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Abstract— Smartphones efficiently collect traffic information,
guide the drivers and inform the end-user about the
current and future traffic conditions. Due to enhanced sensor
technology, visualization capabilities, navigational performance
and network connectivity, smartphones play an important
role in advanced travel information systems (ATIS). Although
they offer increasing computation power nowadays, this
potential smartphone’ resource has not been explicitly evaluated
for neither ATIS nor Intelligent Transport System (ITS)
applications. In this study, we actively involve the smartphone
into real-time compressed prediction of large traffic networks.
More precisely, we run prediction algorithms on the central
server to obtain future state for the subset of the links
in the network that we refer to as compressed network
state. Then, we send the predicted values for compressed
network state to smartphones where network extrapolation
is performed. Network extrapolation involves vector-matrix
multiplication where row vector represents the compressed
network state while the matrix is stored on the mobile phone
and contains the relationships function between the compressed
state and entire network. Such decentralized infrastructure
can significantly reduce the overhead of the communication
network and enhance the development of cooperative, peer
to peer networks for the NextGen Intelligent Transportation
Systems applications.

I. INTRODUCTION

With the recent development in sensing and
communication technology, advanced travel information
systems (ATIS) become the key component towards the
efficient utilization of existing traffic infrastructure. ATIS
contain technological framework that: (1) collects traffic
variables in the large traffic networks and with the high
temporal frequency [1]–[3]; (2) processes the collected
data and reveal the meaningful information from it [4]–[7];
(3) disseminates the instructive real-time information to
the end users (travelers) in the form of either colored
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network maps or suggested trip characteristics such as
departure time, mode of transportation and assigned
path [3], [8]. The provided information is frequently
delivered via smartphones, embedded GPS devices or
desktop applications [8], [9]. Travelers utilize provided
information to chose less congested paths and consequently
decrease their travel time. In that way ATISs reduce the total
delay, improve the user’s comfort and satisfaction, decrease
the pollution and noise at congestion sites and enhance the
overall productivity within a city [10].

Smartphones are frequently seen as the most convenient
way to deliver real-time information to the travelers.
With easy-to-use characteristics, high penetration rate and
powerful performance, smartphones play important role
in both sensing and delivering traffic information. In the
former, numerous smart sensors such as accelerometers,
GPS, manometers, microphones and even cameras have
found many application domains in intelligent transportation
systems (ITS) [2], [11]–[15]. In the later, high visualization
and navigational performance of the smart devices inform the
end-users about the network condition and direct travelers to
their destinations [8], [9], [16]–[18]. Although smart devices
possess the significant and fast-growing computational
power, this potential is not explicitly evaluated for ITS
applications.

In this paper, we evaluate the capabilities of smartphones
for real-time multi-horizon traffic prediction by assigning
a certain computations to user’s smartphone device. Real
time traffic stream is provided by California Department
of Transportation (Caltrans). Caltrans deliver us traffic
variable (speed) for the freeway network across all major
metropolitan areas of the State of California. This data is
coming to our server every 5 minutes. To perform traffic
prediction we use compressed method, developed in our
previous study [19]. Compressed method explicitly predicts
the traffic conditions for the subset of road segments (or loop
stations in this study) using standard regression methods.
For the rest of the network traffic conditions are obtained
through straightforward vector-matrix multiplication where:
row vector contains traffic conditions for the subset of road
segments (e.g. 10%); the relationship matrix consists the
functions between the subset of road segments and whole
network. We propose to perform network extrapolation on
user’ device. Such a decentralized system can significantly
reduce the overhead of the communication network regarding
that traffic condition for few network places need to be
monitored, processed and sent to end users. Such an approach
also opens up the development of cooperative, peer to
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peer networks for the NextGen Intelligent Transportation
Systems. As a comparison, we explore: (1) traditional
(uncompressed) prediction method where traffic condition
for each road segment is explicitly predicted and sent to
user’s smartphone; (2) explicit prediction for subset of the
links, followed by network extrapolations that is performed
on central server computer. Like in previous case, traffic
information for the entire network is sent to the user’s
phone. We evaluate the accuracy and computational time of
the tested methods using Caltrans real-time data stream. To
achieve this we have developed mobile traffic application
that performs vector-matrix multiplication and contains the
matrix of relationship functions. Finally mobile application
overlays the background mobile map and inform the drivers
about the predicted traffic conditions.

