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Abstract

In this paper we study algorithms for online routing and machine scheduling problems.

The problems are “online” because the problem instances are revealed incrementally. We first

study algorithms for the online Traveling Repairman Problem (TRP), where a single server is

to visit a set of locations in a network with the objective of minimizing the sum of weighted

completion times. We then analyze well-known online algorithms for a variety of machine

scheduling problems, which are appropriate models for many network optimization problems; in

the scheduling notation of Graham et al. [18], we consider 1|rj , pmtn|
∑

j wjCj , 1|rj |
∑

j wjCj ,

Q|rj , pmtn|
∑

j Cj , P |rj |
∑

j Cj , Q|rj , pmtn|
∑

j wjCj and Q|rj |
∑

j wjCj .

We introduce general probabilistic assumptions about the problem data as a tool to study

the online algorithms for these online combinatorial problems. The algorithms do not utilize

the underlying probabilistic assumptions in any way. We prove that these online algorithms are

almost surely asymptotically optimal.

1 Introduction

In this paper we consider a number of online combinatorial optimization problems. In particular, we

consider an online routing problem and several online machine scheduling problems. These problems

are all appropriate models for various network optimization problems; we provide examples shortly.

The problems are online because the problem instance is revealed incrementally but decisions can

(and sometimes must) be made before the entire problem instance is revealed. We investigate these

problems in a novel manner: we introduce general probabilistic assumptions for the problem data

and we analyze classic online algorithms that do not utilize the stochastic knowledge. We prove that

these well-known online algorithms are asymptotically optimal, almost surely.
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The first problem that we study is the Traveling Repairman Problem (TRP), which is well known

in both Operations Research and Computer Science. In one of its simplest forms we are given a

network N = (V,E), where vertices represent cities and edge lengths represent distances between

cities. Each city has an associated non-negative weight, representing, for example, the importance

of the city. A city’s completion time is defined as the first time that a city is visited. Given an origin

city, the task is to find a path through the network that traverses each city at least once. Assuming

that the repairman has a constant speed, the objective is to minimize the weighted sum of city

completion times; this objective is also referred to as the latency. The latency is closely related to

the (weighted) average completion date of all cities. We may also incorporate release dates, where a

city must be visited on or after its release date; in this case the problem is known as the “TRP with

release dates.” Additionally, we may incorporate precedence constraints, where some cities must be

visited before others. Precedence constraints are appropriate, for example, if packages/people have

to be picked up at one location and delivered to another location.

In our paper, we study online versions of the TRP with precedence constraints, where the in-

stance is not revealed all at once. In the framework considered in this paper, the cities are revealed

dynamically over time, independent of the repairman’s location, at their release date. The cor-

responding offline problem, where all data is known a priori, is the TRP with release dates and

precedence constraints as introduced above.

Apart from the straightforward applications in routing with the latency objective, the TRP has

many other applications. Simchi-Levi and Berman [31] consider the TRP in flexible manufacturing

systems. Some machine scheduling problems can be cast as a TRP; see Rinnooy Kan [23] and

Picard and Queyranne [26]. Tsitsiklis [34] describes other applications as well. Finally, the TRP is

appropriate in searching problems: if one were to search for a prize located at any of n given points in

a network (where distances satisfy the triangle inequality) with equal probability, the optimal TRP

solution gives the minimum expected time to find the prize (see Blum, Chalasani, Coppersmith,

Pulleyblank, Raghavan, Sudan [6].)

We also study online algorithms for a number of machine scheduling problems whose offline

versions are NP-hard. Machine schedule problems are an appropriate model for solving a number of

network optimization problems. Generically, any routing optimization problem on a network can be

cast as a machine scheduling problem with sequence-dependent processing times. More specifically,

scheduling in computer networks can be solved using machine scheduling models. For example,

single machine scheduling concepts have been applied to browsing the Internet by Xia and Tse [35].

Bampis and Rouskas [4] apply machine scheduling concepts to problems arising in optical networks

and IP routers.

We study the problem of scheduling jobs that arrive in an online fashion in single and multiple

machine environments. In the multiple machine environment, we consider the case where the ma-

chines are all identical as well as the case where the machines have different processing speeds. A

job’s completion time is defined as the first time that the job has been completely processed. The
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objective is to minimize the weighted sum of job completion times (similarly to the online TRP

objective). We consider both preemptive and non-preemptive problems. In the scheduling notation

of Graham, Lawler, Lenstra, Rinnooy Kan [18], we study online versions of 1|rj , pmtn|
∑

j wjCj ,

1|rj |
∑

j wjCj , Q|rj , pmtn|
∑

j Cj , P |rj |
∑

j Cj , Q|rj , pmtn|
∑

j wjCj and Q|rj |
∑

j wjCj .

The focus of this paper is on studying algorithms for these online routing and machine scheduling

problems. Online algorithms are usually evaluated using the competitive ratio, which is defined as

the worst case ratio, over all problem instances, of the online algorithm’s cost to the cost of an optimal

offline algorithm. We, however, evaluate these online algorithms using the asymptotic competitive

ratio criteria, which is defined as the worst case ratio of the online algorithm’s cost to the cost of an

optimal offline algorithm, for large enough problem instance sizes.

We show that under certain conditions, the asymptotic competitive ratio of classic online al-

gorithms is equal to one; i.e., the online algorithms are asymptotically optimal. In particular, we

introduce general probabilistic assumptions on the problem data as a tool to study the online algo-

rithms. The deterministic online algorithms that we study do not use the probabilistic information

in any way. Furthermore, no specific distributional assumptions are made; we only assume that the

problem data is generated by a distribution that belongs to a class of distributions that we define.

Under these stochastic assumptions, we show that the classic algorithms we consider are almost

surely asymptotically optimal. One of the motivations for this research is to provide an explanation

of the excellent performance that some of these algorithms exhibit computationally as well as in

practice.

