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Abstract. We study a convex resource allocation problem in which lower and upper

bounds are imposed on partial sums of allocations. This model is linked to a large range

of applications, including production planning, speed optimization, stratified sampling,

support vector machines, portfolio management, and telecommunications. We propose an

efficient gradient-free divide-and-conquer algorithm, which uses monotonicity arguments

to generate valid bounds from the recursive calls, and eliminate linking constraints based

on the information from sub-problems. This algorithm does not need strict convexity

or differentiability. It produces an ε-approximate solution for the continuous problem in

O(n logm log nB
ε

) time and an integer solution in O(n logm logB) time, where n is the

number of decision variables, m is the number of constraints, and B is the resource bound.

A complexity of O(n logm) is also achieved for the linear and quadratic cases. These are

the best complexities known to date for this important problem class. Our experimental

analyses confirm the good performance of the method, which produces optimal solutions

for problems with up to 1,000,000 variables in a few seconds. Promising applications to

the support vector ordinal regression problem are also investigated.

Keywords. Convex optimization, resource allocation, nested constraints, speed optimiza-
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1 Introduction

Resource allocation problems involve the distribution of a fixed quantity of a resource

(e.g., time, workforce, money, energy) over a number of tasks in order to optimize a value

function. In its most fundamental form, the simple resource allocation problem (RAP) is

formulated as the minimization of a separable objective subject to one linear constraint

representing the total resource bound. Despite its apparent simplicity, this model has been

the focus of a considerable research effort over the years, with more than a hundred articles,

as underlined by the surveys of Patriksson (2008), Katoh et al. (2013), and Patriksson

et Strömberg (2015). This level of interest arises from its applications in engineering,

production and manufacturing, military operations, machine learning, financial economics,

and telecommunications, among many other areas.

In several applications, a single global resource bound is not sufficient to model par-

tial budget or investment limits, release dates and deadlines, or inventory or workforce

limitations. In these situations, the problem must be generalized to include additional

constraints over nested sums of the resource variables. This often leads to the model given

in Equations (1)–(4), where the sets Ji ⊆ {1, . . . , n} follow a total order such that Ji ⊂ Ji+1

for i ∈ {1, . . . ,m− 2}:

min f(x) =
n∑
i=1

fi(xi) (1)

s.t. ai ≤
∑
j∈Ji

xj ≤ bi i ∈ {1, . . . ,m− 1} (2)

n∑
k=1

xk = B (3)

ci ≤ xi ≤ di i ∈ {1, . . . , n}. (4)

This problem involves a separable convex objective, subject to lower and upper bounds

on nested subsets of the variables (Equation 2) and a global resource constraint (Equation 3).

Despite being a special case of the former inequalities, the latter constraint is included

in the model to emphasize the resource bound B. Re-ordering the indices of xi, ci, di

and fi, we obtain the formulation given by Equations (5)–(8), where (σ[1], . . . , σ[m]) is a

subsequence of (1, . . . , n):

min f(x) =
n∑
i=1

fi(xi) (5)

s.t. ai ≤
σ[i]∑
k=1

xk ≤ bi i ∈ {1, . . . ,m− 1} (6)
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n∑
k=1

xk = B (7)

ci ≤ xi ≤ di i ∈ {1, . . . , n}. (8)

We assume that the functions fi : [ci, di]→ < are Lipschitz continuous but not necessarily

differentiable or strictly convex, and the coefficients ai, bi, ci, and di are integers. To ease

the presentation, we define am = bm = B, σ[0] = 0 and σ[m] = n. We will study this

continuous optimization problem as well as its restriction to integer solutions.

We refer to this problem as the RAP with nested lower and upper constraints (RAP–NC).

As highlighted in Section 2, the applications of this model include production and capacity

planning (Love 1973), vessel speed optimization (Psaraftis et Kontovas 2013, 2014), machine

learning (Chu et Keerthi 2007), portfolio management (Bienstock 1996), telecommunications

(D’Amico et al. 2014) and power management (Gerards et al. 2016). Some of these

applications involve large data sets with millions of variables, and in other contexts multiple

RAP–NC must be repeatedly solved (e.g., thousands or millions of times) to produce

bounds in a tree-search-based algorithm, to optimize vessel speeds over candidate routes

within a heuristic search for ship routing, or to perform projection steps in a subgradient

procedure for a nonseparable objective. In these situations, complexity improvements are a

determining factor between success and failure.

The literature contains a rich set of studies and algorithms for a closely related problem:

the NESTED resource allocation problem, a special case of the RAP–NC in which ai = −∞
for all i ∈ {1, . . . ,m − 1} (or bi = ∞ for all i ∈ {1, . . . ,m − 1}). With integer variables,

NESTED can be solved in O(n log n log B
n

) time using a scaling algorithm (Hochbaum

1994), and O(n logm log B
n

) time using divide-and-conquer principles (Vidal et al. 2016).

These algorithms, however, are not applicable for joint lower and upper nested constraints,

a case which is essential for a large variety of applications, e.g., to model time windows,

time-dependent inventory bounds, or investment ranges.

Moreover, in the presence of continuous variables, the notion of computational complexity

for convex problems must be carefully defined, since optimal solutions can be irrational

and thus not representable in a bit-size computational model. We will use the same

conventions as Hochbaum (1994), by measuring the computational complexity of achieving

an ε-approximate solution, guaranteed to be located in the solution space no further than

ε from an optimal solution. We also assume that an oracle is available to evaluate each

function fi in O(1) time. When considering such a model of computation, controlling

algorithmic approximations can be a hard task. To circumvent this issue, we will use, as in

Hochbaum (1994), a proximity theorem to transform a continuous problem into an integer
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problem scaled by an appropriate factor, and to translate the integer solution back to a

continuous solution with the desired precision.