The rest of the paper is structured as follows. In section II,
we describe the system infrastructure that we use for
real-time traffic prediction. We also briefly explain the
compressed prediction method that has been developed in our
previous study. In Section III, we explain the traffic data set
under consideration and experimental setup. In Section IV,
we provide the accuracy and computational complexity of
the tested approaches. We also briefly discuss the existing
capabilities of smartphones for traffic data analytics. In
Section V, we summarize our contributions and suggest
topics for future work.

II. ARCHITECTURAL OVERVIEW

This section presents the general architectural design of the
system for real-time traffic prediction on smartphones that
we use for evaluation [16]. The prototype system consists of
three components as illustrated in Fig. 1. In the following
subsections we briefly explain each component.

A. Third Party Dynamic Traffic Information Provider

California Department of Transportation (Caltrans)
provided us real-time stream and historical database of
traffic data through their Performance Measurement System
(PeMS) (see Fig.1). Real-time data is available on Caltrans
FTP server and is refreshed every 5 minutes. Historical
data is available for offline download on Caltrans internet
website [20]. Currently, we are using only the speed data,
generated from loop detectors that are installed in California
highway network [20].

B. Server Side Implementation

The server is the backbone of the implemented
infrastructure. Once the new Caltrans data becomes
available, the server fetches the real-time traffic information.
Traditional and compressed prediction approaches are
deployed on the server. In the former, server takes the
real-time and corresponding historical information for each
road segment (loop station) to perform prediction using a
standard regression model such as Support Vector Regression
(SVR). Once the prediction is done, server sends the
information for the entire network to user’ phone. In the
later, predefined subset of the links is used for explicit traffic

Fig. 1: Overall system architecture

prediction. In the following we briefly review the compressed
prediction that is deployed on the server.

Compressed traffic prediction is fast and scalable method
for traffic prediction. It explicitly predicts the traffic
conditions for the representative subset of the links, which
are obtained by analyzing the historical data [19]. We refer
to this subset as compressed traffic state. We chose the
subset of the links by: (i) assigning the importance to each
road segment in the network and (ii) performing the random
sampling using the assigned importance (probability) [19],
[21]. Future state of the compressed network is obtained
using support vector regression [22]. The prediction results
for the whole network are provided through straightforward
vector-matrix multiplication where row vector compromises
the traffic variable for compressed network state while
the matrix contains relationship functions between the
compressed state and whole network [19]. These relationship
functions are learned using the historical dataset.

In our analysis we consider two sub-cases of compressed
prediction: (i) vector-matrix multiplication is performed on
the server; (ii) vector-matrix multiplication is performed on
user’s phone and makes the overall system decentralized (see
Fig. 2). In the former, traffic condition for each road segment
in the network is sent to user’s phone. Snmartphone only
visualizes the obtained data. In the later, traffic conditions for
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the “representative” subset of the links is sent to user’s phone.
In this case smartphone performs the network extrapolation,
followed by data visualisation.

Server sends the traffic information to mobile phone
though Microsoft Internet Information service (IIS)
webserver. The predicted traffic information is currently in
the form of a comma separated files (CSV) and divided into
regions, thus making it platform independent with regard to
the client i.e. mobile phone.

C. Mobile Application Implementation

Mobile phones receive the traffic information from the
server and deliver the predicted network states to the users
through developed smart-phone’s application. Smart-phone
application aims to overlay traffic information on the base
map once the new data comes from the server. In the case that
network extrapolation is performed on user’ phones, mobile
application package has to contain matrix of relationship
functions.

The project is implemented for Android mobile operating
system. The open source nature of Android application
development is the main reason in selection of the platform.
Although project is implemented in Android, the scope is
not just limited to Android and using the similar approach it
can be implemented for other mobile operating systems too.

