies on
the foundational algorithmic frameworks discussed in Section 2. Our contributions aim to refine
these foundational structures, thereby promoting individual fairness across all advanced revenue
management models that employ decision-making algorithms outlined in Section 2. For instance,
to ensure group fairness, a DLP-PA algorithm is proposed by Ma et al. (2020), while a BPC-OGD
algorithm is suggested by Balseiro et al. (2021). In the context of choice-based revenue management,
a choice-based DLP-PA algorithm is recommended by Liu and Van Ryzin (2008), Gallego et al.
(2015). To tackle revenue management issues involving offline prediction in demand, Balseiro et al.
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(2022), Golrezaei et al. (2023) advocate for a BL algorithm. Revenue management with correlated
arrivals is addressed by Jiang (2023) with an S-BPC method, and Jiang et al. (2020) proposes a
BPC-OGD algorithm for non-stationary arrivals. In scenarios involving revenue management with
reusable resources, Huo and Cheung (2022) employs a NESTING algorithm. Finally, for revenue
management with horizontal uncertainty, a BPC-OGD algorithm is suggested by Balseiro et al.
(2023a).

Price-based Revenue Management. Contrasting with the quantity-based model in this paper,
price-based revenue management represents a distinct category. Here, pricing decisions inversely
affect demand, with higher prices leading to lower demand and vice versa. Maglaras and Meissner
(2006) suggests that, under certain conditions, price-based and quantity-based models align in
function. Furthermore, price-based strategies also utilize the algorithmic frameworks mentioned in
Section 2. Works by Gallego and Van Ryzin (1994, 1997) implement the DLP-PA algorithm for
decision-making, whereas Jasin and Kumar (2012), Jasin (2014), Wang and Wang (2022) employ
the RDLP-PA algorithm. In Section 7, we explore the concept of individual fairness within the
price-based framework and discuss the integration of a grace period design in this context.

2. Model and Preliminaries
Although our work does not require adherence to a specific model, for ease of exposition, we present
the classical network revenue management model3. In the main text, we will operate under the
assumption that all algorithms are applied to this classical model.
In classical network revenue management, there are L types of indivisible resources, each with

a capacity of mj, j ∈ [L]. All capacities mj,∀j ∈ [L], scale consistently, i.e., there exist constants
qj for every j ∈ [L] such that mj = qjm. There is a total of T —where T is also scaling with m—
customers, arriving one by one. There are n customer types. When a customer of type i ∈ [n]
arrives, they may request multiple units from several resource types j; we denote this as Aij. Matrix
A∈Rn×L

+ is called the demand matrix. Without loss of generality, we assume that Aij ≤ ā. When
a type i customer arrives in the system, the decision-maker has two choices: either accept the
customer, allocate Aij units of resource j, and earn ri in revenue, where ri are known constants;
or decline the customer’s request. The primary objective is to maximize cumulative revenue.

We study two variants of the above model based on the customers’ arrival process. For the first
variant (Section 4), we assume that customers arrive sequentially at random; i.e., each customer of
type i has an associated arrival rate λi. In every round, at most one customer will arrive, with the
probability of a type i customer arriving being λi∑n

i′=0
λi′

4. Here, λ0 represents the rate for no arrivals.

In Sections 4.1, and 4.2, we study the case where the arrival rates λi are known; Appendix EC.5.1
studies the case where the rates λi are unknown. Under stochastic arrivals, regret is commonly used
for measuring the performance of an online algorithm. For the second variant (discussed in Section
5), we study the case where an adversary determines both the quantity and sequence of each type of
customer, commonly referred to as the worst-case/adversarial scenario. Under adversarial arrivals,
the competitive ratio is the metric to study the performance of an online algorithm.

2.1. Regret and Competitive Ratio Analysis
We first focus on the stochastic arrival setting. Let Λi(T ) be the random variable corresponding
to the total number of type i customers arriving between [0, T ]. The hindsight optimum denotes
the optimal revenue achievable if the exact number of arrivals for each customer type is known in
advance. For the classic network RM, the hindsight optimum is defined as

Rev⋆ =max
x

{∑
i∈[n]

rixi s.t.
∑
i∈[n]

Aixi ≤m, 0≤ xi ≤Λi(T ),∀i∈ [n]
}
, (1)

3 There is a special case where the decision-maker only has one type of resource, and the special model is called as
single-leg revenue management.

4 Typically, we normalize all arrival rates so that
∑n

i′=0 λi′ = 1.
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where in Eq. (1), x is the decision variable vector representing the quantity of each type of customer
to accept, Ai is the ith column of preference matrix A, m is the vector containing the capacity of
each resource mj, and Λi(T ) is a known value representing the exact number of type i arrivals.

Given that the hindsight optimum is privy to the precise count of each customer type’s arrivals,
it is typically utilized as a benchmark to evaluate the online algorithms. The following definition
introduces the concept of regret.
Definition 2. Given Rev(π) as the expected revenue generated by the online algorithm π, the

regret of algorithm π is defined as Regret(π) :=E[Rev⋆]−Rev(π).
Note that since the hindsight optimum is informed of the precise number of each type’s arrivals,

the resulting revenue is an upper bound for the revenue of any online algorithm. Hence, Regret≥ 0,
and the smaller the regret, the better.
Next, we consider the adversarial arrival setting. Let I represent the set of all potential arrival

instances. For any I ∈ I, let OPT(I) denote the maximum revenue achievable for arrival instance I.
We denote Rev(π(I)) as the expected revenue elicited by an online algorithm π under the specific
arrival instance I.

Definition 3. The competitive ratio of an algorithm π is defined as CR(π) = infI∈I
Rev(π(I))

OPT(I)
.

Note that competitive ratio is not equivalent to regret. If the competitive ratio of an online
algorithm π equals 0, this implies that a sequence exists in which the algorithm π fails to generate
any revenue. However, generally speaking, it is possible that π could perform efficiently on the
majority of sequences, and if the arrival process is stochastic, π could also incur diminishing regret.

In the next two subsections, we outline the most popular algorithmic structures for RM with
stochastic and adversarial arrivals. The pseudo-code for all the algorithms introduced below can
be found in the Appendix.

2.2. Popular Algorithm Structures under Stochastic Arrivals

Algorithm DLP-PA. The Deterministic Linear Programming with Probabilistic Assignment algo-
rithm (DLP-PA) solves the deterministic linear programming at the beginning and uses the optimal
primal solution to make probabilistic decisions, where the DLP formulation is derived by replacing
all random variables with their expected values in the hindsight formulation Eq. (1). In the network
RM model, since λi is the likelihood of type i arrival in each time epoch, the total number of type
i customers arriving between [0, T ] is Λi(T )∼Bin(T,λi). The DLP is defined as:

DLP⋆ =max
x

{
T
∑
i∈[n]

rixi s.t.
∑
i∈[n]

Aixi ≤
m

T
, 0≤ xi ≤ λi,∀i∈ [n]

}
, (2)

We denote the optimal solution of Eq. (2) as x∗ (assuming it is unique). Algorithm DLP-PA then

accepts each type i customer with a probability of
x∗i
λi
, given sufficient capacity. The details can be

found in Algorithm 5 in Appendix EC.2. The asymptotic regret of Algorithm DLP-PA for classical
network RM is O(

√
T ) (Gallego and Van Ryzin 1994, 1997).

Note that for α<
x∗i
λi
(1− x∗i

λi
) Algorithm DLP-PA is unfair to all type i customers. This is because

if each type i customer is accepted with a probability of
x∗i
λi
, it results in a situation where each

type i customer is rejected and the prior customer is accepted with probability
x∗i
λi
(1− x∗i

λi
)>α.

Algorithm Resolving DLP (RDLP-PA). The RDLP-PA algorithm addresses DLP’s limitation of
not accounting for the demand’s randomness after t= 0. At a high level, RDLP-PA solves the DLP
and employs its optimal primal solution, denoted as x∗, to make probabilistic assignments. However,
at time point t∗, the applicability of the initial optimal solution x∗ for making decisions may be
compromised due to the random noise of the stochastic arrival process and probabilistic decision
behavior. Hence, we re-solve the DLP with the remaining capacity and remaining time horizon,
and continue making probabilistic assignments by the new optimal solution x̃∗ until the end. For
network RM, Reiman and Wang (2008) show that the regret incurred by RDLP-PA is O(T 1/3).
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Similarly to the DLP-PA algorithm, the RDLP-PA algorithm is unfair to all type i customers for
α<min{x

∗
i

λi
(1− x∗i

λi
),

x̃∗i
λi
(1− x̃∗i

λi
)}.