1.1 Previous Work

Considering the online TRP, Feuerstein and Stougie [15] give a lower bound of (1+
√

2) for the com-

petitive ratio and a 9-competitive algorithm, both for the online TRP on the real line. Krumke, de

Paepe, Poensgen, Stougie [24] improved upon this result to give a (1 +
√

2)2-competitive determin-

istic algorithm for the online TRP in general metric spaces as well as a Θ-competitive randomized

algorithm, where Θ ≈ 3.64; this result was corrected to Θ ≈ 3.86 in Jaillet and Wagner [20] (see

also [25]). The online TRP under advanced information, where cities are revealed to the online algo-

rithm before their release dates, was also considered in [20]. A similar approach was taken by Allulli,

Ausiello, Laura [2] in the form of a lookahead. Bonifaci and Stougie [8] consider the online TRP

with k servers and give an algorithm that is 6-competitive and mention that their approach can be

modified to prove their algorithm is (1 +
√

2)2-competitive, matching the single server result. They

also consider the effect on the competitive ratio of giving the online algorithm additional servers: If

the online algorithm has k servers and the offline algorithm has k∗ ≤ k servers, their algorithm is

2 · 31/bk/k∗c-competitive.

To the best of our knowledge, there is very little previous research on the asymptotic competitive

ratio for the online TRP. The one exception is also contained in the work by Bonifaci and Stougie

[8]: If all cities are located on the real line, they give a deterministic algorithm with a competitive
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ratio of 1 + O((log k)/k); i.e., as k →∞, their algorithm is asymptotically optimal.

However, there have been similar approaches for related online routing problems such as the

online TSP. Hiller [19] performs a probabilistic asymptotic competitive analysis of an online Dial-

a-Ride problem on trees. Recently, Jaillet and Wagner [21] have investigated generalizations of the

online TSP from an asymptotic point of view and have shown a number of almost sure asymptotic

optimality results.

We next consider the literature on online machine scheduling problems. As the literature in this

area is vast and we do not intend to give a comprehensive review, we only mention the references

that are most relevant to our paper. Anderson and Potts [3] give a deterministic online algorithm for

1|rj |
∑

j wjCj and show that it has a competitive ratio of 2. Goemans, Queyranne, Schulz, Skutella

and Wang [17] give a randomized algorithm for the same problem with a competitive ratio of at

most 1.68. Sitters [32] gives a deterministic algorithm for 1|rj , pmtn|
∑

j wjCj with a competitive

ratio of at most 1.56. Schulz and Skutella [29] give a randomized online algorithm for the same

problem with a competitive ratio of at most 4
3 . Chekuri, Motwani, Natarajan and Stein [10] give

a deterministic online algorithm for P |rj |
∑

j Cj that has a competitive ratio of at most 3 − 1
m ,

where m is the number of machines. We are not aware of any further competitive ratio results for

the problems P |rj |
∑

j Cj and P |rj , pmtn|
∑

j Cj ; therefore, we now give state of the art results

for the weighted sum of completion dates objective. Correa and Wagner [13] give a deterministic

algorithm for P |rj |
∑

j wjCj with a competitive ratio of at most 2.62. Schulz and Skutella [30] give

randomized online algorithms for P |rj |
∑

j wjCj and P |rj , pmtn|
∑

j wjCj that have competitive

ratios of at most 2. Correa and Wagner [13] improve on these last results, but the improvement

depends on the number of machines. To the best of our knowledge, there are no existing worst-case

results for Q|rj |
∑

j wjCj or its preemptive version.

Most relevant to our online machine scheduling work is the paper by Chen and Shen [11]. These

authors study online single machine, uniform parallel machine and flow shop scheduling problems

under stochastic assumptions on the problem data, similar to ours, and they show that a class of

online algorithms are almost surely asymptotically optimal. However, the authors make the ad-

ditional assumption that there exist explicit positive lower and upper bounds on the job weights

and processing requirements; we do not make this assumption. Similarly, Chou, Queyranne and

Simchi-Levi [12] consider the online version of Q|rj |
∑

j wjCj and show that, if there exist posi-

tive lower and upper bounds on the processing requirements and weights, the algorithm Weighted

Shortest Processing Requirement (WSPR) is deterministically asymptotically optimal. Additionally,

Kaminsky and Simchi-Levi [22] show that the Shortest Processing Time Among Available (SPTA)

heuristic is deterministically asymptotically optimal for the online version of 1|rj |
∑

j Cj , under the

assumption that the processing requirements are all contained in a bounded interval.

The paper by Savelsbergh, Uma and Wein [28] gives a comprehensive computational study of

the offline 1|rj |
∑

j wjCj ; they show that many algorithms perform much better than is theoreti-

cally predicted. In the journal version of Correa and Wagner [13], a computational study of online
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algorithms for P |rj |
∑

j wjCj and P |rj , pmtn|
∑

j wjCj is given and it is again shown that the algo-

rithms perform better than expected. Additionally, Albers and Schröder [1] perform a computational

study of online algorithms for parallel machine scheduling problems with the objective of minimiz-

ing the makespan. They experimentally show that online algorithms that perform well on randomly

generated data do not necessarily perform well on real-world data.

1.2 Our Contributions

We give the first asymptotic optimality results for the online TRP with precedence constraints. These

results continue the work in [21] to arguably more complicated online routing problems (routing

optimization problems with the latency objective are usually considered more difficult that those

with the makespan objective). Furthermore, our asymptotic approach is arguably more realistic than

the only other asymptotic analysis for the online TRP (see [8]): We consider the limit as the number

of cities (rather than the number of servers) goes to infinity. In our opinion, it is more realistic to

consider a problem with a very large number of locations to visit than one with a very large fleet of

vehicles. These results also have a strong practical implication: If the number of locations to visit

is large enough, then the additional cost of having dynamic uncertainty (the problem being online),

compared to having all information a priori, is negligible.