Traffic information coming from server is presented to
user in a geographic context. ESRIs ArcGIS runtime SDK
for Android is used to develop application and implement
geographic information system (GIS) features like map
layers, geocoding, location services etc [23]. The SDK
enables to display and edit feature geometry and attributes
which are required for traffic visualization and route display.
ArcGIS World Street Map is used as a base map for
overlaying traffic information [24]. GIS metadata which
includes geographic locations of loop detectors for each
district is provided by Caltrans and is stored on mobile phone
as part of the application package.

III. EXPERIMENTAL SETUP

In this section we describe the traffic data considered in the
study. We also explain how we run the experiments. At last,
we introduce various measures to assess the tested methods.

We deploy the tested methods in large California freeway
network (see Fig. 2 left). The California department of
Transportation (Caltrans) provided us historical and real-time
speed data with sampling interval of 5 minutes. The reported
speed represents the average speed of all vehicles which
traverse across the loop station point during the given
sampling interval.

Due to sensor malfunction and Caltrans replacement
operations, some stations do not report the traffic information
all the time. In our experiments we only use those stations
that are present in the historical databases for last several
months. We end up with a traffic network compromising
of 10355 links (road segments) divided into nine different
regions (D3-D12 without D9) where the lowest and the
highest number of the links in one region are 171 and 2467,

Fig. 2: California freeway network; divided into districts
respectively (see Fig. 2 right). The resulting set has negligible
percentage ( 0.1%) of missing data that is not taken in
consideration.

In this study, we evaluate the prediction accuracy and
computational times of three approaches. In the first
approach we use server to explicitly predict traffic speed
for each link in the network and utilize mobile app only for
visualization purposes. In the second approach we use server
to perform compressed prediction, extrapolation and send the
information for the entire network to mobile phone. Similar
to the first approach, mobile application only overlays the
background map with the most relevant data. In the third
approach we utilize server to explicitly predict the speed for
subset of the links. Then, we use smartphone to perform
network extrapolation followed by visualization of predicted
traffic conditions.

We use three months of data (Jan-March 2014) to assess
the prediction performance. We split this dataset into training
and testing subsets. Training set contains data for two
months, while the testing set contains remaining data. We use
training data to: (i) train the predictors; (ii) learn relationships
functions between the subnetwork and entire network. We
use testing set to evaluate the performance of traditional
and compressed prediction. To run prediction we deploy
SVR algorithm that is often applied for traffic data [22],
[25]. For SVR implementation we utilize matlab package
LIBSVM [26]. To predict speed for k-th prediction horizon
ahead we use the following feature vectors: (i) current speed
and k past speed values for particular road segment; (ii)
day in the week and time during the day. In our analysis,
we deploy ν-SVR for ν=1 and default values for other
parameters [26], [27]. To evaluate performance of the tested
methods, we consider percent root mean distortion (PRD)
error [28].

We use real-time stream and proposed system
infrastructure (see Section II) to assess the total
computational time of three different approaches. Total
computational time defines the budget of time from the
moment that data appears on the server until the predicted
data is displayed on user’s smartphone. Total computational
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time is sum of: (i) time that server takes to process latest
real-time data, and (ii) time that smartphone requires to
process the information from the server and display it
on the screen. In our analysis we use 2.76 GHz MacPro
server with 32GB of random-access memory (RAM) and
smartphone Nexus 4 with single processor of 1.5 GHz, and
2GB of RAM. In order to avoid randomness associated with
network load and other factors we run experiments 10 times
and report the average values.

IV. RESULTS
First we investigate the prediction accuracy of the

traditional and compressed method for each region in the
network. In traditional method, we use support vector
regression (SVR) algorithm to explicitly predict the traffic
speed for each road segment in the network. In compressed
prediction, we use the future state of small subset of roads
(obtained by SVR algorithm) in a particular region to predict
future traffic conditions for the entire region. Table I and
Table II show the prediction performance of of traditional and
compressed methods for 5 and 30 min prediction horizons,
respectively. Table I shows that SVR algorithm can achieve
high prediction accuracy for highway network and short
prediction horizon. As expected, the compressed method has
slightly larger error than the traditional approach. For each
region, error of compressed method decreases if: (i) the
portion of the network increases where the traffic speed is
explicitly predicted; (ii) the prediction horizon increases (see
Table II). Table II shows that predictions of future network
states for larger horizons is difficult even with traditional
approach. The magnitude of additional errors, for both 5
and 30 minutes prediction horizons are in agreement with
the results of other relevant studies [19].