The main contributions of this paper are the following:

• We propose an efficient decomposition algorithm for the convex RAP–NC with

integer variables. This algorithm is a non-trivial generalization of that of Vidal

et al. (2016), and attains the same complexity of O(n logm logB). Based on a

proximity theorem from Moriguchi et al. (2011), we extend this algorithm to solve the

continuous problem in O(n logm log nB
ε

) time. These are the best known complexities,

to date, for both problem variants. The complexity depends on the magnitude of

log(B/ε), a dependency which is known to be unavoidable in the arithmetic model of

computation for general forms of convex functions (Renegar 1987). Moreover, the

algorithm calls only the oracle for the objective function, without need of gradient

information, and does not rely on strict convexity or differentiability. Finally, Lipschitz

continuity is assumed for convenience in the proofs but is not mandatory, as an

alternative proof line based on submodular optimization could be adopted otherwise.

• For the specific case of quadratic functions, with continuous or integer variables, the

method runs in O(n logm) time, hence extending the short list of quadratic problems

known to be solvable in strongly polynomial time. This also resolves an open question

from Moriguchi et al. (2011): “It is an open question whether there exist O(n log n)

algorithms for (Nest) with quadratic objective functions”.

• We present computational experiments that demonstrate the good performance of

the method. We compare it with a known algorithm for the linear case and a general-

purpose separable convex optimization solver for the convex case, using benchmark

instances derived from three families of applications.

• We finally integrate the proposed algorithm as a projection step in a projected

gradient algorithm for the support vector ordinal regression problem, highlighting

promising connections with the machine learning literature.

The rest of the paper is organized as follows. In Section 2, we review related works in a

wide variety of application domains. In Section 3, we describe the proposed algorithm and

prove its correctness. In Section 4, we report our computational experiments, considering

linear and convex objectives, as well as support vector ordinal regression problems. Finally,

in Section 5, we provide some concluding remarks.
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2 Related Literature and Applications

We now review the many applications of the RAP–NC, starting with classical operations

research and management science applications and then moving to statistics, machine

learning, and telecommunications.

Resource Allocation. The resource allocation problem (Equations 1, 3, and 4) has long

been studied as a prototypical problem. The fastest known algorithms (Frederickson et

Johnson 1982, Hochbaum 1994) reach a complexity of O(n log B
n

) for the integer problem,

and can be extended to find an ε-approximate solution of the continuous problem in

O(n log B
ε
) operations. This complexity is known to be optimal in the algebraic tree model

(Hochbaum 1994). Other algorithms have been developed for several generalizations of the

RAP in which the constraint set forms a polymatroid. In this context, the greedy algorithm

is optimal (Federgruen et Groenevelt 1986), albeit only pseudo-polynomial, and efficient

scaling algorithms can be developed (Hochbaum 1994, Moriguchi et al. 2011). The special

case of the integer RAP–NC with ai = −∞, called NESTED problem, can be solved in

O(n log n log B
n

) time using a scaling algorithm (Hochbaum 1994) or in O(n logm log B
n

)

time using divide-and-conquer principles (Vidal et al. 2016).

Production Planning. The formulation given by Equations (5)–(8) is also encountered

in early literature on production planning over time with inventory and production costs

(Wagner et Whitin 1958). One of the models most closely related to our work is that of Love

(1973), with time-dependent inventory bounds. The general problem with concave costs

(economies of scale) and production capacities is known to be NP-hard. The linear or convex

model remains polynomial but is more limited in terms of applicability, although convex

production costs can occur in the presence of a limited workforce with possible overtime.

Two relatively recent articles have proposed polynomial algorithms for the linear problem

with time-dependent inventory bounds (Sedeño-Noda et al. 2004, Ahuja et Hochbaum

2008). With upper bounds xmaxi on the production quantities, and time-dependent inventory

capacities Imaxi , the problem can be stated as:

min f(x, I) =
n∑
i=1

pi(xi) +
n∑
i=1

αiIi (9)

s.t. Ii = Ii−1 + xi − di i ∈ {2, . . . , n} (10)

I0 = K (11)

0 ≤ Ii ≤ Imaxi i ∈ {1, . . . , n} (12)

0 ≤ xi ≤ xmaxi i ∈ {1, . . . , n}. (13)
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Then, expressing the inventory variables as a function of the production quantities, using

Ii = K +
∑i

k=1(xk − dk), reduces this problem to an RAP–NC:

min f(x) =
n∑
i=1

pi(xi) +
n∑
i=1

αi

[
K +

i∑
k=1

(xk − dk)

]
(14)

s.t.
i∑

k=1

dk −K ≤
i∑

k=1

xk ≤
i∑

k=1

dk + Imaxi −K i ∈ {1, . . . , n} (15)

0 ≤ xi ≤ xmaxi i ∈ {1, . . . , n}. (16)

The objective includes production costs and inventory costs, and the nested constraints

model the time-dependent inventory limit. The algorithm of Ahuja et Hochbaum (2008)

can solve Equations (9)–(13) in O(n log n) time via a reduction to a minimum-cost network

flow problem. The method was extended to deal with possible backorders. However, this

good complexity comes at the price of an advanced dynamic tree data structure (Tarjan et

Werneck 2009) that is used to keep track of the inventory capacities.

Workforce Planning. In contrast with the above studies, which involve the production

quantities as decision variables, Bellman et al. (1954) study the balancing of workforce

capacity (human or technical resources) over a time horizon under hard production con-

straints. The variable xi now represents the workforce variation at period i, and the nested

constraints impose bounds on the minimum and maximum workforce in certain periods,

e.g., to satisfy forecast production demand. The overall objective, to be minimized, is a

convex separable cost function representing positive costs for positive or negative variations

of the workforce.