Algorithm Static Bid Price Control (S-BPC). In contrast to the DLP-PA and RDLP-PA
algorithms, bid price control is a threshold-based policy that makes deterministic decisions for
every arriving customer. A Static Bid Price Control (S-BPC) uses a consistent threshold price for
each leg, which remains unchanged over time. A request is accepted if the revenue it will provide
the supplier exceeds the threshold price and is otherwise rejected.
To obtain the optimal fixed threshold price, Williamson (1992), Talluri and Van Ryzin (1998),

Talluri et al. (2004) propose solving the dual problem of the DLP at the beginning, denoting the
optimal dual variable as θ∗ ∈RL (assuming uniqueness). When each customer of type i arrives, if
the revenue ri exceeds the aggregated bid price

∑L

j=1 θ
∗
jAij, the customer is accepted; if not, the

customer is rejected. The regret of S-BPC for network RM is O(
√
T ).

We note that, once the bid price for a type i is established, every customer of type i is either
accepted (if there is sufficient capacity) or rejected. Therefore, if resource capacity exceeds demand,
Algorithm S-BPC is inherently fair because it either accepts or rejects all customers of type i.
However, if the demand exceeds the resource capacity, Algorithm S-BPC’s first-come-first-serve
nature leads to unequal treatment between earlier and later customers.

2.3. Popular Algorithm Structures under Adversarial Arrivals

Booking Limit (BL). In the BL algorithm (Williamson 1992), the supplier assigns a fixed
quota/booking limit b= {b1, b2, . . . , bn} for each customer type. In the asymptotic setting, all book-
ing limits scale with the resource quantity; hence, bi =Θ(m) for i∈ [n]. The algorithm accepts any
type i customers provided that there is sufficient resource capacity and the number of accepted
type i customers has not yet reached bi. Beyond this point, all type i customers are rejected. The
BL algorithm is not individually fair; for any type i, the bthi type i customer is accepted while the
(bi +1)th type i customer is rejected.

NESTING. The NESTING algorithm (Williamson 1992) is applicable for settings with a single
type of resource and where customers can be categorized and ranked based on the revenue ri
that they add to the supplier. Unlike the approach of assigning individual booking limits to each
customer type (which is suboptimal) the NESTING algorithm assigns booking limits to aggregated
categories of customer types. For instance, in a situation with three customer types ranked as
r1 > r2 > r3, the algorithm sets a booking limit b1 for type 1 customers and b2 for the combined
group of type 1 and type 2 customers. This method demonstrates superior performance compared
to traditional booking limits and is considered optimal in the context of single-resource scenarios.
However, a significant limitation of the NESTING algorithm is its inapplicability in multi-resource
environments, where ranking customers becomes impossible.
The NESTING framework shares some similarities with the BL algorithm. Initially, n quotas

b = {b1, b2, . . . , bn} need to be established. Following this, bi is assigned as a quota for the total
number of type i, i+ 1, . . ., n customers. Much like the BL, the NESTING algorithm also lacks
individual fairness owing to its quota-based FCFS structure.

3. The “Grace Period”
In this section, we present the concept of the “grace period” and present the analysis of its incor-
poration into the First-Come-First-Serve algorithm (FCFS). This will serve as a building block for
the GP-Enhanced algorithms that we will follow. FCFS works both in the case of stochastic and
adversarial arrival sequences in network revenue management problems and is rather simple: it
keeps accepting every arriving customer until the capacity of the requested resources is not enough.
The primary sources of unfairness in RM settings (and hence also in the case of FCFS) are: (i)
limited resources, and (ii) the inherent structure of the algorithm. Note that when the available
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resources exceed the total demand, then FCFS is always fair since it accepts all customers; the
problem arises when there are limited resources compared to the demand faced.
At a high level, the grace period is a time interval during which the algorithm (i.e., FCFS in this

case) decides when to stop accepting customers gracefully using randomness.
Definition 4. (Decreasing Grace Period) The decreasing grace period [t1(i), t2(i)] for type i

customers is defined as: for any i(k) customer that arrives in between round t1(i) and t2(i), i(k)
is accepted with a probability of 1− α if customer i(k − 1) was accepted, and i(k) is rejected if
i(k− 1) was rejected.

Note that the grace period is defined per customer type, i.e., in general, each customer type will
have a different grace period. The exact mathematical instantiation of the parameters of the grace
period (i.e., the interval [t1(i), t2(i)]) as well as the fairness parameters α, δ are algorithm specific.
To illustrate this, we mathematically instantiate the grace period for the FCFS algorithm below.

3.1. Decreasing Grace Period in Network Revenue Management under FCFS
To achieve (α, δ)-fairness in network revenue management under FCFS, we can utilize the decreas-
ing grace period as follows: for any α, δ, let γ = log1−α δ, and assign a decreasing grace period
[t1(i), t2(i)], where t1(i) = inf{t : minj∈[L]mj(t)≤ ānγ} and t2(i) = T to each type i customer within
the range of [n]. Here, mj(t) denotes the remaining capacity of resource j at time t. In other words,
in order to address the unfairness arising from resource scarcity, it is sufficient for FCFS to have
a common decreasing grace period for all customer types. As a result, for FCFS we will drop the
dependence on the customer type and denote the grace period as [t1, t2]. The following theorem
states that, by implementing the decreasing grace period as above, we satisfy (α, δ)-fairness, and
the revenue loss in comparison to the FCFS algorithm is bounded.

Theorem 1. Assigning a decreasing grace period [t1, t2], where t1 = inf{t : minj∈[L]mj(t)≤ ānγ}
and t2 = T to each type i customer, where γ = log1−α δ, FCFS is (α, δ)-fair for network revenue
management. Moreover, compared to the FCFS algorithm without grace period, the revenue loss is
bounded by ā

a
nγr̄, where r̄= supi∈[n] ri, ā= supi,j Aij, and a= inf i,j Aij.

To prove Theorem 1, we first introduce a lemma below (see Appendix EC.3 for proof).

Lemma 1. Given an online algorithm A, for any customer type i ∈ [n], and for any u, if
P (i(u+1)≻A i(u)) ≤ α and P (i(u− 1)≻A i(u)) ≤ α, then A satisfies individual fairness (Defini-
tion 1); namely, for any u, v ∈ [ni]: P (i(v)≻A i(u))≤ α|u− v|, with probability at least 1− δ.

At a high level, the lemma states that for any algorithm A, if for a customer type i the probability
that the u-th customer gets rejected while the (u+1)-th is accepted is upper bounded by α and
the same thing holds for customers u and u− 1, then the algorithm is (α, δ)-fair.
We highlight the intuition of why the revised FCFS is (α, δ)-fair. In the revised algorithm, every

customer arriving during [1, t1 − 1] is accepted, but starting from the period t1, the acceptance
probability for each customer type progressively decreases. This decrease is conditioned on the
preceding customer’s realization. This implies that if the resources are not depleted, the probability
that customers of the same type that arrive one after the other get different treatment is bounded
by α. At round t1, the remaining capacity of each resource j ∈ [L] is at least ānγ. Given that the
stopping time (i.e., the time that the algorithm stops accepting them) for each customer type is a
geometric random variable, we can apply standard concentration bounds to demonstrate that, with
a high probability, all geometric random variables will stop before ānγ resource j are exhausted
for each j ∈ [L]. This concludes the proof that the revised algorithm is (α, δ)-fair.

To obtain a better understanding about the various parameters describing the revenue loss and
the efficiency of our proposed algorithm, note that if δ = 1/m, and given that a, ā, n and r̄ are
constants, Theorem 1 implies that the loss in revenue relative to the FCFS algorithm is bounded
by O(logm). Next, we provide the full proof of Theorem 1.
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Proof of Theorem 1 First, we show that by assigning a decreasing grace period [t1(i), t2(i)],
where t1(i) = inf{t : minj∈[L]mj(t)≤ ānγ} and t2(i) = T to each type i customer, Algorithm FCFS
is (α, δ)-fair. By Lemma 1, we only need to show that for any customer type i, with probability at
least 1− δ, for any u∈ [ni], P (i(u+1)≻A i(u))≤ α and P (i(u− 1)≻A i(u))≤ α.
Define event E as E := {no resource is depleted in the time interval [0, T ]}. We show that E hap-

pens with probability at least 1−δ by showing that the complement of E happens with probability
at most δ.

P(EC)≤ P(more than γn customers are accepted in the grace period)

≤ P(∃i∈ [n], s.t. the number of type i customers accepted in the grace period ≥ γ) (3)

= 1−P(∃i∈ [n], s.t. the number of type i customers accepted in the grace period <γ)

= (1−α)γ (4)

= (1−α)log1−α δ = δ,

where (3) is due to the pigeonhole principle, and (4) is because for each type i, the number of
type i customers accepted after the grace period starts is a geometric random variable with success
probability α. Therefore, the cdf is 1− (1−α)γ .
Conditional on event E happening, for any customer i(u) arriving within [1, t1], the algorithm

accepts i(u) with probability 1. For any customer i(u) arriving within [t1, t2], by the definition of
the grace period, we obtain that P (i(u+1)≻A i(u))≤ α and P (i(u− 1)≻A i(u))≤ α.
To complete the proof of the theorem, we need to show that the revenue loss is bounded by ā

a
nγr̄.