Let us now present the server’ and smartphone’
computational times. Table III and IV show the
computational times that the server takes to perform
traffic prediction for 5 and 30 minute prediction horizons,
respectively. Each Table shows the computational times
for traditional and compressed approaches. In the case
of compressed approach, Tables III and IV provide the
computational times for explicit prediction (for subset of
the links) and for network extrapolation. Table III and IV
show the advantage of using compressed prediction over
traditional approach in terms of time savings. This saving
is proportional to the compression ratio and it is obtained
at the expense of minor reduction in prediction accuracy
(see Table I and II). Table III and IV further show
that network extrapolation time, if performed on server, is
negligible. However, this is not the case when extrapolation
is performed on tested smartphone. These times are given
in Table V. Table V shows the computation times of
mobile application for refreshing the user interface and (if
necessary) network extrapolation. Regarding that prediction
horizon does not effect the smartphone’ computation times,
Table V is valid for any prediction horizon. The most
computationally expensive task for mobile application is
the network extrapolation i.e. multiplication of row vector
that contains the compressed predictions received from the

server with relationship matrix stored on mobile. This time is
proportional to square of the number of links where the speed
is explicitly predicted. The network extrapolation times are
within the five minute interval, even for the largest region
and lowest compression ratio (see Table V).

Table VI and VII show the total computational times
for tested approaches and different compression ratios.
Obviously, smart phones have fewer computational resources
than desktop computers. However, we can expect mobile
devices to have more computational power in the future. So
far smartphone can easily store the relationship matrices from
smallest one of 18kb (for D5 and CR10) up to largest one
of 12MB (for D7 and CR2). The experiments also resulted
in low battery drainage and managable power consumption,
which were comparable to the native applications on the
smartphone. These parameters will be extensively explored
in our next study.

V. CONCLUSIONS AND FUTURE WORK

In this paper we evaluated the performance of smartphones
in performing real-time traffic predictions. More precisely,
we performed prediction for subset of the links on the
server and sent the predicted values to smartphone in
real-time. The predicted values are sent in the form of the
row vector, that we refer to as compressed network state.
We utilize smartphone performance to extrapolate results
for the entire network by multiplying the row vector of
compressed network state with the matrix of relationship
functions that is stored on the smartphone, as part of mobile
map. In such a way we do not need to collect, process
and send the traffic information for the entire region to
user’ mobile. Instead we focus on subset of ”representative”
road segments in the network. Such approach provides
competitive accuracy with the traditional approach which
explicitly predicts traffic variable for each road in the
network. Furthermore, such decentralized approach opens
up development towards NextGen Intelligent Transportation
Systems applications.

For future work we propose to explore different methods
that can help us to optimize computation cost of smartphone
and reduce the size of computation matrices. Finally, for
future work we propose to explore the idea of the dynamic
routing that is based on multi-horizon compressed prediction.
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Region D3 D4 D5 D6 D7 D8 D10 D11 D12
Number of station 799 2194 147 171 2647 1434 558 803 1464
Traditional SVR 2.62 2.55 2.18 2.18 3.339 2.22 4.14 2.39 3.13
CR=2 3.36 4.34 3.18 2.52 5.75 2.94 4.64 3.34 4.28
CR=4 4.18 5.70 4.51 3.22 7.64 3.86 5.09 4.24 5.44
CR=6 4.69 6.30 5.25 3.62 8.52 4.48 5.34 4.82 6.04
CR=8 5.08 6.68 6.09 4.23 9.03 4.85 5.50 5.16 6.46
CR=10 5.42 7.00 6.12 4.47 9.31 5.07 5.69 5.49 6.89

TABLE I: PRD error of the traditional and compressed prediction methods for different regions and compression ratios
(CR). Prediction performance refers to 5 min prediction horizon.