Vessel Speed Optimization. In an effort to reduce fuel consumption and emissions,

shipping companies have adopted slow-steaming practices, which moderate ship speeds to

reduce costs. This line of research has led to several recent contributions on ship speed

optimization, aiming to optimize the vessel speed vi−1,i over each trip segment of length

δi−1,i while respecting a time-window constraint [ai, bi] at each destination i. Let fi(vi−1,i)

be convex functions representing the fuel costs per mile, over (i − 1, i), as a function of

vi−1,i, and let ti be the arrival time at i. The overall speed optimization problem can be

formulated as:

min f(t,v) =
n∑
i=2

δi−1,i fi(vi−1,i) (17)

s.t. ai ≤ ti ≤ bi i ∈ {1, . . . , n} (18)
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ti−1 +
δi−1,i

vi−1,i

≤ ti i ∈ {2, . . . , n} (19)

vmin ≤ vi−1,i ≤ vmax i ∈ {2, . . . , n}. (20)

Recent work has considered a constant fuel-speed trade-off function on each leg, i.e.,

fi = fj for all (i, j). An O(n2) recursive smoothing algorithm (RSA) was proposed

by Norstad et al. (2011) and Hvattum et al. (2013) for this case. However, assuming

constant fuel-speed over the complete trip is unrealistic, since fuel consumption depends

on many varying factors, such as sea condition, weather, current, water depth, and ship

load (Psaraftis et Kontovas 2013, 2014). The model can be improved by dividing the trip

into smaller segments and considering different functions fi 6= fj . This more general model

falls outside the scope of applicability of RSA.

Let vopti be the minimum of each function fi. With the change of variables x1 = t1 and

xi = ti − ti−1 for i ≥ 2, the model can then be reformulated as:

min f(x) =
n∑
i=2

δi−1,igi

(
δi−1,i

xi

)
(21)

s.t. ai ≤
i∑

k=1

xk ≤ bi i ∈ {1, . . . , n} (22)

δi−1,i

vmax
≤ xi i ∈ {2, . . . , n}, (23)

with gi(v) =

fi(vopti ) if v ≤ vopti

fi(v) otherwise.
(24)

This model is a RAP–NC with separable convex cost. An efficient algorithm for this

problem is critical, since a speed-optimization algorithm is not often used as a stand-alone

tool but rather as a subprocedure in a route-planning algorithm (Psaraftis et Kontovas

2014). This subprocedure can be called several million times when embedded in a local

search, on subproblems counting a few hundred variables due to the division of each trip into

smaller segments with different sea conditions. Finally, the RAP–NC is also appropriate

for variants of vehicle routing problems with emission control (Bektas et Laporte 2011,

Kramer et al. 2015a,b) as well as a special case of project crashing for a known critical

path (Foldes et Soumis 1993).

Stratified Sampling. Consider a population of N units divided into subpopulations

(strata) of N1, . . . , Nn units such that N1 + · · ·+Nn = N . An optimized stratified sampling

method aims to determine the sample size xi ∈ [0, Ni] for each stratum, in order to
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estimate a characteristic of the population while ensuring a maximum variance level V

and minimizing the total sampling cost. Each subpopulation may have a different variance

σi, so a sampling plan that is proportional to the size of the subpopulations is frequently

suboptimal. The following mathematical model for this sampling design problem was

proposed by Neyman (1934) and extended by Srikantan (1963), Hartley (1965), Huddleston

et al. (1970), Sanathanan (1971), and others:

min
n∑
i=1

cixi (25)

s.t.
n∑
i=1

N2
i σ

2
i

N2

(
1

xi
− 1

Ni

)
≤ V (26)

0 ≤ xi ≤ Ni i ∈ {1, . . . , n}. (27)

This is a classical RAP formulation. Two extensions of this model are noteworthy in

our context. Hartley (1965) and Huddleston et al. (1970) considered multipurpose stratified

sampling where more than one characteristic is evaluated while ensuring variance bounds.

This leads to several constraints of type (26), and thus to a continuous multidimensional

knapsack problem. Sanathanan (1971) considered a hierarchy of strata, with variance

bounds for the estimates at each level. This situation occurs for example in survey sampling,

when one seeks an estimate of a characteristic at both the national level (first-stage stratum)

and the regional level (second-stage stratum). When two stages are considered, we obtain

the additional constraints:∑
i∈Si

N2
i σ

2
i

N2

(
1

xi
− 1

Ni

)
≤ Vi, i ∈ {1, . . . ,m}, (28)

where the Si are disjoint sets of strata, i.e.,
⋃m
i=1 Si = {1, . . . , n} and Si∩Sj = ∅ for all i, j.

The inequalities (28) lead to constraints on the disjoint subsets, giving a resource allocation

problem with generalized upper bounds (GUB – Hochbaum 1994, Katoh et al. 2013).

Machine Learning. The support vector machine (SVM) is a supervised learning model

which, in its most classical form, seeks to separate a set of samples into two classes according

to their labels. This problem is modeled as the search for a separating hyperplane between

the projection of the two sample classes into a kernel space of higher dimension, in such a

way that the classes are divided by a gap that is as wide as possible, and a penalty for

misclassified samples is minimized (Cortes et Vapnik 1995).