In the worst case for the revenue, the algorithm rejects all customers after t1. By the definition
of t1, the remaining units for each j are ānγ. Since ānγ units of resource can serve at most ā

a
nγ

customers, we have that the revenue loss is at most ā
a
nγr̄.

3.2. Increasing Grace Period
We conclude this section with a related concept, the increasing grace period.

Definition 5. The increasing grace period [t1(i), t2(i)] for type i customers is defined as: for
any customer i(k) that arrives within the interval from t1(i) to t2(i), customer i(k) is accepted with
probability α if customer i(k− 1) was rejected, and customer i(k) is accepted if customer i(k− 1)
was accepted.
The intuition behind the increasing grace period design is that, after a sequence of customer

rejections, when the algorithm is ready to start accepting customers again in order to maintain
individual fairness, it should not do so abruptly. Instead, the acceptance probability should incre-
mentally increase, with the degree of increase conditioned on the previous customer’s outcome.

4. Individually Fair RM Algorithms under Stochastic Arrivals
In this section, we focus on making three algorithm structures mentioned in Section 2.2 – DLP-
PA, RDLP-PA, and S-BPC– individually fair without incurring significant additional regret. Based
on the techniques we use for these three algorithms, we also enhance a more advanced algorithm
– Bid Price Control with Online Gradient Descent (BPC-OGD) to satisfy the fairness metrics in
Appendix EC.5. Further, as Algorithm DLP-PA is a variant for RDLP-PA (resolve 0 times), we
analyze DLP-PA and RDLP-PA together.

4.1. Algorithm DLP-PA and RDLP-PA
Here, we introduce the Grace Period Enhanced RDLP-PA algorithm (GP-Enhanced-RDLP). The
regret of the original RDLP-PA algorithm is O(T β), where β is a parameter that depends on the
frequency of resolving the DLP. For example, β = 1/2 corresponds to resolving zero times (i.e.,
Algorithm DLP-PA), while β = 1/3 corresponds to resolving one or more times.
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Figure 1 Decisions from Algorithm 1 on type i customers

We begin by uniformly partitioning the time horizon [0, T ] into K = T 1−β segments of size T β.
We solve the DLP with the initial capacity vector at t= 0, and solve the DLP with the remaining
capacity vector at t= t∗, where t∗ is the re-solving time point of the original RDLP-PA algorithm.
In the first time segment (k = 1), for each type i customer, we sample a random variable yi ∼
Bin(λiT

β,
x∗i
λi
). Our objective is to accept approximately yi customers of type i in this interval, akin

to the original RDLP-PA algorithm’s acceptance of Bin(λiT
β,

x∗i
λi
) customers of type i. However,

different from RDLP-PA’s probabilistic allocation, we initially accept yi− ānγ−1 customers of type
i, where γ = log1−α δ. Subsequently, we implement a decreasing grace period for type i customers
until the end of the first interval. According to Theorem 1, this ensures the individual fairness
metrics while accepting z

(1)
i =Θ(logT ) fewer customers of type i compared to Algorithm RDLP-PA.

Starting from the second time segment (k ≥ 2), due to the probable rejection of the last few
customers in segment k−1, an immediate acceptance of customers in segment k is unfair. Thus, we
introduce an increasing grace period, progressively shifting from rejection to acceptance. Notably,
in segment k−1, as z

(k−1)
i fewer customers of type i are accepted compared to Algorithm RDLP-PA,

we compensate by accepting z
(k−1)
i additional type i customers in segment k. This is achieved by

drawing yi ∼ z
(k−1)
i +Bin(λiT

β,
x∗i
λi
) and implementing an increasing grace period until the arrival

of the (yi− ānγ)th customer of type i. Subsequently, a decreasing grace period is applied until the
conclusion of the time segment.
Lastly, following the methodology introduced in Section 3.1, as a resource approaches depletion,

an additional decreasing grace period is introduced to conclude the algorithm. The details can be
found in Algorithm 1, and the intuition is illustrated in Figure 1.

Algorithm 1: GP-Enhanced-RDLP

Input: Preference matrix A. Arriving rate vector λ. Capacity vector m. Resolving time
point t∗. Regret bound of input R-DLP algorithm O(T β). Fairness parameters
(α, δ). γ = log1−α δ.

Output: Optimal solution vectors x∗ and x̃∗.
Initialize: Vector z(0) = 0. K = T 1−β.
Solve DLP based on the initial capacity, and denote the optimal primal solution as x∗.
for k ∈ {1,2, ..., ⌊t∗T−β⌋} do

Run Algorithm 2 with t1 = (k− 1)T β, t2 = kT β, z= z(k−1), x∗. Get the output z(k)←w.
Solve DLP based on the remaining capacity and time, and denote the optimal solution as
x̃∗.
for k ∈ {⌈t∗T−β⌉, ⌈t∗T−β⌉+1, . . . ,K} do

Run Algorithm 2 with t1 = (k− 1)T β, t2 = kT β, z= z(k−1), x̃∗. Get the output z(k)←w.
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Algorithm 2: Auxiliary Algorithm for Algorithm 1

Input: Arriving rate vector λ. Capacity vector m. Time horizon (t1, t2). Fair parameters
(α, δ). Vector z. Optimal primal solution x∗.

Output: Vector w, indicating the sum of rejected type i customers.
Sample yi ∼ zi +Bin((t2− t1)λi,

x∗i
λi
).

if t1 ̸= 1 then
Give an increasing grace period [t1, oi− 1] to type i customer, where oi is the time when
the (yi− ānγ)th type i customer arrives.

Give a decreasing grace period [oi, t2] to type i customer.
Return vector w, whose ith element is the sum of number of rejected type i customers in
the increasing grace period [t1, oi− 1] and in the decreasing grace period [oi, õi], where õi is
the time when the yth

i type i customer arrives.
for t∈ {t1, t1 +1, . . . , t2} do

if minj∈[L]mj(t)− ānγ ≤ 0 then
Give a decreasing grace period [t, T ] to all types of customers.

Theorem 2. Given any α ∈ (0,1), δ = 1/T , and any input RDLP-PA algorithm that attains a
regret of O(T β), Algorithm GP-Enhanced-RDLP: (i) is (α, δ)-fair, and (ii) incurs regret O(T β).

Proof Sketch. Algorithm GP-Enhanced-RDLP is (α, δ)-fair since it introduces a grace period every
time that a decision transitions from acceptance to rejection and vice versa. To confirm that the
regret of Algorithm GP-Enhanced-RDLP is O(T β), we have

Regret =Rev⋆−Rev(π) =Rev⋆−Rev(RDLP-PA)+Rev(RDLP-PA)−Rev(π)

=O(T β)+Rev(RDLP-PA)−Rev(π),

where Rev(RDLP-PA), Rev(π) are revenue generated by Algorithm RDLP-PA and Algorithm GP-
Enhanced-RDLP respectively. It suffices to show that

Rev(RDLP-PA)−Rev(π) =O(T β)

Let τ be a random variable indicating the stopping time at which some resource becomes
exhausted (triggering the termination of the algorithm), with τ belonging to time segment k(τ).
Ignoring the grace period and accepting yi type i customers in each segment, the expected revenue of
Algorithm GP-Enhanced-RDLP almost matches that of Algorithm RDLP-PA for t∈ [0, (k(τ)−1)T β].

Furthermore, although the application of both increasing and decreasing grace periods in each
time segment may lead to the additional loss of up to Θ(logT ) customers of each type, we accept an
equivalent number of customers of each type in the following time segment. By doing this, before t∗,
the expected difference in the number of accepted customers of each type between Algorithm RDLP-
PA and Algorithm GP-Enhanced-RDLP stems only from the last time segment before t∗, amounting
to Θ(logT ). Therefore, the expected difference in remaining capacity between Algorithm RDLP-PA
and Algorithm GP-Enhanced-RDLP is bounded by Θ(logT ) at time t∗. As such, the disparity in the
re-solved optimal solutions at t∗ between Algorithm RDLP-PA and Algorithm GP-Enhanced-RDLP
is negligible. Consequently, we eliminate all revenue loss due to the grace period for all k(τ)− 1
time segments. For the time segment k(τ) of size T β, we may lose a maximum of O(T β) in revenue
compared to the RDLP-PA algorithm. Hence, we have

Rev(RDLP-PA)−Rev(π) =O(T β),

The full proof can be found in Appendix EC.4. Q.E.D.
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Algorithm 3: GP-Enhanced-BL

Input: Preference matrix A. Capacity vector m. Booking limit b. γ = log1−α δ.
Output: Decision on accepting customers over time.
Initialize: Number of accepted customers si = 0, i∈ [n].
for t∈ {1,2, ..., T} do

Observe customer of type i∈ [n].
if minj∈[L]mj(t)− ānγ ≤ 0 then

Give a decreasing period [t, T ] to all types of customers.
else

if si < bi− γ then
Accept the arriving customer, and set si← si +1.

else
Give a decreasing period [t, T ] to type i customers.