We also give the first asymptotic optimality results for the problems 1|rj , pmtn|
∑

j wjCj , 1|rj |
∑

j

wjCj , Q|rj , pmtn|
∑

j Cj , P |rj |
∑

j Cj , Q|rj , pmtn|
∑

j wjCj and Q|rj |
∑

j wjCj , that do not require

explicit bounds on the job weights and processing requirements. For the first three problems, we

analyze well-known online algorithms that run in polynomial time. For the final two problems, we

study online algorithms that do not run in polynomial time. Our results complement the research

in [11], [12] and [22]. Taken together, these results provide a convincing explanation for the good

practical and computational performance exhibited by the online algorithms.

A main benefit of our machine scheduling research is to relax the explicit lower and upper bounds

required by the deterministic analyses in [12] and [22]. By introducing probabilistic assumptions, we

are able to relax the explicit bounds on the data into bounds on the distributional moments of the

data. Note, however, that our approach was only successful for slightly simpler problems than those

considered in [12]. Additionally, our proofs, while in a probabilistic domain, are arguably simpler.

Finally, our results are similar to the almost sure asymptotic optimality results in [11], but again we

do not require the explicit bounds on the problem data.

Paper Outline: In Section 2, we detail the problem descriptions, introduce probabilistic assumptions

and give useful technical results. In Section 3 we present our results for the online TRP. In Section

4 we consider single machine scheduling problems and in Section 5 we study the multiple machine

cases.
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2 Preliminaries

2.1 Problem Data for the Online Traveling Repairman Problem

The data for our problem is given by (li, ri, wi), i = 1, . . . , n, where n is the number of requests.

Each request i consists of m locations to visit: li = (l1i , l
2
i , . . . , l

m
i ), where lji ∈ M, M an Euclidean

metric space of dimension d. The quantity ri ∈ R+ is the ith request’s release date; i.e., ri is

the time after which cities in request i will accept service. We assume, without loss of generality,

that r1 ≤ r2 ≤ · · · ≤ rn. The quantity wi ∈ R+ is the ith request’s weight. Strict precedence

constraints exist within a request: ∀i, l1i � l2i � · · · � lmi . In other words, l1i must be visited before

l2i , which in turn must be visited before l3i and so on. Let Lj
TSP denote the shortest tour through

the points {lj1, . . . , ljn} for each j ∈ {1, . . . ,m}. The service requirement at a city is zero. Unless

stated otherwise, the repairman travels at unit speed or is idle. The problem begins at time 0, and

the repairman is initially at a designated origin o of the metric space. The objective is to minimize

the weighted sum of request completion times
∑n

i=1 wiCi, where a request’s completion time is the

first time that all cities in the request have been visited. Finally, LTRP is the optimal cost when all

release dates are equal to zero.

2.2 Problem Data for Online Machine Scheduling Problems

The data for our problems is given by (pi, ri, wi), i = 1, . . . , n, where n is the number of jobs.

pi ∈ R+ is the processing requirement of job i, ri ∈ R+ is the release date of job i and wi ∈ R+

is the weight associated with job i; the problems are online because job i’s existence and data do

not become known until time ri. We consider scheduling jobs on (1) a single machine, (2) parallel

identical machines and (3) parallel uniform machines (i.e., machines have different job processing

speeds). In the multiple machine environment, we have m ∈ Z machines available, where m is

fixed. The objective is to schedule the jobs on the machine(s) to minimize the weighted sum of

completion dates
∑

j wjCj . We consider both preemptive and non-preemptive problems; when

preemption is allowed, a job can be interrupted and resumed later, possibly on a different machine.

We study online versions of 1|rj , pmtn|
∑

j wjCj , 1|rj |
∑

j wjCj , Q|rj , pmtn|
∑

j Cj , P |rj |
∑

j Cj ,

Q|rj , pmtn|
∑

j wjCj and Q|rj |
∑

j wjCj . Let s1 ≥ s2 ≥ · · · sm > 0 be the speeds of the machines

in the Q case; in the P case, sj = 1, ∀j. Job i on machine j will take pi/sj time to complete.

2.3 Online Optimization and Competitive Analysis

From the online perspective, the total number of requests/jobs, represented by the parameter n, is

not known, and request/job i only becomes known at time ri. Let ZA
n denote the cost of online

algorithm A on an instance of n cities and Z∗n is the corresponding optimal offline cost where all

data is known a priori. The problem instance underlying ZA
n and Z∗n will be clear from context.

The performance of online algorithms is usually measured using the competitive ratio and the
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asymptotic competitive ratio criteria. The competitive ratio is defined as the worst-case ratio, over

all problem instances, of online to offline costs: maxinstances ZA
n /Z∗n. An online algorithm is also

said to be c-competitive if its competitive ratio is at most c. An online algorithm is asymptotically

c-competitive if there exists n0 such that for all n ≥ n0, ZA
n /Z∗n ≤ c. An online algorithm is said to

be best-possible if there does not exist another online algorithm with a strictly smaller competitive

ratio.

2.4 Stochastic Assumptions for the Online Traveling Repairman Problem

We now list two different stochastic assumptions for the online TRP that are called upon throughout

this paper. We use uppercase letters to denote random variables.

Assumption 1 (Locations) For each j ∈ {1, . . . ,m}, Lj
1, L

j
2, . . . , L

j
n are independently identically

distributed from a distribution of compact support in d ≥ 2 dimensional Euclidean space. Addi-

tionally, Li
k and Lj

l are independent for all i, j, k, l (except, of course, when i = j and k = l).

Note that the distribution for Lj
1, L

j
2, . . . , L

j
n needs not be the same as the distribution for

Li
1, L

i
2, . . . , L

i
n for i 6= j. The support for the individual distributions do not even need to over-

lap.