As a generalization of the SVM, the support vector ordinal regression (SVOR) aims to

find r − 1 parallel hyperplanes so as to separate r ordered classes of samples. As reviewed
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in Gutierrez et al. (2016), various models and algorithms have been proposed in recent

years to fulfill this task. In particular, the SVOR approach with “explicit constraints

on thresholds” (SVOREX) of Chu et Keerthi (2007) obtains a good trade-off between

training speed and generalization capability. A dual formulation of SVOREX is presented

in Equations (29)–(33). K is the kernel function, corresponding to a dot product in the

kernel space, and nj is the number of samples in a class j ∈ {1, . . . , r}. Each dual variable

αji takes a non-null value only when the ith sample of the jth class is active in the definition

of the jth hyperplane, for j ∈ {1, . . . , r − 1}. Similarly, each dual variable α∗ji takes a

non-null value only when the ith sample of the jth class is active in the definition of the

(j − 1)th hyperplane, for j ∈ {2, . . . , r}. Additional constraints and variables µj impose an

order on the hyperplanes. For the sake of simplicity, the dummy variables α∗1, αr, µ1, and

µr are defined and should be fixed to zero.

max
α,α∗,µ

r∑
j=1

nj∑
i=1

(αji + α∗ji )− 1

2

r∑
j=1

nj∑
i=1

r∑
j′=1

nj
′∑

i′=1

(α∗ji − α
j
i )(α

∗j′
i′ − α

j′

i′ )K(xji , x
j′

i′ ) (29)

s.t. 0 ≤ αji ≤ C j ∈ {1, . . . , r}, i ∈ {1, . . . , nj} (30)

0 ≤ α∗ji ≤ C j ∈ {1, . . . , r − 1}, i ∈ {1, . . . , nj} (31)

nj∑
i=1

αji + µj =
nj+1∑
i=1

α∗j+1
i + µj+1 j ∈ {1, . . . , r − 1} (32)

µj ≥ 0 j ∈ {1, . . . , r − 1}. (33)

The last two constraints of Equations (32)–(33) can be reformulated to eliminate the µ

variables, leading to nested constraints on the variables α and −α∗:

j∑
k=1

 nk∑
i=1

αki −
nk+1∑
i=1

α∗k+1
i

 ≥ 0 j ∈ {1, . . . , r − 2} (34)

r−1∑
k=1

 nk∑
i=1

αki −
nk+1∑
i=1

α∗k+1
i

 = 0. (35)

Overall, the problem of Equations (29)–(31) and (34)–(35) is a nonseparable convex

problem over the same constraint polytope as the RAP–NC. Note that the number of

nested constraints, corresponding to the number of classes, is usually much smaller than the

number of variables, which is proportional to the total number of samples, and thus m� n.

The solutions of this formulation are usually sparse, since only a fraction of the
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samples (support vectors) define the active constraints and separating hyperplanes. Given

this structure and the size of practical applications, modern solution methods rely on

decomposition steps, in which a working set of variables is iteratively re-optimized by a

method of choice. Such an approach is referred to as block-coordinate descent in Bertsekas

et al. (2003). The convergence of the algorithm can be guaranteed by including in the

working set the variables that most severely violate the KKT conditions. Chu et Keerthi

(2007), in line with the work of Platt (1998), consider a minimal working set with only two

variables at each iteration. The advantage is that the subproblem can be solved analytically

in this case, the disadvantage is that a large number of working set selections can be

needed for convergence, and the KKT condition check and gradient update may become

the bottleneck instead of the optimization itself. To better balance the computational effort

and reduce the number of decomposition steps, larger working sets could be considered

(e.g., as in SVMlight of Joachims 1999). Still, to be successful, the algorithm must solve

each subproblem, here a non-separable RAP–NC, very efficiently. Such an alternative

optimization approach will be investigated in Section 4.3.

Portfolio Management. The mean-variance optimization (MVO) model of Markowitz

(1952) has been refined over the years to integrate a large variety of constraints. In its

most classical form, the model aims to maximize expected return while minimizing a risk

measure such as the variance of the return. This problem can be formulated as:{
max

n∑
i=1

xiµi ; min
n∑
i=1

n∑
j=1

xixjσij

}
(36)

s.t.
n∑
i=1

xi = 1 (37)

0 ≤ xi i ∈ {1, . . . , n}, (38)

where the xi variables, i ∈ {1, . . . , n}, represent investments in different assets, µi is the

expected return of asset i, and σij the covariance between asset i and j. In this model,

Equation (37) is used to normalize the total investment and Equation (38) prevents short-

selling. The literature on these models is vast, and we refer to the recent surveys of Kolm

et al. (2014) and Mansini et al. (2014) for more thorough descriptions. Two additional

constraint families, often used in practical portfolio models, are closely linked with the

RAP–NC:

• Class constraints limit the investment amounts for certain classes of assets or economic

sectors. These can result from regulatory requirements, managerial insights, or
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customer guidelines (see, e.g., Chang et al. 2000 and Anagnostopoulos et Mamanis

2010). The assets may also be ranked into different categories, e.g., based on their

risk or ecological impact. Imposing investment bounds at each level leads to the

nested constraints of Equation (6).

• Fixed transaction costs, minimum transaction levels, and cardinality constraints either

impose a fixed price or threshold quantity for any investment in an asset, or limit

the number of positions on different assets. These constraints usually require the

introduction of additional integer variables yi, taking value one if and only if the asset

i is included in the portfolio. This leads to quadratic MIPs, for which metaheuristics

(Chang et al. 2000, Crama et Schyns 2003) and branch-and-cut methods (Bienstock

1996, Jobst et al. 2001) form the current state-of-the-art. Bienstock (1996) branches

on the yi variables and solves a quadratic resource allocation problem, with additional

surrogate constraints in the form of Equation (6), at each node of the search tree.

Improved algorithms for the RAP–NC can thus also prove helpful as a methodological

building block for more complex portfolio optimization algorithms.

Telecommunications. Constrained resource allocation problems also have a variety of

applications in telecommunications. Mobile signals, for example, can be emitted in different

directions with different power levels, but interference between signals emitted in the

same direction reduces the quality of the communication. In this context, a power and

direction must be determined for each signal, while respecting service-quality constraints

and minimizing transmission costs. As underlined by Viswanath et Anantharam (2002)

and Padakandla et Sundaresan (2009), this problem can be formulated as an instance of

the RAP–NC. Given the large size of typical applications, the efficiency of the algorithm is

of foremost importance.