4.2. Algorithm S-BPC
In the algorithm S-BPC, an FCFS approach is employed for each customer type. Drawing intuition
from our treatment of FCFS, to guarantee fairness, we only need to offer a decreasing grace period
to those types whose bid prices are greater than the aggregated bid prices. From Theorem 1, the
extra revenue loss of the fair variant is O(logT ) for any α∈ (0,1) and δ= 1/T .

Theorem 3. Given any α ∈ (0,1), δ = 1/T , and any input S-BPC algorithm with a regret of
O(
√
T ), by giving a decreasing grace period [minj∈[L]mj − ānγ,T ] to each type i customer (for i

such that ri >
∑L

j=1 θ
∗
jAij): (i) the algorithm is (α, δ)-fair, (ii) incurs regret O(

√
T ).

5. Individually Fair RM Algorithms under Adversarial Arrivals
In this section, we focus on RM problems with adversarial arrivals, where an adversary dictates
both the quantity and the sequence of arriving customers of each type. The two prevalent algorithm
structures used in this setting are Booking Limit(BL) and NESTING. Next, we introduce how to
make these algorithms individually fair.

5.1. Algorithm BL
Algorithm BL sets quotas for each customer i, and then makes decisions in an FCFS manner.
Consequently, our method of ensuring individual fairness mirrors the modification of FCFS in
Section 3. Algorithm GP-Enhanced-BL provides a decreasing grace period as the number of accepted
type i customers approaches the quota bi, and extends this decreasing grace period to all customer
types if the remaining capacity is almost depleted. Details can be found in Algorithm 3.

Theorem 4. Given any α ∈ (0,1), δ = 1/T , resource capacity m where mj =Θ(m) for j ∈ [L],
and any input BL algorithm that attains a competitive ratio of C, GP-Enhanced-BL achieves the
following: (i) is (α, δ)-fair, (ii) reaches a competitive ratio of C −O (logm/m).

Theorem 4 implies that GP-Enhanced-BL incurs negligible additional loss asymptotically, even
under the worst case instance. The detailed proof can be found in Appendix EC.6. To execute
a competitive ratio analysis, we first observe that, given bi = Θ(m), if the aggregate number of
arrivals is o(m), both the original and the revised booking limit algorithms yield a competitive
ratio of 1 since all customers are accepted.
In the event that the total number of arrivals is Ω(m), the offline optimal revenue is Θ(m) as the

resource capacity scales with Θ(m). Additionally, any extra loss incurred by GP-Enhanced-BL in
comparison to BL is from the decreasing grace period. In the worst scenario, we may lose at most
(ā+1)nγ =Θ(logm) customers. Hence,

inf
I∈I

Rev(π(I))

OPT(I)
≥ inf

I∈I

Rev(BL(I))− (ā+1)nγr̄

OPT(I)
=C −O

(
logm

m

)
.
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Algorithm 4: GP-Enhanced-NESTING

Input: Capacity m. Nesting quota b.
Output: Decision on accepting customers over time.
Initialize: Number of accepted customers si = 0, i∈ [n]. γ = log1−α δ.
for t∈ {1,2, ..., T} do

Observe customer of type i∈ [n].
if m(t)−nγ ≤ 0 then

Give a decreasing period [t, T ] to all types of customers.
else

if
∑n

j=i sj < bi−nγ then
Accept the arriving customer, and set si← si +1.

else
Give a decreasing period [t, T ] to type i customers.

5.2. Algorithm NESTING
NESTING ranks the customer types based on the revenue they bring to the supplier. Compared to
BL, NESTING also sets quotas and accepts customers in a FCFS manner. Differently, each quota
bi is the upper bound of number of customers can be accepted with type i, i+ 1, . . . , n. As such,
we still provide a decreasing grace period as the cumulative number of i, i+ 1, . . ., n customers
approaches the quota bi. The rationale behind this modification aligns precisely with that used in
BL. Details can be found in Algorithm 4.

Theorem 5. Given any α ∈ (0,1), δ = 1/T , and any input NESTING algorithm that attains a
competitive ratio of C, GP-Enhanced-NESTING: (i) is (α, δ)-fair, (ii) reaches a competitive ratio of
C −O (log(m)/m).

The proof is almost identical to that of Theorem 4 and hence we omit it.

6. Survey
In this section, we delineate the primary findings derived from our survey which was conducted
between October and November 2023 on Prolific5. We collected responses from 150 respondents.
The primary goal was to evaluate three hypotheses:
H1. When buyers observe “unfair” (defined according to our Definition 1) treatment in a store

prior to shopping there, their purchasing intent diminishes.
H2. A customer who has previously made a purchase from a store and subsequently perceives

unfair treatment is likely to exhibit adverse future buying behaviors.
H3. Individuals perceive disparate treatments occurring in the near term as more unfair compared

to those in the distant past.
Comprehensive demographic data is available in Appendix EC.1.1. The respondents were all

based in the United States, fluent in English, and mostly gender-balanced (about a half of them
are identifying as male and about half as female). The majority identified as white. To ensure the
quality of the responses, we incorporated three attention checks. Only the data from respondents
who correctly answered at least two of these questions were considered valid. From the initial 150
participants, 140 responses met this criterion.
The goal of our survey was to assess individuals’ buying behavior when they observed other

customers receiving discounts of roughly 10% but they themselves did not. We recognize the sig-
nificance of the specific discount value in this context; people’s valuation of money varies, and a
discount perceived as negligible by some might not induce feelings of unfairness to them. To address

5 https://www.prolific.com/

https://www.prolific.com/
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Figure 2 Distribution of preferences in response to exposure to discount-related posts on social media

this, we conducted a comparative survey, wherein the context incorporated a more substantial
discount (specifically, 30%). This supplementary survey, which also comprised of 150 participants,
is documented in Appendix EC.1.3. In all the scenarios we considered, we posit that there are
two stores TrendThread and Stitch&Style which the survey respondent is considering. The prod-
ucts sold by the two places are identical in terms of quality and overall characteristics. The only
difference is with regards to the pricing and the discounts that each stores offers.

6.1. Buying Behavior and Observed Pre-Purchased Unfairness
In this section, we seek to validate hypothesis H1. We begin by presenting two distinct scenarios
designed to evoke feelings of unfairness before making a purchase among consumers.
The first scenario revolves around a consumer’s interaction with social media posts describing

others’ purchasing experiences. Imagine you come across a social media post wherein a user claims
to have a 10% discount on a hoodie from the store TrendThread. You promptly visit the online
shopping website, but no such discount is extended to you from TrendThread. Stitch&Style is
offering the identical hoodie at exactly the same price as TrendThread. We aim to capture whether
consumers, upon encountering the absence of a promised discount at TrendThread, opt to transfer
their patronage to Stitch&Style for their purchase6.
As illustrated in Figure 2, 47.9% of the respondents perceive the different treatment as a signifi-

cant factor influencing their purchasing decisions. Within the 41.5% who opted for No Preference,
there emerges a question: is their indifference attributed to the perceived unfairness or the magni-
tude of the discount (10%)? In Figure 3, of those participants who initially selected No Preference,
more than 20% would divert their purchase to an alternative store if faced with a more substantial
discount disparity. From this observation, we infer that approximately 30% of the participants
remain indifferent to differential treatment. In contrast, close to 60% would reconsider their store
preference upon perceiving some form of unfairness prior to purchase.
The second scenario tests whether perceptions of pre-purchase unfairness can also come from

customer reviews associated with a store. Consider two stores offering an identical hoodie at the
same price and with equivalent ratings. The first store, TrendThread, displays one negative com-
ment addressing discount unfairness among five positive comments7. Conversely, the second store,
Stitch&Style, presents three negative comments to discount unfairness. The focus is to analyze how
the volume of comments related to unfair treatments influences consumer shopping behavior.
As depicted in Figure 4, upon encountering few comments indicating unfair treatment, 28.6% of

respondents express a positive inclination towards making a purchase, whereas 27.9% demonstrate

6 A concise version is presented here for clarity, with the detailed questions available in Appendix EC.1.2

7 An auxiliary analysis was conducted to discern whether the placement of this negative comment has any consequen-
tial impact. Refer to Appendix EC.1.2 for details.
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Figure 3 Impact of 30% discount on initially indifferent consumers (i.e., “No preference” from Fig 2)

Figure 4 Left, Right Distribution of preferences for store TrendThread and Stitch&Style respectively.

a negative inclination. However, in the presence of a trend of unfairness in the comments, the
proportion of positive respondents diminishes to 14.3%, while those with a negative predisposition
drastically surge to over 50%.
The findings from both scenarios underscore the observation that a pronounced perception of

pre-purchase unfairness can significantly influence consumer behavior, leading many consumers to
avoid shopping at the store they see as unfair. This verifies our hypothesis H1.