Assumption 2 (Release Dates) The release date of each request is a realization of a generic

non-negative random variable Y ≥ 0; i.e., the unordered release dates are independently identically

distributed from a given distribution. As our model requires an order (Rk ≤ Rl for k < l), the k-th

release date is the k-th order statistic: Rk = Y(k), where Yk ≥ 0, k = 1, . . . , n are i.i.d. random

variables and Y(1) ≤ Y(2) ≤ · · · ,≤ Y(n).

We also consider a renewal process structure for the release dates in Section 3.3; since Section

3.3 is the only place in our paper where we apply this alternate structure, we define the assumption

in that section. We also utilize a deterministic assumption on the city weights, which we detail next.

Assumption 3 (Weights) There exist values 0 < ω ≤ Ω such that ω ≤ wi ≤ Ω, ∀i.

The lower bound of ω in Assumption 3 simply eliminates requests with zero weight, requests

which would not have been counted in the objective function cost anyway. The upper bound of Ω

is intended to eliminate the pathological case where a single request has an arbitrary large weight

which dominates the objective function cost.

2.5 Stochastic Assumptions for the Online Machine Scheduling Problems

We now list the different stochastic assumptions for the online machine scheduling problems.

Assumption 4 (Release Dates) The job release dates satisfy Assumption 2.
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Assumption 5 (Processing Requirement) The processing requirement Pi of each job is a re-

alization of a generic non-negative random variable P ≥ 0; i.e., the processing requirements are

independently identically distributed from a given distribution.

Assumption 6 (Weights) The weight Wi of each job is a realization of a generic non-negative

random variable W ≥ 0; i.e., the weights are independently identically distributed from a given

distribution.

2.6 Discussion of Stochastic Assumptions

The appeal of our stochastic assumptions is that they do not specify any particular distribution

for the data. The assumptions only introduce a probabilistic structure for the data. Furthermore,

these structures match many of the assumptions made in computational studies that appear in the

literature (e.g., see [1], [13], [28]); therefore, our theoretical analysis complements the computational

studies. However, our assumptions have limitations. Our model requires that related data (such as

job processing requirements) are identically independently distributed.

The assumption of independence precludes the application of our analysis to any practical setting

where there are strong correlations between requests. For example, suppose the online TRP model

is applied to an ice-cream truck that travels in neighborhoods to sell ice cream to children, who are

the requests (m = 1). Children see that other children are buying ice cream from the truck and

many will also want ice cream. Therefore, the requests in this case are highly correlated and our

model is not appropriate.

The assumption that certain data are identically distributed is less of a concern. Even if the

characteristics of individual requests are generated from different distributions, our analysis can be

extended by utilizing generalized versions of our analysis tools (e.g., Kolmogorov’s Strong Law of

Large Numbers). However, this assumption allows us to bypass the additional technical details and

the main ideas of our proofs are more easily accessible to the reader.

2.7 Technical Details

In this subsection, we present useful technical results.

Theorem 1 (Beardwood, Halton, Hammersley [5]) Under Assumption 1, there exists a cj
d >

0 such that limn→∞
Lj

T SP

n(d−1)/d = cj
d almost surely, where d is the dimension of the underlying Euclidean

space.

Lemma 1 (Bompadre, Dror, Orlin [7]) The cost LTRP of the minimum latency problem with

unit weights when n cities are uniformly distributed in [0, 1]2 is Ω(n3/2) almost surely.

Lemma 2 Let {Xi} be a sequence of non-negative i.i.d. random variables. If E[Xr] < ∞, then

lim
n→∞

max1≤i≤n Xi

nδ
= 0,

8



almost surely, for all δ ≥ 1
r .

Proof Consequence of Theorem 4.4.1 in Galambos [16]. �

Lemma 3 Let {Xi} be a sequence of i.i.d. random variables. If E[X2] < ∞, then

lim
n→∞

∑n
j=1 jXj

n2
=

E[X]
2

,

almost surely.

Proof The martingale Mn defined by Mn =
∑n

j=1
Xj−E[Xj ]

j is bounded in L2, so is convergent

almost surely. Using Kronecker’s lemma we then conclude that

lim
n→∞

∑n
j=1 j(Xj − E[Xj ])

n2
= 0,

almost surely. �

3 The Online TRP with Precedence Constraints

We consider here the general case m ≥ 1. Note that when m = 1 we have the classic online Traveling

Repairman Problem and when m = 2, we have an online version of the latency-objective Dial-a-Ride

problem.

We use a generic technique to prove almost sure asymptotic optimality: We find random variables

Fn and Gn that satisfy Z∗n ≥ Fn and ZA
n ≤ Fn +Gn for all n for some online algorithm A. Then, we

show that limn→∞Gn/Fn = 0, almost surely, which implies that limn→∞ ZA
n /Z∗n = 1, almost surely.

This section is organized as follows: In Section 3.1 we give online algorithms and derive upper

bounds on their costs as well as lower bounds on the optimal offline costs. In Section 3.2, we prove

almost sure asymptotic optimality results for the case where the release dates satisfy Assumption

2. Finally, we prove similar results in Section 3.3 when the release dates are instead generated by a

general renewal process.

3.1 Algorithms and Bounds

We define the strategy Greedy-Latency (GL) for these problems, followed by two polynomial-time

strategies.

Algorithm 1 : GL At any release date, calculate a path P of minimum latency that satisfies the

following constraints:

1. P starts at the current server location.

2. All unserved requests are visited and the precedence constraints are respected.

9



3. If there are no unserved requests, remain idle at the current location (not necessarily the

origin).

The server then traverses the path P at unit speed, until the next release date (if any).

We next define the polynomial-time strategy Greedy-Latency-Polynomial (GLP) for the special

case where m = 1 and wi = 1,∀i.