A similar model arises for power minimization in multiple-input and multiple-output

communication systems, as well as in various other applications of optimization to telecom-

munications (D’Amico et al. 2014). Moreover, the RAP–NC generalizes a family of multilevel

water-filling problems, which have been the focus of significant research (Palomar et Fonol-

losa 2005). Other applications include power management on multimedia devices, discussed

by Huang et Wang (2009) and Gerards et al. (2016). As illustrated by these example

applications, the RAP–NC is a prototypical model and an elementary building block for

various problems. Therefore, a new algorithmic breakthrough can have considerable impact

in many contexts.
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3 Proposed Methodology

In this section, we first describe the proposed methodology for the case of continuous

variables, and then move on to the case with integer variables. We assume that ai ≤ bi for

i ∈ {1, . . . , n}, otherwise the problem is trivially infeasible. We will use boldface notation

for vectors and normal font for scalars. Let es be the unit vector such that es = 1 and

ei = 0 for i 6= s.

3.1 Continuous RAP–NC

The proposed algorithm for the RAP–NC is a divide-and-conquer approach over the indices

of the nested constraints. It can be seen as a generalization of the method of Vidal et al.

(2016), with some fundamental differences related to the number and the nature of the

subproblems. For each range of indices (v, w) considered during the search, such that

1 ≤ v ≤ w ≤ m, it solves four subproblems, RAP–NCv,w(L,R) for L ∈ {av−1, bv−1} and

R ∈ {aw, bw}, expressed in Equations (39)–(42), obtained by fixing the (v − 1)th and wth

nested constraints to their lower or upper bounds. M is a large number, defined to be

larger than the Lipschitz constant of each function fi.

RAP–NCv,w(L,R) : min f̄(x) =

σ[w]∑
i=σ[v−1]+1

f̄i(xi) (39)

s.t. ai − L ≤
σ[i]∑

k=σ[v−1]+1

xk ≤ bi − L i ∈ {v, . . . , w − 1} (40)

σ[w]∑
i=σ[v−1]+1

xi = R− L (41)

with f̄i(x) =


fi(ci) +M(ci − x) if x < ci

fi(xi) if x ∈ [ci, di]

fi(di) +M(x− di) if x > di

(42)

To solve these problems when v < w, the algorithm relies on known optimal solutions

obtained deeper in a recursion over the range (v, u) and (u+ 1, w), with u = b(v + w)/2c.
When v = w (at the bottom of the recursion), the RAP–NCv,v(L,R) does not contain any

nested constraints from Equation (40) and thus reduces to a simple RAP. We will refer

to this approach as the monotonic decomposition algorithm, MDA(v, w). The original

RAP–NC is solved by MDA(1,m), and the maximum depth of the recursion is dlogme
since the binary decomposition is performed over the m nested constraints.
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In the formulation given by Equations (39)–(42), note that the bounds ci ≤ xi ≤ di

are transferred into the objective via an exact L1 penalty function. This is possible since

the functions fi satisfy the Lipschitz condition (Theorem 1), and it helps simplify the

exposition and proofs.

Theorem 1 (Relaxation–Penalization). If there exists a solution x of RAP–NCv,w(L,R)

such that c ≤ x ≤ d, then all optimal solutions of RAP–NCv,w(L,R) satisfy c ≤ x ≤ d.

Proof. Assume the existence of an optimal solution x∗ of RAP–NCv,w(L,R) with an

index s ∈ {σ[v− 1] + 1, . . . , σ[w]} such that x∗s > ds, and a solution x such that c ≤ x ≤ d.

Since x∗s > ds ≥ xs and
∑σ[w]

k=σ[v−1]+1 x
∗
k =

∑σ[w]
k=σ[v−1]+1 xk = R− L, either

s∑
k=σ[v−1]+1

x∗k >
s∑

k=σ[v−1]+1

xk or

σ[w]∑
k=s

x∗k >

σ[w]∑
k=s

xk. (43)

In the first case, define t = min{i | i > s and
∑i

k=σ[v−1]+1 x
∗
k ≤

∑i
k=σ[v−1]+1 xk}.

Observe that x∗t < xt and thus dt − x∗t > 0. Moreover, there exists ∆ > 0 such that, for

each j such that σ[j] ∈ {s, . . . , t− 1},
∑σ[j]

k=σ[v−1]+1 x
∗
k −∆ >

∑σ[j]
k=σ[v−1]+1 xk ≥ ai. Defining

∆′ = min{∆, dt − x∗t , x∗s − ds}, the solution x′∗ = x∗ + ∆′(et − es) is feasible and such that

f̄(x′∗) = f̄(x∗) + f̄t(x
∗
t + ∆′)− f̄t(x∗t ) + f̄s(x

∗
s−∆′)− f̄s(x∗s). Due to the Lipschitz condition,

we have f̄t(x
∗
t + ∆′) − f̄t(x∗t ) < M∆′. Moreover, M∆′ = f̄s(x

∗
s) − f̄s(x∗s − ∆′) and thus

f̄(x′∗) < f̄(x∗), contradicting the optimality of x∗.

The second case of Equation (43) is analogous.

The main challenge of the MDA is now to exploit the information gathered at deeper

steps of the recursion to solve each RAP–NC efficiently. For this purpose, we introduce

Theorem 2, which expresses a monotonicity property of the optimal solutions as a function

of the resource bound R. As shown subsequently in Theorem 3, this result allows to

generate tighter bounds on the variables, which supersede the nested constraints of the

RAP–NC and allow to solve all subproblems (at all recursion levels) as simple RAPs.

Theorem 2 (Monotonicity). Consider three bounds R↓ ≤ R ≤ R↑. If x↓ is an optimal

solution of RAP–NCv,w(L,R↓) and x↑ is an optimal solution of RAP–NCv,w(L,R↑) such

that x↓ ≤ x↑, then there exists an optimal solution x∗ of RAP–NCv,w(L,R) such that

x↓ ≤ x∗ ≤ x↑.