Region D3 D4 D5 D6 D7 D8 D10 D11 D12
Number of station 799 2194 147 171 2647 1434 558 803 1464
Traditional SVR 5.17 5.75 5.08 3.77 8.07 4.82 5.20 5.84 6.67
CR=2 5.42 6.53 5.38 3.90 8.90 5.11 5.49 6.02 7.06
CR=4 5.71 7.17 5.79 4.14 9.70 5.49 5.74 6.22 7.45
CR=6 5.89 7.48 6.10 4.27 10.02 5.76 5.88 6.69 7.64
CR=8 6.08 7.66 6.51 4.57 10.27 5.90 6.00 6.51 7.83
CR=10 6.22 7.83 6.52 4.63 10.41 5.99 6.11 6.60 8.02

TABLE II: PRD error of the traditional and compressed prediction methods for different regions and compression ratios
(CR). Prediction performance refers to 30 min prediction horizon.

Region D3 D4 D5 D6 D7 D8 D10 D11 D12
Number of station 799 2194 147 171 2647 1434 558 803 1464
Traditional SVR 2.78 6.82 0.55 0.66 8.45 5.3 2.07 3.06 5.82

CR=2
SVR 1.51 3.53 0.31 0.35 4.66 2.89 1.08 1.6 2.96

Network extrapolation 1.79E-04 1.00E-03 2.93E-05 3.45E-05 1.60E-03 4.66E-04 1.11E-04 1.81E-04 8.66E-04

CR=4
SVR 0.77 1.76 0.17 0.19 2.26 1.41 0.53 0.8 1.46

Network extrapolation 1.16E-04 5.87E-04 2.43E-05 2.81E-05 7.48E-04 2.70E-04 7.81E-05 3.89E-04 2.71E-04

CR=6
SVR 0.51 1.18 0.11 0.13 1.49 0.92 0.36 0.54 0.97

Network extrapolation 9.07E-05 4.01E-04 2.07E-05 2.27E-05 4.96E-04 1.93E-04 2.64E-04 8.86E-05 2.00E-04

CR=8
SVR 0.39 0.88 0.09 0.1 1.12 0.7 0.27 0.41 0.73

Network extrapolation 7.73E-05 3.05E-04 1.83E-05 2.14E-05 3.87E-04 1.63E-04 6.19E-05 7.77E-05 1.66E-04

CR=10
SVR 0.32 0.71 0.08 0.08 0.9 0.56 0.22 0.33 0.59

Network extrapolation 7.22E-05 2.56E-04 1.80E-05 1.96E-05 3.19E-04 1.20E-04 5.93E-05 1.33E-04 1.31E-04

TABLE III: Time (in seconds) taken by server to perform predictions (5 minute prediction horizon).

Region D3 D4 D5 D6 D7 D8 D10 D11 D12
Number of station 799 2194 147 171 2647 1434 558 803 1464
Traditional SVR 4.85 13.75 0.93 1.11 16.69 8.98 3.48 5.09 9.33

CR=2
SVR 2.48 6.9 0.49 0.57 8.56 4.59 1.76 2.56 4.56

Network extrapolation 1.70E-04 9.83E-04 2.88E-05 3.31E-05 0.002 4.29E-04 1.05E-04 1.68E-04 4.62E-04

CR=4
SVR 1.27 3.43 0.26 0.31 4.26 2.27 0.89 1.28 2.33

Network extrapolation 1.07E-04 5.27E-04 2.42E-05 2.77E-05 7.48E-04 2.54E-04 7.73E-05 1.05E-04 2.46E-04

CR=6
SVR 0.86 2.3 0.18 0.21 2.84 1.51 0.58 0.86 1.55

Network extrapolation 8.60E-05 3.62E-04 2.01E-05 2.20E-05 4.96E-04 1.69E-04 6.36E-05 8.44E-05 1.74E-04

CR=8
SVR 0.65 1.72 0.14 0.16 2.13 1.14 0.45 0.65 1.18

Network extrapolation 7.25E-05 2.69E-04 1.79E-05 2.03E-05 3.87E-04 1.41E-04 5.93E-05 7.31E-05 1.44E-04

CR=10
SVR 0.53 1.38 0.12 0.13 1.71 0.91 0.36 0.53 0.95

Network extrapolation 6.93E-05 2.24E-04 1.81E-05 1.90E-05 3.19E-04 1.20E-04 5.93E-05 1.33E-04 1.23E-04

TABLE IV: Time (in seconds) taken by server to perform predictions (30 minute prediction horizon).