Algorithm 2 : GLP At any release date, use a ρ-approximation algorithm for minimizing latency

to find a path P beginning at the current server location and visiting all unserved requests. Then

the server traverses P at unit speed, until the next release date (if any). If there are no unserved

locations, remain idle at the current location (not necessarily the origin).

To the best of our knowledge, there are no approximation algorithms for the arbitrary weight

case. Also to the best of our knowledge, the approximation algorithm (for the unit weight case)

with the smallest approximation ratio ρ to date is the one given by Chaudhuri, Godfrey, Rao and

Talwar [9], which has ρ < 3.6.

Finally, we give a simple polynomial-time algorithm for the general case: Serve-In-Order-Received

(SIOR).

Algorithm 3 : SIOR Serve in the order received; i.e., visit the locations in the order:

L1
1, . . . , L

m
1 , L1

2, . . . , L
m
2 , . . . , L1

n, . . . , Lm
n .

When there are no known unserved locations, remain idle at the current location.

We now derive useful bounds for the costs of these algorithms, as well as for the optimal offline

cost, in a series of lemmas and corollaries. We consider separately the cases m = 1 and an arbitrary

value of m. We first consider the case where m = 1.

Lemma 4 If m = 1, Z∗n ≥ LTRP and ZGL
n ≤ 2Rn

∑n
i=1 wi + LTRP .

Proof The lower bound on Z∗n is clear. Now we consider the server (repairman) at time Rn. Consider

an alternate strategy where the server returns to the origin and then serves all cities optimally; this

strategy clearly has a larger latency than GL since GL does not necessarily return to the origin at

time Rn and may have already served some cities. The initial return to the origin of this alternate

strategy takes at most Rn time since the server moves at unit speed. The (alternate) server then

proceeds on the optimal path that minimizes the latency through all n cities. The completion time

of request i in the alternate strategy is 2Rn + C∗
i , which implies that the cost of GL is at most

2Rn

∑n
i=1 wi + LTRP . �

The following corollary is immediate.

Corollary 1 If m = 1 and wi = 1, ∀i, ZGLP
n ≤ 2nRn + ρLTRP .
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We now consider the situation where m is arbitrary.

Lemma 5

Z∗n ≥
n∑

j=1

wjRj and ZGL
n ≤

n∑
j=1

wj

(
Rj + 3

m∑
i=1

Li
TSP

)
.

Proof We begin with the lower bound on Z∗n. Clearly, the optimal completion time of each request

is at least its release date; thus we have Z∗n ≥
∑n

j=1 wjRj .

We now show the upper bound on ZGL
n by induction on the number of requests n. For n = 1

(subscripts are supressed), with L0 = o, it is clear that

ZGL = w

(
R +

m∑
i=1

d(Li−1, Li)

)

≤ w

(
R +

m∑
i=1

(
d(Li−1, o) + d(o, Li)

))

≤ w

(
R +

m∑
i=1

2d(o, Li)

)

= w

(
R +

m∑
i=1

Li
TSP

)
.

Now, assuming ZGL
n−1 ≤

∑n−1
j=1 wj

(
Rj + 3

∑m
i=1 Li

TSP (n− 1)
)
, Li

TSP (n − 1) being the shortest

tour through the locations Li
1, . . . , L

i
n−1, and noting that Li

TSP (n−1) ≤ Li
TSP (n) ∆= Li

TSP , we shall

prove the result for n. Define Cmax
n−1 as the (projected) maximum completion time of all requests in

the instance of (n− 1) requests. We first find an upper bound on Cmax
n−1 . Recall that GL performed

a re-optimization at time Rn−1. Consider an alternate server that, at time Rn−1, first returned to

the origin before proceeding to visit all unserved requests; this return takes at most

max
1≤i≤m

{ max
1≤j≤n−1

d(o, Li
j)} ≤ max

1≤i≤m
{1
2
Li

TSP } ≤
1
2

m∑
i=1

Li
TSP

time. Once the alternate server reaches the origin, it first travels through the locations {L1
1, . . . , L

1
n−1},

then {L2
1, . . . , L

2
n−1} and so on until {Lm

1 , . . . , Lm
n−1}. This takes at most

∑m
i=1 Li

TSP time. Since

Cmax
n−1 for GL is clearly at most the respective value for this alternate strategy, we have that

Cmax
n−1 ≤ Rn−1 +

3
2

m∑
i=1

Li
TSP ≤ Rn +

3
2

m∑
i=1

Li
TSP .

Re-optimizing at time Rn will result in a latency value that is no more than that of the following

strategy: Wait until requests 1, . . . , (n − 1) have all been served and then serve request n. Letting

C̃n denote the completion time of request n in this virtual strategy and noting that at time Cmax
n−1

11



the server is at a location Lm
j , j ∈ {1, . . . , n− 1}, we have that

ZGL
n ≤ ZGL

n−1 + wnC̃n

= ZGL
n−1 + wn

(
Cmax

n−1 + d(Lm
j , L1

n) +
m∑

i=2

d(Li−1
n , Li

n)

)

≤ ZGL
n−1 + wn

(
Cmax

n−1 + d(Lm
j , o) + d(o, L1

n) +
m∑

i=2

(
d(Li−1

n , o) + d(o, Li
n)
))

≤ ZGL
n−1 + wn

(
Cmax

n−1 +
1
2
Lm

TSP +
m∑

i=1

2d(o, Li
n)

)

≤ ZGL
n−1 + wn

(
Cmax

n−1 +
1
2
Lm

TSP +
m∑

i=1

Li
TSP

)

≤ ZGL
n−1 + wn

(
Cmax

n−1 +
3
2

m∑
i=1

Li
TSP

)

≤ ZGL
n−1 + wn

(
Rn + 3

m∑
i=1

Li
TSP

)
;

applying the inductive hypothesis proves the lemma. �

The proof of Lemma 5 also directly applies to strategy SIOR:

Corollary 2

ZSIOR
n ≤

n∑
j=1

wj

(
Rj + 3

m∑
i=1

Li
TSP

)
.