Proof. Define āi = ai−L and b̄i = bi−L for i ∈ {v, . . . , w−1} as well as āw = b̄w = R− L.

By the KKT conditions (in the presence of a convex objective over a set of linear constraints),

if x is an optimal solution of RAP–NCv,w(L,R), then there exist dual multipliers (κ,λ)
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such that:

Φi =
∑

k∈{v,...,w}|σ[k]≥i

(κk − λk) ∈ ∂f̄i(xi) i ∈ {σ[v − 1] + 1, . . . , σ[w]} (44)

āi ≤
σ[i]∑

k=σ[v−1]+1

xk ≤ b̄i i ∈ {v, . . . , w} (45)

κi

 σ[i]∑
k=σ[v−1]+1

xk − āi

 = 0, κi ∈ <+ i ∈ {v, . . . , w} (46)

λi

b̄i − σ[i]∑
k=σ[v−1]+1

xk

 = 0, λi ∈ <+ i ∈ {v, . . . , w} (47)

Note the appearance of the subgradients ∂f̄i in Equation (44), since the functions f̄i

are not necessarily differentiable. Let (κ↑,λ↑,Φ↑) be a set of multipliers associated

with the optimal solution x↑ of RAP–NCv,w(L,R↑), and x be an optimal solution of

RAP–NCv,w(L,R). Define S+
x = {i | xi > x↑i }, S−x = {i | xi < x↓i }, and Sx = {i | x↓i ≤

xi ≤ x↑i }. We will present a construct that generates a sequence of solutions (xk), starting

from x0 = x, such that
∣∣S+

xk+1

∣∣ < ∣∣S+
xk

∣∣ and
∣∣S−xk+1

∣∣ ≤ ∣∣S−xk

∣∣ as long as
∣∣S+

xk

∣∣ > 0, leading by

recurrence to a solution x̄ such that x̄ ≤ x↑.

If
∣∣S+

xk

∣∣ > 0, then there exists s ∈ {σ[v − 1] + 1, . . . , σ[w]} such that x↑s < xks . Let r be

the greatest index in {σ[v − 1] + 1, . . . , s} such that
∑r−1

k=σ[v−1]+1 x
k
k ≥

∑r−1
k=σ[v−1]+1 x

↑
k, and

let t be the smallest index in {s, . . . , σ[w]} such that
∑t

k=σ[v−1]+1 x
k
k ≤

∑t
k=σ[v−1]+1 x

↑
k.

Since R↑ − L =
∑σ[w]

i=σ[v−1]+1 x
↑
i ≥

∑σ[w]
i=σ[v−1]+1 x

k
i = R− L, and by the definition of

r and t, it follows that
∑t

i=r x
↑
i ≥

∑t
i=r x

k
i . Moreover, r < s ⇒ xkr < x↑r, and

s < t⇒ xkt < x↑t . Finally, note that r = s = t (jointly) is impossible.

• When r < s, the following statements are valid:

For each j such that σ[j] ∈ {r, . . . , s− 1}, āj ≤
∑σ[j]

k=σ[v−1]+1 x
k
k <

∑σ[j]
k=σ[v−1]+1 x

↑
k ≤ b̄j

(by the definition of r) and thus κ↑j = λkj = 0. As a consequence, Φk
i ≥ Φk

i+1 and

Φ↑i ≤ Φ↑i+1 for i ∈ {r, . . . , s− 1}. The functions f̄i are convex, and thus their (Clarke)

subgradients are monotone (Rockafellar 1970), i.e., {x↑s < xks ,Φ
↑
s ∈ ∂f̄s(x

↑
s),Φ

k
s ∈

∂f̄s(x
k
s )} ⇒ Φ↑s ≤ Φk

s . Similarly, we have {x↑r > xkr ,Φ
↑
r ∈ ∂f̄r(x↑r),Φk

r ∈ ∂f̄r(xkr )} ⇒
Φ↑r ≥ Φk

r . Combining these relations leads to

Φk
s ≤ Φk

r ≤ Φ↑r ≤ Φ↑s ≤ Φk
s , (48)

and thus there exists Ψ ∈ < such that Φ↑i = Φk
i = Ψ for i ∈ {r, . . . , s}.
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•• When s < t, the following statements are valid:

For each j such that σ[j] ∈ {s, . . . , t− 1}, āj ≤
∑σ[j]

k=σ[v−1]+1 x
↑
k <

∑σ[j]
k=σ[v−1]+1 x

k
k ≤ b̄j

(by the definition of t) and thus λ↑j = κkj = 0. As a consequence, Φk
i ≤ Φk

i+1 and

Φ↑i ≥ Φ↑i+1 for i ∈ {s, . . . , t− 1}. Furthermore, as before, x↑s < xks and x↑t > xkt , and

thus Φ↑s ≤ Φk
s and Φ↑t ≥ Φk

t . Combining these relations leads to

Φk
s ≤ Φk

t ≤ Φ↑t ≤ Φ↑s ≤ Φk
s , (49)

and thus there exists Ψ ∈ < such that Φ↑i = Φk
i = Ψ for i ∈ {s, . . . , t}.

Overall, Φ↑i = Φk
i = Ψ for i ∈ {r, . . . , t}, and thus Ψ ∈ ∂f̄i(xki )∩∂f̄i(x↑i ) for i ∈ {r, . . . , t}.

Define xmini = min{xki , x
↑
i } and xmaxi = max{xki , x

↑
i }. This implies that ∂f̄i(x) = {Ψ}

for x ∈ (xmini , xmaxi ) and thus these functions are affine with identical slope: f̄i(x) =

f̄i(x
k
i )+Ψ(x−xki ) for x ∈ [xmini , xmaxi ]. We can thus transfer value from the variables of the set

S+ = S+
xk∩{r, . . . , t} to those of the set S+ = {r, . . . , t}−S+, via Adjust([r, . . . , t],xk,x↑)

(Algorithm 1), leading to a feasible solution xk+1 with the same cost as xk, hence optimal,

such that 
xk+1
i = x↑i for i ∈ S+

xki ≤ xk+1
i ≤ x↑i for i ∈ S+

xk+1
i = xki otherwise.