6.2. Buying Behavior and Observed Post-purchased Unfairness
Next, we test hypothesis H2. We propose a scenario where a customer, having made a purchase
at the full price, subsequently learns of another individual who got a discount for the same item
shortly thereafter, potentially triggering feelings of unfairness. To assess the repercussions of such
a scenario on future consumer behavior, we initially investigate whether respondents perceive
unfairness in this situation. Subsequently, we probe their likelihood of repeating purchases at the
same store and their propensity to recommend the store to others.
In Figure 5, the left histogram depicts the perceived unfairness distribution, with 0 indicating

no perceived unfairness and 1 denoting extreme unfairness. Note that in order to obtain this
information, we asked respondents to choose how unfairly treated they feel, by moving a needle.
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Figure 5 Left: Perceived unfairness level (0 = Not at all, 1 = Extremely); Middle: Customer repurchase
likelihood (0 = Definitely no, 1 = Definitely yes); Right: Customer recommendation likelihood (0 = Definitely

no, 1 = Definitely yes)

We ran the experiment with different initial placements of the needle, to abstract away from biases.
For more details, we refer the reader to Appendix EC.1.
A significant number of respondents perceive high levels of unfairness, evidenced by an average

response of approximately 0.68. This indicates that post-purchase differential treatment signifi-
cantly influences perceptions of unfairness. The middle histogram illustrates respondents’ willing-
ness to repurchase from the store, where 0 represents a definite refusal and 1 a definite intention
to repurchase. The mean response, around 0.38, suggests a reduced likelihood of repeat patronage
due to observed disparities in post-purchase treatment. The right histogram, portrays the willing-
ness to recommend the store with 0 indicating an unwillingness to recommend and 1 the opposite;
it reveals a predominant reluctance to recommend among participants. This trend towards non-
recommendation may adversely affect the store’s potential revenue. These findings underline the
importance of maintaining post-purchase individual fairness as a key factor influencing customer
retention and advocacy, with direct implications for revenue streams.

6.3. Continuous Time Metrics of Individual Fairness
In this part, our objective is to validate hypothesisH3. This investigation also serves to corroborate
the mathematical definition of individual fairness metrics presented in Definition 1. To assess
whether individuals are more sensitive to recent disparities in treatment as opposed to those in the
more distant past, we propose the following scenario: Imagine encountering two identical posts,
each stating that a user got a 10% discount from TrendThread. The only distinction between these
posts is their post time: one was created 5 minutes ago, while the other dates back to a month ago.
As illustrated in Figure 6, the predominant initial choice among respondents is the 5-minute

post, accounting for 33.6% of the selections. Incorporating those respondents who initially chose
Both and subsequently indicated that the 5-minute post evoked stronger feelings of unfairness, we
find that 46.4% of participants perceive recent different treatments as more unfair than ones set
further back in time. With this 46.4% surpassing the proportions of other available choices, our
continuous metrics hypothesis is empirically validated.

7. Extension: Price-based Revenue Management
Price-based RM represents another significant class of RM problems Gallego and Van Ryzin (1994,
1997), Talluri and Van Ryzin (2004). In this paradigm, a seller markets one or multiple products
over a finite horizon with a given initial resource inventory. Unlike the quantity-based RM, which
determines whether to accept or reject an incoming customer, the decision in price-based RM
involves setting a price for each arriving customer. Typically, we assume the existence of a bijective
mapping between the price and the purchasing probability of each type of customer, whereby a
higher price correlates with a lower purchasing probability. The objective is to maximize the total
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Figure 6 Distribution of opinions regarding which post makes the respondents feel more unfairly treated

revenue over the given finite time horizon. We first define individual fairness for price-based RM,
drawing upon a similar intuition to Definition 1, designed for quantity-based RM.
Definition 6. Assume the algorithm A assigns a price p(i)u to the uth customer of type i. An

Algorithm A is (α, δ)-fair if for all i ∈ [n], u, v ∈ [ni], where n is the number of customer type and
ni is the number of type i customers who will arrive, with probability at least 1− δ, we have

P(p(i)u ̸= p(i)v )≤ α|u− v|.

Traditional methods for solving price-based revenue management, for instance, those proposed
by Gallego and Van Ryzin (1994, 1997), use the DLP-PA algorithm structure, while Jasin and
Kumar (2012), Wang and Wang (2022) employs the RDLP-PA algorithm structure. These papers
offer static or dynamic pricing strategies aimed at minimizing regret under a stochastic arrival
setting. It is evident that neither static nor dynamic pricing strategies satisfy the individual fairness
metrics as introduced in Definition 6. In the case of static pricing, as the capacity depletes, we
assign a price of +∞ to arriving customers. For dynamic programming, its inherent structure is
entirely not individually fair.
First, we employ the concept of a decreasing grace period, adjusting it to suit the price-based

context. Specifically, a decreasing grace period to type i customer within the interval [t1, t2] means
that for every uth type i customer arriving within the interval [t1, t2], we assign them a price p

(i)
u−1

with a probability of 1− α, and a price of +∞ with a probability of α. This is analogous to the
decreasing grace period for quantity-based RM.
Subsequently, we use the modification of the static pricing algorithm as an example to illustrate

how to apply a decreasing grace period to guarantee individual fairness. A static pricing algorithm
assigns a price p(i) to all type i customers as long as sufficient resources exist, and assigns a price of
+∞ to all customers once resources are exhausted. The following theorem summarizes the results
and the proof can be found in Appendix EC.7:

Theorem 6. For the price-based revenue management problem where the price p(i) is given
to type i customers, by assigning a decreasing grace period [t1(i), t2(i)], where t1(i) = inf{t :
minj∈[L]mj(t) ≤ ānγ} and t2(i) = T to each type i customer, where γ = log1−α δ, the (α, δ)-fair
metrics is satisfied. Moreover, compared to the original static pricing algorithm, the revenue loss
is bounded by ā

a
nγp̄, where p̄= supi∈[n] p

(i).
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Figure EC.1 Demographics of survey participants. The x axis corresponds to the categories for each plot and
the y axis reports the number of participants per category

Online Appendix

EC.1. Survey Appendix
EC.1.1. Demographics
We conducted our survey through Prolific, ensuring gender balance—with an equal representation
of male and female respondents—and fluency in English. Detailed demographic statistics are pre-
sented in Figure EC.1. The majority of our participants, over 50%, belong to the age group of
18-35 years. Approximately 30% are between 35 and 54 years old. Notably, more than 80% of the
respondents identify as white or Caucasian. Our respondent population is representative of the
Prolific respondent base (see e.g., Douglas et al. (2023)).
The respondents of our survey come from diverse educational backgrounds. About 60% have a

bachelor’s degree or have undertaken some form of graduate study. The rest have completed high
school, earned an associate degree, or have some college education without obtaining a degree.
From an economic perspective, our sample spans various income brackets. Roughly 30% report

an income exceeding $100K annually, while nearly 60% fall within the $25K-$100K income range.
Additionally, over 85% of our participants identify as the primary shopper within their households.