Region D3 D4 D5 D6 D7 D8 D10 D11 D12
Number of station 799 2194 147 171 2647 1434 558 803 1464
UI refresh time 0.18 0.29 0.10 0.09 0.32 0.25 0.17 0.15 0.23
CR=2 22 170 0.65 0.71 173 80 20.7 22.5 85
CR=4 12.5 83 0.82 0.84 89 40.8 11.5 12.8 42.9
CR=6 8.5 56 0.56 0.6 60 28.9 7.5 8.9 30.8
CR=8 6.2 42.5 0.45 0.48 47 21.2 5.5 6.9 22.3
CR=10 5.64 34 0.13 0.14 38 17 4.6 5.9 18

TABLE V: Time (in seconds) taken by mobile application to perform network extrapolation and refresh User Interface.
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Region D3 D4 D5 D6 D7 D8 D10 D11 D12
Number of station 799 2194 147 171 2647 1434 558 803 1464
Traditional SVR 2.96 7.11 0.65 0.75 8.77 5.55 2.24 3.21 6.05

CR=2
Extrapolation on Server 1.69 3.82 0.41 0.44 4.98 3.14 1.25 1.75 3.19

Extrapolation on Mobile 23.69 173.82 1.11 1.12 177.98 83.14 21.95 24.25 88.19

CR=4
Extrapolation on Server 0.95 2.05 0.27 0.28 2.58 1.66 0.7 0.95 1.69

Extrapolation on Mobile 13.45 85.05 1.091 1.12 91.58 42.46 12.2 13.75 44.59

CR=6
Extrapolation on Server 0.69 1.47 0.21 0.22 1.81 1.17 0.53 0.69 1.2

Extrapolation on Mobile 9.19 57.47 0.772 0.82 61.81 30.07 8.03 9.59 32

CR=8
Extrapolation on Server 0.57 1.17 0.19 0.19 1.44 0.95 0.44 0.56 0.96

Extrapolation on Mobile 6.77 43.67 0.64 0.67 48.44 22.15 5.94 7.46 23.26

CR=10
Extrapolation on Server 0.5 1 0.18 0.17 1.22 0.81 0.39 0.48 0.82

Extrapolation on Mobile 6.14 35 0.31 0.31 39.22 17.81 4.99 6.38 18.82

TABLE VI: Aggregate Time (in seconds) of all three proposed approaches(5 minute prediction horizon).
Region D3 D4 D5 D6 D7 D8 D10 D11 D12

Number of station 799 2194 147 171 2647 1434 558 803 1464
Traditional SVR 5.03 14.04 1.03 1.2 17.01 9.23 3.65 5.24 9.56

CR=2
Extrapolation on Server 2.66 7.19 0.59 0.66 8.88 4.84 1.93 2.71 4.79

Extrapolation on Mobile 24.66 177.19 1.29 1.34 181.88 84.84 22.63 25.21 89.79

CR=4
Extrapolation on Server 1.45 3.72 0.36 0.4 4.58 2.52 1.06 1.43 2.56

Extrapolation on Mobile 13.95 86.72 1.181 1.24 93.58 43.32 12.56 14.23 45.46

CR=6
Extrapolation on Server 1.04 2.59 0.28 0.3 3.16 1.76 0.75 1.01 1.78

Extrapolation on Mobile 9.54 58.59 0.842 0.9 63.16 30.66 8.25 9.91 32.58

CR=8
Extrapolation on Server 0.83 2.01 0.24 0.25 2.45 1.39 0.62 0.8 1.41

Extrapolation on Mobile 7.03 58.01 0.802 0.85 62.45 30.29 8.12 9.7 32.21

CR=10
Extrapolation on Server 0.71 1.67 0.22 0.22 2.03 1.16 0.53 0.68 1.18

Extrapolation on Mobile 6.35 35.67 0.35 0.36 40.03 18.16 5.13 6.58 19.18

TABLE VII: Aggregate Time (in seconds) of all three proposed approaches (30 minute prediction horizon).
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