We observe that
∣∣S+

xk+1

∣∣ < ∣∣S+
xk

∣∣, moreover
∣∣S−xk+1

∣∣ ≤ ∣∣S−xk

∣∣. By recurrence, repeating the

previous transformation leads to a solution x̄ such that S+
x̄ = ∅. A similar principle

can then be applied to generate a sequence of solutions (x̄k), starting from x̄0 = x̄, such

that
∣∣S−x̄k+1

∣∣ < ∣∣S−x̄k

∣∣ and S+
x̄k+1 = ∅ as long as

∣∣S−x̄k

∣∣ > 0, leading to an optimal solution x∗

such that x↓ ≤ x∗ ≤ x↑.

Theorem 3 (Variable Bounds). Let xLa, xLb, xaR, and xbR be optimal solutions of

RAP–NCv,u(L, au), RAP–NCv,u(L, bu), RAP–NCu+1,w(au, R), and RAP–NCu+1,w(bu, R),

respectively. If xLa ≤ xLb and xbR ≤ xaR, then there exists an optimal solution x∗ of

RAP–NCv,w(L,R) such that:

xLai ≤ x∗i ≤ xLbi for i ∈ {σ[v − 1] + 1, . . . , σ[u]}, and (50)

xbRi ≤ x∗i ≤ xaRi for i ∈ {σ[u] + 1, . . . , σ[w]}. (51)

Proof. Let x be an optimal solution of RAP–NCv,w(L,R). As such, (xσ[v−1]+1, . . . , xσ[u]) and

(xσ[u]+1, . . . , xσ[w]) must be optimal solutions of RAP–NCv,u(L,X) and RAP–NCu+1,w(X,R)

with X = L+
∑σ[u]

i=σ[v−1]+1 xi. Since au ≤ X ≤ bu, there exists an optimal solution x∗ of
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Algorithm 1: Adjust(V,x,x↑)

1 ∆← 0 ;

2 for i = V1, . . . , V|V | do

3 if xi > x↑i then

4 ∆← ∆ + xi − x↑i ;

5 xi ← x↑i ;

6 for i = V1, . . . , V|V | do

7 if xi < x↑i then

8 δ = min{x↑i − xi,∆} ;

9 xi = xi + δ ;

10 ∆ = ∆− δ ;

RAP–NCv,u(L,X) such that xLai ≤ x∗i ≤ xLbi for i ∈ {σ[v− 1] + 1, . . . , σ[u]} via Theorem 2.

The other inequality is obtained for i ∈ {σ[u] + 1, . . . , σ[w]} with the same argument, after

re-indexing the variables downwards from σ[w] to σ[u] + 1.

As a consequence of Theorems 2 and 3, the inequalities of Equations (50)–(51) are valid

and can be added to the RAP–NC formulation given by Equations (39)–(42). Moreover,

we show that these inequalities dominate the nested constraints of Equation (40). Indeed,

xLak ≤ xk ≤ xLbk for k ∈ {σ[v − 1] + 1, . . . , σ[u]} and i ∈ {v, . . . , u}

⇒
σ[i]∑

k=σ[v−1]+1

xLak ≤
σ[i]∑

k=σ[v−1]+1

xk ≤
σ[i]∑

k=σ[v−1]+1

xLbk

⇒ āi ≤
σ[i]∑

k=σ[v−1]+1

xk ≤ b̄i and

(52)

xbRk ≤ xk ≤ xaRk for k ∈ {σ[u] + 1, . . . , σ[w]} and i ∈ {u, . . . , w − 1}

⇒
σ[w]∑

k=σ[i]+1

xbRk ≤
σ[w]∑

k=σ[i]+1

xk ≤
σ[w]∑

k=σ[i]+1

xaRk .
(53)

Moreover, Equations (50)–(51) imply that:

σ[u]∑
k=σ[v−1]+1

xLbk +

σ[w]∑
k=σ[u]+1

xbRk =

σ[w]∑
k=σ[v−1]+1

xk =

σ[u]∑
k=σ[v−1]+1

xLak +

σ[w]∑
k=σ[u]+1

xaRk = R− L, (54)
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and combining Equation (53) and (54) leads to:

⇒
σ[u]∑

k=σ[v−1]+1

xLbk +

σ[i]∑
k=σ[u]+1

xbRk ≥
σ[i]∑

k=σ[v−1]+1

xk ≥
σ[u]∑

k=σ[v−1]+1

xLak +

σ[i]∑
k=σ[u]+1

xaRk

⇒ b̄i ≥
σ[i]∑

k=σ[v−1]+1

xk ≥ āi.

(55)

Therefore, the nested constraints are superseded at each level of the recursion by the

variable bounds obtained from the subproblems. The immediate consequence is a problem

simplification: without nested constraints, the formulation reduces to a simple RAP given

in Equations (56)–(58), which can be efficiently solved by the algorithm of Frederickson et

Johnson (1982) or Hochbaum (1994).

RAPv,w(L,R, c̄, d̄) : min f̄(x) =

σ[w]∑
i=σ[v−1]+1

f̄i(xi) (56)

s.t.

σ[w]∑
i=σ[v−1]+1

xi = R− L (57)

c̄i ≤ xi ≤ d̄i i ∈ {σ[v − 1] + 1, . . . , σ[w]}. (58)

The pseudocode of the overall decomposition approach is summarized in Algorithm 2.

Two final discussions follow.