EC.1.2. Survey Questions
In this section, we display the questions and their respective distributions that were not introduced
in Section 6. ‘Question 1’, aimed at verifying the authenticity of participants’ shopping behavior,
seeks to determine if respondents would, all other factors being equal, opt for a cheaper option.
The related distribution, depicted in Figure EC.2, reveals that over 94% of participants chose the
less expensive item, thereby indicating a general propensity for rational economic behavior.
‘Question 2’ and ‘Question 3’ are aiming to test hypothesis H1 mentioned in Section 6. In

these questions, we examine a situation focusing on an individual’s engagement with social media
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Figure EC.2 Question 1 and its Answer Distribution

content that depicts others’ experiences with purchases. The detailed question can be found in
Figure EC.3, and the distribution can be found in Figures 2 and 3.
‘Question 4’ still tests hypothesis H1. Contrasting the second and third questions, we highlight

that pre-purchase unfairness can arise from customer reviews. We explore a scenario where two
shops sell identical hoodies, each accompanied by varying review comments. The question can be
found in Figure EC.4. Additionally, we sought to investigate whether the positioning of such com-
ments influences consumer reactions and potentially introduces bias. To this end, we randomized
the placement of comments from User 5, ensuring they appeared with equal frequency at any point
from the first to the fifth position. The aggregated distribution is presented in Section 7, Figure 4.
For a more detailed analysis on the order of comments, the distribution corresponding to each of
the five cases is depicted in Figure EC.5.
In Figure EC.5, a significant bias is evident in the order of the comments. When comparing

the same five comments, where the sole negative comment is placed last, the first diagram reveals
a positive purchase incentive exceeding 44% and a negative purchase incentive of approximately
18%. However, if the negative comment is positioned at the beginning, the positive responses drop
to merely 16%, while the negative responses surge to over 43%. This intriguing observation may
open the door to numerous compelling research questions.
‘Question 5’, ‘Question 6’, and ‘Question 7’ are used to test hypothesis H2 mentioned in

Section 6. We suggest a situation in which a customer, who has bought an item at its full price, later
discovers that another person obtained the same product at a discounted rate, possibly leading
to a sense of perceived unfairness. The detailed questions can be found in Figure EC.6, and the
distribution is in Figure 5.
An aspect of our investigation focused on the potential bias introduced by the initial positioning

of the slider in three questionnaire items. To assess this, the sliders were initialized in four distinct
scenarios, each distributed equally among participants:

• All sliders beginning at the midpoint (0.5).
• All sliders beginning at the maximum value (1).
• All sliders beginning at the minimum value (0).
• All sliders beginning at random positions.
The response distributions for each initialization scenario are illustrated in Figure EC.7, which

suggests that there is no significant bias resulting from the initial location of the slider.
Finally, ‘Question 8’ verifies hypothesis H3, which is to evaluate if people are more responsive

to recent differences in treatment compared to those that occurred further back in time. The
detailed question can be found in Figure EC.8, and the distribution has been mentioned in Figure
6.
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Figure EC.3 Question 2 and Question 3

EC.1.3. 30% Discount Survey
We conducted a comparative survey, wherein the 10% discount is replaced by a 30% discount. In
this section, we will show the distribution of the answers of Question 1 - 8.
Specifically, the distribution for ‘Question 1’ can be found in Figure EC.9. ‘Question 2’ is

depicted in Figure EC.10, while ‘Question 3’ is represented in Figure EC.11. The responses to
‘Question 4’ are presented in Figure EC.12, and the distributions for ‘Questions 5’ to ‘Question
7’ are consolidated in Figure EC.13. Finally, the distribution for ‘Question 8’ is available in
Figure EC.14. Upon comparison with the data in Section 6, it appears that the magnitude of the
discount offered does not significantly influence the distribution of responses to these questions.
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Figure EC.4 Question 4

Figure EC.5 Answer Distribution under Random Order of Comments

EC.2. Supplementary Material for Section 2
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Figure EC.6 Details of Questions 5-7

Algorithm 5: DLP-PA

Input: Optimal primal variable x∗. Preference matrix A. Arriving rate vector λ. Capacity
vector m. Time horizon [0, T ].

Output: Acceptance decision for customers over time and update of capacity vector m.
for t∈ {1,2, ..., T} do

Observe customer of type i∈ [n].
if Ai ≤m(t) for all i∈ [n] then

Accept customer with probability
x∗i
λi
.

if customer is accepted then
m(t+1)←m(t)−Ai.

else
Reject the arriving customer and break.

Algorithm 6: RDLP-PA

Input: Preference matrix A. Arriving rate vector λ. Capacity vector m. Time horizon
[0, T ]. Resolving time point t∗.

Output: Updated optimal primal solutions x∗ and x̃∗ based on capacity adjustments at t∗.
At t= 0, solve DLP based on the initial capacity. Denote the optimal primal solution as x∗.
Run Algorithm 5 with initial capacity m, horizon [0, t∗], and optimal primal solution x∗.
At t= t∗, solve DLP based on the remaining capacity. Let x̃∗ be the optimal primal solution.
Run Algorithm 5 with remaining capacity, horizon [t∗, T ], and optimal primal solution x̃∗.

EC.3. Supplementary Material For Section 3
Proof of Lemma 1 Let’s focus on a type i ∈ [n], to simplify the notation, we denote pu as the

probability algorithm A accepts customer i(u). For any v > u, we have P (i(v)≻A i(u)) = pv(1−pu).
We first show that for any u<w < v, we have pv(1− pu)≤ pw(1− pu)+ pv(1− pw).
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Figure EC.7 Answer Distribution of Questions 5-7 with Different Starting Location of Sliders

Observe that since pu, pv ∈ [0,1], we have (1− pu)(1− pv)≥ 0. Then, we can obtain

0≤ (1− pu)(1− pv)

⇐⇒ pu + pv − 1≤ pupv
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Figure EC.8 Details of the Eighth Question

Figure EC.9 Distribution of preferences among respondents of Question 1

=⇒ pw(pu + pv − 1)≤ pupv (EC.1)

⇐⇒−pupv ≤ pw− pupw− pwpv

⇐⇒ pv − pupv ≤ pv + pw− pupw− pwpv

⇐⇒ pv(1− pu)≤ pw(1− pu)+ pv(1− pw),
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Figure EC.10 Distribution of preferences among respondents of Question 2

Figure EC.11 Distribution of preferences among respondents of Question 3

Algorithm 7: S-BPC

Input: Optimal dual variable θ∗. Preference matrix A. Reward vector r. Capacity vector
m.

Output: Acceptance decision for customers over time and update of capacity vector m.
for t∈ {1,2, ..., T} do

Observe customer of type i. Set yt← 1
(
ri >

∑L

j=1 θ
∗
jAij

)
.

if Ai ≤m(t) for all i∈ [n] then
if yt equals to 1 then

Accept the arriving customer.
else

Reject the arriving customer.
Set m(t+1)←m(t)− ytAi.

else
Reject the arriving customer and break.

where (EC.1) is because pw ∈ [0,1]. Therefore, for any v > u, we have

pv(1− pu)≤
v−u∑
i=1

pu+i(1− pu)≤
v−u∑
i=1

α= α(v−u).
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Figure EC.12 Left: Distribution of preferences for store, TrendThread; Right: Distribution of preferences for
store, Stitch&Style

Figure EC.13 Left: Distribution of preferences of Question 5; Middle: Distribution of preferences of Question
6; Right: Distribution of preferences of Question 7

Figure EC.14 Distribution of preferences among respondents of Question 8
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Algorithm 8: BL

Input: Preference matrix A. Capacity vector m. Booking limit b.
Output: Acceptance decision for customers over time and update of capacity vector m.
Initialize: Number of accepted customers si = 0, i∈ [n].
for t∈ {1,2, ..., T} do

Observe customer of type i∈ [n].
if Ai ≤m(t) and si < bi then

Accept the arriving customer, and set si← si +1, m(t+1)←m(t)−Ai.
else

Reject the arriving customer.

Algorithm 9: NESTING

Input: Capacity m. Nesting quota b.
Output: Acceptance decision for customers over time and update of capacity.
Initialize: Number of accepted customers si = 0, i∈ [n].
for t∈ {1,2, ..., T} do

Observe customer of type i∈ [n].
if m(t)≥ 1 and

∑n

j=i sj < bi then
Accept the arriving customer, and set si← si +1, m(t+1)←m(t)− 1.

else
Reject the arriving customer.

A similar argument can be applied on the case v < u, and we omit the proof.
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EC.4. Supplementary material for Section 4
EC.4.1. Proof of Theorem 2
[ Proof of Theorem 2] The proof of Theorem 2 is split into two parts: in the first one, we show

that Algorithm 1 is (α, δ)-fair. In the second part, we show that Algorithm 1 has a regret of O(T β).
Part 1: Define τ as the stopping time, where one of the resources depletes. Let k(τ) be the index

of time segment containing τ . Note that here both τ and k(τ) are random variables. For any type
i customer i(u) arriving within [1, (k(τ)− 1)T β], by definition, both decreasing grace period and
increasing grace period satisfy that P (i(u+1)≻A i(u))≤ α and P (i(u− 1)≻A i(u))≤ α for any u.
By Lemma 1, the (α, δ)-fair metrics is satisfied. For any customer i(u) arriving within [k(τ)T β, T ],
Theorem 1 shows that Algorithm 1 is (α, δ)-fair. Note that Theorem 1 only proves the fairness
of the decreasing grace period towards resource depletion. We can use a symmetric statement to
prove the fairness of the increasing grace period towards resource depletion, and we omit the proof
of this statement.
Part 2: To show the regret bound, we have

Regret =E[Rev⋆]−Rev(π) = (E[Rev⋆]−Rev(RDLP-PA))+ (Rev(RDLP-PA)−Rev(π))

=O(T β)+ (Rev(RDLP-PA)−Rev(π)) .