3.2 Order Statistic Release Dates for the case m = 1 and wi = 1, ∀i

Our main result for this subsection is the following.

Theorem 2 Under Assumption 2, if m = 1, wi = 1, ∀i, E[Y 3] < ∞ and L1, . . . , Ln are uniformly

distributed in [0, 1]2, then

lim
n→∞

ZGL
n

Z∗n
= 1

almost surely.

Proof We first find appropriate random variables Fn and Gn. By Lemma 4 we let Fn = LTRP

and Gn = 2nRn. By Lemma 1, we have that LTRP = Ω(n3/2) almost surely. Since LTRP is almost

surely positive, we may conclude that 1
LT RP

= O( 1
n3/2 ) almost surely. For any ε > 0, we have that

1
LT RP

= o( nε

n3/2 ) almost surely. Equivalently, we have that limn→∞
nγ

LT RP
= 0 almost surely, for any

γ < 3
2 . Next, we decompose the limit:

Gn

Fn
=

2nY(n)

LTRP
= 2

n4/3

LTRP

Y(n)

n1/3
.

12



Taking limits, with γ = 4
3 and applying Lemma 2 (with r = 3 and δ = 1

3 ), proves the theorem.

�

Remark 1 We actually only require that there exists ε > 0 such that E[Y 2+ε] < ∞ to prove the

above theorem.

Unfortunately, we were unable to prove a similar asymptotic optimality result for GLP. Corollary

1 and the proof of Theorem 2 suggest choosing Fn = ρLTRP . But since ρ > 1, it would have no

longer been necessarily true that Z∗n ≥ Fn. However, the same approach does yield the following

corollary.

Corollary 3 Under Assumption 2, if m = 1, wi = 1, ∀i, E[Y 3] < ∞ and L1, . . . , Ln are uniformly

distributed in [0, 1]2, then

lim
n→∞

ZGLP
n

Z∗n
= ρ

almost surely.

3.3 Renewal Process Release Dates for arbitrary m and wi

We first introduce a new stochastic assumption for the release dates.

Assumption 7 (Renewal Process) Define non-negative i.i.d. random variables Xi ≥ 0 to be

the time between the (i − 1)th and ith release date. We then define the release dates as follows:

Rk =
∑k

i=1 Xi; note that Rk+1 = Rk + Xk+1 for all k. Let µX and σ2
X denote the mean and

variance, respectively, of the random variable X.

The main result of this subsection is the following.

Theorem 3 Under Assumptions 1, 7 and 3, if E[X2] < ∞, then

lim
n→∞

ZGL
n

Z∗n
= 1

almost surely.

Proof We assume µX > 0 without loss of generality since otherwise all release dates would be zero,

almost surely, and there would be nothing to prove.

We assign Fn =
∑n

j=1 wjRj and Gn = 3
(∑n

j=1 wj

) (∑m
i=1 Li

TSP

)
, in accordance with Lemma

5. Showing limn→∞
Gn

Fn
= 0 almost surely proves the theorem. We first bound (using Assumption

3) the argument of the limit:

Gn

Fn
=

3
(∑n

j=1 wj

) (∑m
i=1 Li

TSP

)∑n
j=1 wjRj

≤
3nΩ

∑m
i=1 Li

TSP

ω
∑n

j=1 Rj
.

13



We now express the sum of release dates in terms of the X random variables:

n∑
i=1

Ri =
n∑

i=1

i∑
j=1

Xj =
n∑

j=1

n∑
i=j

Xj =
n∑

j=1

(n− j + 1)Xj =
n∑

j=1

jXj ,

where the last equality follows (almost surely) from the fact that the Xj random variables are i.i.d.

Next, we take limits and apply Lemma 3 and Theorem 1:

3nΩ
∑m

i=1 Li
TSP

ω
∑n

j=1 Rj
=

3nΩ
∑m

i=1 Li
TSP

ω
∑n

j=1 jXj

=
(

3Ω
ω

)(
n2∑

j=1 jXj

)(∑m
i=1 Li

TSP

n(d−1)/d

)(
1

n1/d

)

→
(

3Ω
ω

)(
2

µX

)
(

m∑
i=1

ci
d)(0),

almost surely, and the convergence is proved. �

Since the upper bound on the cost of SIOR is identical to that of GL (c.f. Lemma 5 and Corollary

2), we have the following corollary for the polynomial-time SIOR.

Corollary 4 Under Assumptions 1, 7 and 3, if E[X2] < ∞, then

lim
n→∞

ZSIOR
n

Z∗n
= 1

almost surely.

4 Single Machine Minsum Online Scheduling

We consider online versions of the single machine scheduling problems 1|rj , pmtn|
∑

j wjCj and

1|rj |
∑

j wjCj ; offline versions of both these problems are NP-hard.

4.1 Online 1|rj, pmtn|
∑

j wjCj

Consider the preemptive Weighted Shortest Processing Requirement (WSPR) heuristic, which is an

online algorithm: At any point in time, among the known unfinished jobs, process the one with the

highest ratio wi/pi. Note that the WSPR heuristic (also known as Smith’s ratio rule [33]) solves

1||
∑

j wjCj , and consequently 1|pmtn|
∑

j wjCj , exactly; e.g., see Pinedo [27]. We begin by stating

the main result for this subsection.

Theorem 4 Under Assumptions 4, 5 and 6, if E[Y ] < ∞, then the WSPR heuristic is almost surely

asymptotically optimal for the online version of 1|rj , pmtn|
∑

j wjCj.
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Proof We assume E[P ] > 0 and E[W ] > 0 without loss of generality since otherwise both online

and offline costs are equal to zero and we have nothing to prove.