Next, we upper bound the value of Rev(RDLP-PA)−Rev(π).
Define τ as the stopping time, where one of the resources depletes, and t∗ as the re-solving time

point. Let k(τ), k(t∗) be the index of time segment containing τ , t∗, respectively. For any arriving
instance I, for the time segment 1,2, . . . , k(τ)−1, we make the following coupling between R-DLP
and GP Enhanced R-DLP: let ui(k) be the number of type i customers accepted by DLP in the

time segment k. We have ui(k)∼ Bin(λi
t2−t1
K

,
x∗i
λi
). Then, we couple yi in time segment k to have

the value ui(k). We can make this coupling because yi in time segment k and ui(k) follow the same
distribution. Let wi(k) be the number of rejected type i customers due to the grace period, and
let Yi(k) be the realization of total number of accepted type i customers in time segment. For any
instance I, any customer type i, and any time segment index s∈ [k(t∗)− 1], we have

s∑
k=1

ui(k)−Yi(k) =
s∑

k=1

ui(k)− (yi−wi(k)+wi(k− 1)) =wi(s)≤ 2
ā

a
γ, (EC.2)

which implies that

Rev(RDLP-PA)(1, (k(t∗)− 1)T 1/3)−Rev(π)(1, (k(t∗)− 1)T β)

=

k(t∗)−1∑
k=1

(
Rev(RDLP-PA)

(
(k− 1)T β +1, kT β

)
−Rev(π)

(
(k− 1)T β +1, kT β

))
=

n∑
i=1

wi(k(t
∗)− 1)≤ 2

ā

a
nγr̄. (EC.3)

Next, let x̃∗, ỹ∗ be the re-solved optimal solution by Algorithm RDLP-PA and Algorithm GP-
Enhanced-RDLP at time t∗ respectively. By Equation (EC.2), the difference of remaining capacity
Algorithm RDLP-PA and Algorithm GP-Enhanced-RDLP at time t∗ is at most O(logT ). Therefore,

|x̃∗− ỹ∗|=O

(
logT

T

)
.

For any instance I, any customer type i, and any time segment index s∈ {k(t∗), k(t∗)+1, . . . , k(τ)−
1}, we have

s∑
k=k(t∗)

ui(k)−Yi(k) =
s∑

k=k(t∗)

ui(k)−
(
yi−wi(k)+wi(k− 1)+O

(
logT

T

))
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=wi(s)+ (s− k(t∗))O

(
logT

T

)
≤ 2

ā

a
γ+O(logT ), (EC.4)

which implies that

Rev(RDLP-PA)(k(t∗)T β), (k(τ)− 1)T β)−Rev(π)(k(t∗)T β), (k(τ)− 1)T β)

=

k(τ)−1∑
k=k(t∗)

(
Rev(RDLP-PA)

(
(k− 1)T β +1, kT β

)
−Rev(π)

(
(k− 1)T β +1, kT β

))
=

n∑
i=1

wi(k(τ)− 1)+O(logT )≤ 2
ā

a
nγr̄+O(logT ). (EC.5)

As we can have at most 2T β loss in the time segment k(t∗) and k(τ), by Equations (EC.3) and
(EC.5), we can obtain:

Rev(RDLP-PA)−Rev(π) = 2T β +O(logT ).

EC.5. Supplementary Material for BPC-OGD
Balseiro et al. (2023b), Sun et al. (2020) propose a dynamic bid price control using first-order online
optimization methods: online gradient descent or online mirror descent (BPC-OGD). Compared to
S-BPC, BPC-OGD also incurs regret O(

√
T ) under stochastic arrivals, yet it offers two advantages:

(i) the algorithm can be applied even when the arrival processes λi are entirely unknown; (ii) it
does not require solving any primal or dual LP. The details of BPC-OGD can be found in Algorithm
10 below.

Algorithm 10: BPC-OGD

Input: Preference matrix A. Reward vector r. Capacity vector m. OGD Parameter: G, D,
θ̄.

Output: Update of dual variables θ over time.
Initialize: Dual variable θ(0)← 0.
for t= 1,2, . . . , T do

Observe customer of type i. Set yt← 1
(
ri >

∑L

j=1 θ
(t)
j Aij

)
.

if Ai ≤m(t) for all i∈ [n] then
if yt equals to 1 then

Accept the arriving customer.
else

Reject the arriving customer.
Set m(t+1)←m(t)− ytAi.

else
Reject the arriving customer and break.

Construct function gt(θ) =
∑L

j=1 θj

(
mj(t)

T
− ytAij

)
.

Update the dual variables using the OGD procedure:
ηt← D

G
√
T
,

θ(t+1)← θ(t)− ηt∇θgt(θ
(t)),

θ
(t+1)
j ←min

(
max

(
0, θ

(t+1)
j

)
, θ̄

)
for all i∈ [m].
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Algorithm 11: GP-Enhanced-BPC-OGD

Input: Preference matrix A. Reward vector r. Capacity vector m. OGD Parameter: G, D,
θ̄. Fairness parameters (α, δ).

Output: Update of dual variable θ and acceptance decisions over time.
Initialize: Dual variable θ(0)← 0.
Reject all customers arriving between t∈ [0, T 2/3].
Denote Λi as the number of arriving customers of type i between t∈ [0, T 2/3], i∈ [n].
Run Algorithm BPC-OGD as an auxiliary algorithm for t∈ [0, T 2/3].
Denote ui as the number of accepted customers of type i by BPC-OGD, i∈ [n].
Set K = T 1/3− 1, λi =

Λi

T2/3 and x∗
i =

ui

T2/3 , z
(0) = 0.

for k ∈ {1,2, ...,K} do
Run Algorithm 2 with t1 = kT 2/3, t2 = (k+1)T 2/3, z= z(k−1), optimal primal solution
x∗. Denote the output vector w as z(k).

BPC-OGD can be markedly unfair. To see this, let us simplify the setting and assume that there
is only one type of customer for t= 1,2, . . . , T . Also assume that there is only one type of resource
and each arriving customer requests a single unit of this resource. Subsequently, if we follow steps
15 and 16 in Algorithm 10, we find that θ(t) is a deterministic process that can be described as per
the following formula:

θ(t+1) =

{
θ(t)− D

G
√
T

m(t)

T
+ D

G
√
T
, if θ(t) < r ,

θ(t)− D

G
√
T

m(t)

T
, if θ(t) ≥ r ,

(EC.6)

Here, r ∈ (0,1), m(t) denotes the number of resources remaining at time t, with m(0) =m, and

m(t+1)=

{
m(t)− 1, if θ(t) < r ,
m(t), if θ(t) ≥ r ,

The deterministic process θ(t), as defined in Equation (EC.6), allows for the precise computation
of how frequently decisions switch between accepting and rejecting adjacent customers. Regardless
of the constants D, G, and r (where r lies between 0 and 1), this decision-making flips Θ(T )
times. This behavior highlights the algorithm’s significant unfairness, as it implies that almost
every customer is treated differently compared to their immediate predecessor or successor.

EC.5.1. Algorithm BPC-OGD
To modify BPC-OGD to comply with (α, δ)-fairness while minimally impacting revenue, we first
reject all arrivals in the period t ∈ [0, T 2/3]. Meanwhile, we operate BPC-OGD as an auxiliary
algorithm, documenting its decisions. We designate ui as the number of accepted type i customers
by BPC-OGD within the [0, T 2/3] time horizon, and Λi as the count of arriving type i customers
within [0, T 2/3]. Then, under mild non-degeneracy assumptions (as per assumption 3 in Agrawal
et al. (2014)), we obtain that the Euclidean distance between the rate of accepted type i customers

by BPC-OGD ( ui
Λi
), and that by DLP-PA (

x∗i
λi
), is bounded with high probability. Thus, even without

access to the λi arrival rate and with the prohibition of linear programming, we can utilize the
initial T 2/3 periods to approximate the optimal DLP solution x∗. Finally, for t ∈ [T 2/3, T ], we
execute the GP-Enhanced-RDLP Algorithm with a T 2/3 time segment length, setting x∗

i =
ui

T2/3 and

λi =
Λi

T2/3 , culminating in a (α, δ)-fair algorithm with regret O(T 2/3 logT ). Full details can be found
in Algorithm 11, and the following theorem summarizes the results.

Theorem EC.1. Given any α∈ (0,1), δ= 1/T , and any input BPC-OGD algorithm that attains
a regret of O(

√
T ), under a mild non-degenerate assumption (assumption 3 in Agrawal et al.