Let ZWSPR
n be the random variable denoting the cost of WSPR on an instance of n jobs under

the probabilistic conditions of the theorem. Let Z∗n be the random variable denoting the optimal

offline cost for 1|rj , pmtn|
∑

j wjCj . Finally, let ZRn be the random variable for the optimal cost

of the relaxed problem 1|pmtn|
∑

j wjCj , which is solved optimally by the WSPR heuristic; clearly

ZRn ≤ Z∗n.

At time Rn, the release date of the final job in the instance, assume that no processing has been

done; clearly, this will only increase the online cost of WSPR. Therefore, under this assumption, at

time Rn, the WSPR heuristic essentially sees the problem 1|pmtn|
∑

j wjCj (i.e., all release dates

are equal to zero). Consequently, we have that

ZWSPR
n ≤ Rn

n∑
j=1

Wj + ZRn . (1)

Considering the ratio of online to offline costs, we have that

ZWSPR
n

Z∗n
≤

Rn

∑n
j=1 Wj + ZRn

ZRn

= 1 +
Rn

∑n
j=1 Wj

ZRn
.

Let Bj be the event that Pj ≥ E[P ] ∧Wj ≥ E[W ]. We have that P[Bj ] = α for some α. Let J

denote the set of jobs having property Bj . If we consider n jobs, |J | is a binomial random variable

with parameters n and α. By the Strong Law of Large Numbers, |J |/n → α, almost surely and,

therefore, J = Θ(n), almost surely. Next, in order to compute a lower bound on ZRn , we consider

the processing of only the jobs in J . We re-order the indices on the W and P random variables in

J such that
W1

P1
≥ W2

P2
≥ · · · ≥

W|J|

P|J|
.

Applying the WSPR heuristic to the jobs in J , we observe the following: The completion time of

the first job processed, job 1, is P1; the completion time of job 2 is P1 + P2; the completion time of

job k is P1 + · · ·+ Pk. Therefore, a lower bound for serving the set J of jobs, which is also a lower

bound for ZRn , is
|J|∑
j=1

E[W ]
j∑

i=1

E[P ] = E[W ]E[P ]
|J |(|J |+ 1)

2
.

Using the fact that |J | = Θ(n), almost surely, we have that ZRn = Ω(n2), almost surely. By the

Strong Law of Large Numbers,
∑n

j=1 Wj = Θ(n) almost surely and, by Lemma 2 with r = 1,

Rn = o(n) almost surely. We are therefore able to conclude that, as n →∞,

Rn

∑n
j=1 Wj

ZRn
−→ 0,

almost surely and the proof is complete. �
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4.2 Online 1|rj|
∑

j wjCj

A non-preemptive version Non-preemptive Weighted Shortest Processing Requirement (NWSPR)

of WSPR is easily defined: Whenever the machine is available to process a job, if there remain

unprocessed jobs, choose the job with the highest ratio wi/pi. We are able to prove the exact same

result as Theorem 4:

Theorem 5 Under Assumptions 4, 5 and 6, if E[Y ] < ∞, then the NWSPR heuristic is almost

surely asymptotically optimal for the online version of 1|rj |
∑

j wjCj.

The proof of Theorem 5 is very similar to that of Theorem 4; we detail only the differences.

Proof Outline First, note that ZRn is the optimal value for both 1|pmtn|
∑

j wjCj and 1||
∑

j wjCj ,

since these two problems are essentially identical. Equation (1) is modified to become

ZNWSPR
n ≤

(
Rn + max

1≤i≤n
Pi

) n∑
j=1

Wj + ZRn .

The reason for this modification is because at time Rn, we can not relate NWSPR’s actions to the

problem 1||
∑

j wjCj , since it might be busy processing some job. But after max1≤i≤n Pi time, we

are certain that the machine has finished whatever job had been in progress at time Rn. Therefore,

at time Rn + max1≤i≤n Pi, assuming that no job has been processed, NWSPR “sees” the problem

1||
∑

j wjCj . After recalling that max1≤i≤n Pi = o(n) almost surely (Lemma 2 with r = 1), the rest

of the proof remains identical. �

5 Parallel Machine Minsum Online Scheduling

We first consider online versions of the parallel machine scheduling problems Q|rj , pmtn|
∑

j Cj and

P |rj |
∑

j Cj ; offline versions of both these problems are NP-hard. We show that well-known heuristics

for these problems are asymptotically optimal, almost surely. We then study Q|rj , pmtn|
∑

j wjCj

and Q|rj |
∑

j wjCj and show that, if we allow for non-polynomial time algorithms, there exist online

algorithms that are asymptotically optimal, almost surely, for these difficult scheduling problems.

5.1 Online Q|rj, pmtn|
∑

j Cj

Consider the Shortest Remaining Processing Requirement on Fastest Machine (SRPR-FM) heuristic,

which is also an online algorithm: At any given time, the job with the shortest remaining processing

requirement is assigned to the fastest machine, the job with the second shortest remaining processing

requirement is assigned to the second fastest machine, and so on. Note that the SRPR-FM heuristic

solves Q|pmtn|
∑

j Cj exactly; e.g., see [27].

The reason that we only consider unit weights in this section is that even P |pmtn|
∑

j wjCj is

NP-hard and our technique for proving asymptotical optimality for a well-known heuristic would
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break down. Our approach requires that SRPR-FM exactly solves the machine scheduling problem

when all release dates are zero. Further details are given in the proof of Theorem 6.

Theorem 6 Under Assumptions 4, 5, and m fixed, if E[Y ] < ∞, then the SRPR-FM heuristic is

almost surely asymptotically optimal for the online version of Q|rj , pmtn|
∑

j Cj.

Proof We assume E[P ] > 0 without loss of generality since otherwise both online and offline costs

are equal to zero and we have nothing to prove.

Let ZSRPR−FM
n be the random variable denoting the cost of SRPR-FM on an instance of n

jobs under the probabilistic conditions of the theorem. Let Z∗n be the random variable denoting the

optimal offline cost for Q|rj , pmtn|
∑

j Cj . Finally, let ZRn be the random variable for the optimal

cost of the relaxed problem Q|pmtn|
∑

j Cj , which is solved optimally by the SRPR-FM heuristic;

clearly ZRn ≤ Z∗n.

At time Rn, the release date of the final job in the instance, assume that no processing has been

done; clearly, this will only increase the online cost of SRPR-FM. Therefore, under this assumption,

at time Rn, the SRPR-FM heuristic essentially sees the problem Q|pmtn|
∑

j Cj . Consequently, we

have that

ZSRPR−FM
n ≤ nRn + ZRn . (2)

The dependence of our proof on Equation (2) is the reason why we are limited to studying unit

weights. Had we considered arbitrary weights, online algorithm SRPR-FM would encounter the

NP-hard relaxation Q|pmtn|
∑

j wjCj and we would not be able to construct a viable version of

Equation (2).

Considering the ratio of online to offline costs, we have that

ZSRPR−FM
n

Z∗n
≤ nRn + ZRn

ZRn

= 1 +
nRn

ZRn
.

Next, we compute a lower bound on ZRn . Clearly, the optimal cost of P |pmtn|
∑

j Cj , where

all machines have speed s1 (the fastest speed), is a lower bound. Furthermore, the optimal cost of

1|pmtn|
∑

j Cj , where the single machine has speed ms1, is a lower bound for P |pmtn|
∑

j Cj ; the

idea to consider a fast single machine relaxation was first considered by Eastman, Even, Isaacs [14].

Note that the non-preemptive Shortest Processing Requirement1 (SPR) heuristic solves 1|pmtn|
∑

j Cj

exactly (to see this, simply set wi = 1,∀i in the introductory discussion of Section 4.1). We apply a

similar argument to that in the proof of Theorem 4: Let Bj be the event that Pj ≥ E[P ]. We have

that P[Bj ] = α for some α. Let J denote the set of jobs having property Bj . If we consider n jobs,

|J | is a binomial random variable with parameters n and α. By the Strong Law of Large Numbers,

|J |/n → α, almost surely and, therefore, J = Θ(n), almost surely. Next, in order to compute a

1Whenever the machine is available to process a job, choose the job with the shortest processing requirement.
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lower bound on ZRn , we consider the processing of only the jobs in J . We re-order the indices on

the P random variables in J such that

P1 ≤ P2 ≤ · · · ≤ P|J|.

Applying the SPR heuristic to the jobs in J , we observe the following: The completion time of

the first job processed, job 1, is P1/(ms1); the completion time of job 2 is (P1 + P2)/(ms1); the

completion time of job k is (P1 + · · ·+ Pk)/(ms1). Therefore, a lower bound for serving the set J of

jobs, which is also a lower bound for ZRn , is

|J|∑
j=1

j∑
i=1

E[P ]
ms1

=
E[P ]
ms1

|J |(|J |+ 1)
2

.

Using the fact that |J | = Θ(n), almost surely, we have that ZRn = Ω(n2), almost surely. Recalling

that Rn = o(n) almost surely, as n →∞,

nRn

ZRn
→ 0,

almost surely and the proof is complete. �

5.2 Online P |rj|
∑

j Cj

Consider the non-preemptive Shortest Processing Requirement (SPR) heuristic, which is also an

online algorithm: whenever a machine is available to process a job, choose the job with the shortest

processing requirement. Note that the SPR heuristic solves P ||
∑

j Cj exactly; e.g., see [27]. Again,

the reason that we only consider problems with unit weights is that P ||
∑

j wjCj is NP-hard. Our

main result for this section is the following.

Theorem 7 Under Assumptions 4, 5, and m fixed, if E[Y ] < ∞ then the SPR heuristic is almost

surely asymptotically optimal for the online version of P |rj |
∑

j Cj.

The proof of Theorem 7 is very similar to that of Theorem 6; we detail only the differences.

Proof Outline Note that ZRn is the optimal value for P ||
∑

j Cj . Equation (2) is modified to

become

ZSPR
n ≤ n

(
Rn + max

1≤i≤n
Pi

)
+ ZRn .

The reason for this modification is because at time Rn, we can not relate SPR’s actions to the

problem P ||
∑

j Cj , since some machines might be busy processing some jobs. But after max1≤i≤n Pi

time, we are certain that the machines have finished whatever jobs had been in progress at time

Rn. Therefore, at time Rn + max1≤i≤n Pi, assuming that no job has been processed, SPR “sees”

the problem P ||
∑

j Cj . The rest of the proof remains identical. �
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5.3 Online Q|rj, pmtn|
∑

j wjCj and Q|rj|
∑

j wjCj

In this section, we point out that if we consider non-polynomial time online algorithms, we obtain

asymptotic optimality results for more difficult machine scheduling problems. To illustrate our point,

we consider Q|rj , pmtn|
∑

j wjCj ; similar reasoning applies to the non-preemptive version.

Let Aoffline be an offline algorithm that exactly solves Q|pmtn|
∑

j wjCj , which is NP-hard.

Let A be the online algorithm that, whenever a new job is released, applies algorithm Aoffline to

all known unprocessed jobs. The proofs of Theorems 4 and 6 can be combined to give the following

result.

Theorem 8 Under Assumptions 4, 5, 6 and m fixed, if E[Y ] < ∞, then online algorithm A is

almost surely asymptotically optimal for the online version of Q|rj , pmtn|
∑

j wjCj.

Similarly, we also have the following result.

Theorem 9 Under Assumptions 4, 5, 6 and m fixed, if E[Y ] < ∞, there exists an online algorithm

Ã that is almost surely asymptotically optimal for the online version of Q|rj |
∑

j wjCj.
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