(2014)), Algorithm GP-Enhanced-BPC-OGD: (i) is (α, δ)-fair, (ii) incurs regret O(T 2/3 logT ).
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Proof of Theorem EC.1 First, in the period (0, T 2/3), Algorithm GP-Enhanced-BPC-OGD
rejects all customers, which is obviously (α, δ)-fair. As is shown in Theorem 2, Algorithm RDLP-PA
satisfies (α, δ)-fair metrics, we can obtain that Algorithm GP-Enhanced-BPC-OGD is (α, δ)-fair.

Secondly, to address the regret bound, we observe that the regret bound can be formulated as

Regret =E[Rev⋆]−Rev(π) =

=
(
E
[
Rev⋆(0, T 2/3)

]
−Rev(π)(0, T 2/3)

)
+
(
E
[
Rev⋆(T 2/3, T )

]
−Rev(π)(T 2/3, T )

)
, (EC.7)

where Rev(π) is revenue generated by Algorithm GP-Enhanced-BPC-OGD.
Upon rejecting all customers within [0, T 2/3], the maximum loss incurred is T 2/3 during the

initial T 2/3 periods, which implies that the first term in Equation (EC.7) is bounded by T 2/3. To
bound the second term, we show that the Euclidean distance between the rate of accepted type
i customers by BPC-OGD ( ui

Λi
), and that by DLP (

x∗i
λi
) is close. Let the expected total revenue

generated by BPC-OGD between (t1, t2) be Rev(BPC-OGD)(t1, t2). By Balseiro et al. (2023b), we
can obtain that BPC-OGD has the regret bound of O(

√
T ), which implies that for t∈ [0, T 2/3],

Rev⋆(0, T 2/3)−Rev(BPC-OGD)(0, T 2/3) =Rev⋆(0, T 2/3)−
∑
i∈[n]

riui =O
(√

T 2/3
)
=O

(
T 1/3

)
.

(EC.8)
A similar deduction holds for DLP given its regret bound of O(

√
T ), leading to

Rev⋆(0, T 2/3)−Rev(DLP-PA)(0, T 2/3) =Rev⋆(0, T 2/3)−
∑
i∈[n]

rix
∗
iT

2/3 =O
(√

T 2/3
)
=O

(
T 1/3

)
,

(EC.9)
where x∗

i is the ith element of the optimal solution of DLP. By Equations (EC.8) and (EC.9), we
have

|
∑
i∈[n]

riui−
∑
i∈[n]

rix
∗
iT

2/3|=O
(
T 1/3

)
. (EC.10)

Building on assumption 3 of Agrawal et al. (2014), according to Sun et al. (2020), for any i∈ [n],
the following equation holds with probability 1−O( 1

T
):

|ui−x∗
iT

2/3|=O
(
T 1/3 logT

)
. (EC.11)

For a given t∈ [T 2/3, T ], Algorithm GP-Enhanced-RDLP is executed with a time segment length

of T 2/3, and with x∗
i = ui

T2/3 . By Equation (EC.11), we have |x
∗
i

λi
− ui

λiT
2/3 | = O

(
T−1/3

)
, and by

Hoeffding’s inequality, we have | ui
Λi
− ui

λiT
2/3 |= O

(
T−1/3 logT

)
. Then, with triangle inequality, we

have

|x
∗
i

λi

− ui

Λi

|=O
(
T−1/3 logT

)
, (EC.12)

Therefore, to bound the second term in Equation (EC.7), we have

Rev⋆(T 2/3, T )−Rev(π)(T 2/3, T )

=
(
Rev⋆(T 2/3, T )−Rev(GP-Enhanced-RDLP)(T 2/3, T )

)
+
(
Rev(GP-Enhanced-RDLP)(T 2/3, T )−Rev(π)(T 2/3, T )

)
=O(

√
T )+

(
Rev(GP-Enhanced-RDLP)(T 2/3, (k(τ)− 1)T 2/3)−Rev(π)(T 2/3, (k(τ)− 1)T 2/3)

)
+
(
Rev(GP-Enhanced-RDLP)((k(τ)− 1)T 2/3, k(τ)T 2/3)−Rev(π)((k(τ)− 1)T 2/3, k(τ)T 2/3)

)
.

(EC.13)
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By Equation (EC.12), we can obtain

Rev(GP-Enhanced-RDLP)(T 2/3, (k(τ)− 1)T 2/3)−Rev(π)(T 2/3, (k(τ)− 1)T 2/3) = (T −T 2/3)O
(
T−1/3 logT

)
=O

(
T 2/3 logT

)
.

Moreover, as the length of the time segment k(τ) is T 2/3, we have

Rev(GP-Enhanced-RDLP)((k(τ)− 1)T 2/3, k(τ)T 2/3)−Rev(π)((k(τ)− 1)T 2/3, k(τ)T 2/3) =O(T 2/3).

Therefore, by Equation (EC.13), the second term in Equation (EC.7) is bounded by O(
√
T ) +

O(T 2/3 logT )+O(T 2/3) =O(T 2/3 logT ). Finally, by Equation (EC.7), we have the regret of Algo-
rithm GP-Enhanced-BPC-OGD is

Rev⋆−Rev(π) =O(T 2/3)+O(T 2/3 logT ) =O(T 2/3 logT ).

EC.6. Supplementary material for Section 5
Proof of Theorem 4 First, we show that GP-Enhanced-BL is (α, δ)-fair. Without the capacity

constraint, for each customer type i, GP-Enhanced-BL is the same as the FCFS algorithm under
a resource capacity bi, where bi is the booking limit. Therefore, by Theorem 1, GP-Enhanced-BL
is (α, δ)-fair if the demand is less than the capacity. Then, let’s consider the capacity constraint.
Suppose that at a certain time period t, minj∈[L]mj(t) − ānγ ≤ 0, for each customer type i, if
si < bi − γ, then GP-Enhanced-BL starts a decreasing grace period to type i. If si ≥ bi − γ, then
type i has been already started a decreasing grace period, and this will not have any impact on
the decision. Therefore, by Theorem 1, GP-Enhanced-BL is (α, δ)-fair.
Second, we show that GP-Enhanced-BL has a competitive ratio of C − O( logm

m
). If the total

number of arrivals is o(m), then with probability 1, no decreasing grace period will start because
the number of accepted customers is much fewer than the booking limit or resource capacity. This
leads to a competitive ratio of 1 because Algorithm 3 accepts everyone.
If the total number of arrivals is Ω(m), the offline optimal revenue is Θ(m) as the resource

capacity scales with m. Compare to Algorithm BL, the loss is only from the decreasing grace
period. The maximum number of customers who are rejected due to the decreasing grace period
is the total length of decreasing grace periods: ānγ+nγ = (ā+1)nγ, which will incur a maximum
revenue loss of (ā+1)nγr̄. Therefore, the competitive ratio is

inf
I∈I

Rev(π(I))

OPT(I)
≥ inf

I∈I

Rev(BL(I))− (ā+1)nγr̄

OPT(I)
=C −O

(
logm

m

)
.

EC.7. Supplementary material for Section 7
Proof of Theorem 6 First, we show that by assigning a decreasing grace period [t1(i), t2(i)],

where t1(i) = inf{t : minj∈[L]mj(t)≤ ānγ} and t2(i) = T to each type i customer, the static pricing
algorithm is (α, δ)-fair. Similarly to Lemma 1, we only need to show that for any customer type i,
with probability at least 1− δ, for any u∈ [ni], P

(
p(i)u ̸= p(i+1)

u

)
≤ α.

Define event E as E := {no resource is depleted in the time interval [0, T ]}. We show that E hap-
pens with probability at least 1−δ by showing that the complement of E happens with probability
at most δ.

P(EC)≤ P(more than γn customers are accepted in the grace period)

≤ P(∃i∈ [n], s.t. the number of type i customers accepted in the grace period ≥ γ)
(EC.14)

= 1−P(∃i∈ [n], s.t. the number of type i customers accepted in the grace period <γ)

= (1−α)γ (EC.15)

= (1−α)log1−α δ = δ,



ec16 e-companion to Jaillet, Podimata, and Zhou: Grace Period is All You Need

where (EC.14) is due to the pigeonhole principle, and (EC.15) is because for each type i, the
number of type i customers accepted after the grace period starts is a geometric random variable
with success probability α. Therefore, the cdf is 1− (1−α)γ .
Conditional on event E happening, for any customer i(u) arriving within [1, t1], the algorithm

gives the same price p(i)u to all of them. For any customer i(u) arriving within [t1, t2], by the
definition of the grace period, we obtain that P

(
p(i)u ̸= p(i+1)

u

)
≤ α.

To complete the proof of the theorem, we need to show that the revenue loss is bounded by ā
a
nγp̄.

In the worst case for the revenue, the algorithm rejects all customers after t1. By the definition
of t1, the remaining units for each j are ānγ. Since ānγ units of resource can serve at most ā

a
nγ

customers, we have that the revenue loss is at most ā
a
nγp̄.
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