• First, observe the occurrence of Algorithm 1 (Adjust function, introduced in the

proof of Theorem 2) before setting the RAP bounds. This O(n) time function can

only occur when the functions fi are not strictly convex; in these cases, the solutions

of the subproblems may not directly satisfy xLa ≤ xLb and xbR ≤ xaR because of

possible ties between resource-allocation choices. Alternatively, one could also use a

stable RAP solver that guarantees that the solution variables increase monotonically

with the resource bound.

• Second, note the occurrence of the L1 penalty function associated with the original

variables’ bounds ci and di in f̄i(xi) while c̄i and d̄i are maintained as hard constraints.

Indeed, some subproblems (e.g., RAP–NCv,v+1(bv, av+1) when bv ≥ av+1 and c = 0)

may not have a solution respecting the bounds ci and di. On the other hand, the c̄i

and d̄i constraints can always be fulfilled, otherwise the original problem would be

infeasible, and their validity is essential to guarantee the correctness of the algorithm.
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Algorithm 2: MDA(v, w)

1 if v = w then

2 (xaaσ[v−1]+1, . . . , x
aa
σ[v])← Rapv,v(av−1, aw,−∞,∞) ;

3 (xabσ[v−1]+1, . . . , x
ab
σ[v])← Rapv,v(av−1, bw,−∞,∞) ;

4 (xbaσ[v−1]+1, . . . , x
ba
σ[v])← Rapv,v(bv−1, aw,−∞,∞) ;

5 (xbbσ[v−1]+1, . . . , x
bb
σ[v])← Rapv,v(bv−1, bw,−∞,∞) ;

6 else

7 u← bv+w
2
c ;

8 MDA(v, u) ;

9 MDA(u+ 1, w) ;

10 for (L,R) ∈ {(a, a), (a, b), (b, a), (b, b)} do

11 if xLa � xLb then xLa ← Adjust([σ[v − 1] + 1, . . . , σ[u]],xLa,xLb);

12 for i = σ[v − 1] + 1 to σ[u] do

13 [c̄i, d̄i]← [xLai , x
Lb
i ] ;

14 if xbR � xaR then xbR ← Adjust([σ[w], . . . , σ[u] + 1],xbR,xaR);

15 for i = σ[u] + 1 to σ[w] do

16 [c̄i, d̄i]← [xbRi , x
aR
i ] ;

17 (xLRσ[v−1]+1, . . . , x
LR
σ[w])← Rapv,w(L,R, c̄, d̄) ;

Nevertheless, since efficient RAP algorithms exist for some specific forms of the

objective function, e.g., quadratic (Brucker 1984, Ibaraki et Katoh 1988), we wish

to avoid explicit penalty terms in the objective. Therefore we note that an optimal

solution x∗ of RAPv,w(L,R, c̄, d̄) can be obtained as follows:

x∗ =


c′ +

(R−L)−
∑σ[w]
i=σ[v−1]+1

c′i∑σ[w]
i=σ[v−1]+1

(c̄i−c′i)
(c̄− c′) if

∑σ[w]
i=σ[v−1]+1 c

′
i > R− L

d′ +
(R−L)−

∑σ[w]
i=σ[v−1]+1

d′i∑σ[w]
i=σ[v−1]+1

(d̄i−d′i)
(d̄− d′) if

∑σ[w]
i=σ[v−1]+1 d

′
i < R− L

x otherwise

(59)

where c′i = max{c̄i,min{ci, d̄i}}, d′i = min{d̄i,max{di, c̄i}}, and x is the solution of

the same RAP with the hard constraints of Equation (60):

c′i ≤ xi ≤ d′i i ∈ {σ[v − 1] + 1, . . . , σ[w]}. (60)

Thus, the penalty functions for ci and di are taken into account by a O(n) test during

each RAP resolution, and they never appear in the objective. Experimentally, we

observe that the subproblems that fall in the first two cases of Equation (59) are

solved notably faster, since they do not even require finding the minimum of a convex

function.
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3.2 Integer Optimization and Proximity

The previous section has considered continuous decision variables and proven the validity

of the algorithm when all the subproblems are solved to optimality. Still, this proof is of

limited practical utility for bit-complexity computational models, since the solutions of

separable convex problems can involve irrational numbers (e.g., min f(x) = x3 − 6x, x ≥ 0)

which have no finite binary representation. Therefore, assuming that a subproblem is solved

to optimality without any assumption on the shape of the functions is impracticable.

For this reason, most articles that present computational complexity results for convex

resource allocation and network flow problems rely on the notion of ε-approximate solutions,

located in the proximity of a truly optimal but not necessarily representable solution. In a

decomposition algorithm such as MDA, proving that the method produces an ε-approximate

solution for a given ε would require to control the precision of the algorithm at each level

of the recursion, which could be cumbersome. Therefore, we adopt another approach,

typically used in scaling algorithms (Hochbaum 1994, Moriguchi et al. 2011), which consists

in proving the validity of the algorithm for integer variables, and using a proximity theorem

between the integer and continuous solutions. By solving an integer problem scaled by an

appropriate factor, and translating back the integer solution into a continuous solution,

any desired ε precision can be achieved.

We define the functions f̄pl
i (x) = f̄i(bxc) + (x − bxc) × (f̄i(dxe) − f̄i(bxc)), which

correspond to an inner linearization of the objective using as base the set of integer

values. We call the linearized problem RAP–NCpl
v,w(L,R); it aims to find the minimum

of f̄pl(x) =
∑σ[w]

i=σ[v−1]+1 f̄
pl
i (xi) subject to Equations (40)–(42). Since f̄i and f̄pl

i coincide

on the integer domain, the integer RAP–NCv,w(L,R) and RAP–NCpl
v,w(L,R) have the

same set of optimal solutions. Beyond this, there is a close relationship between the

solutions of the integer RAP–NCpl
v,w(L,R) and those of its continuous counterpart, as

formulated in Theorem 4, allowing us to prove the validity of Algorithm 2 for integer

variables (Theorem 5).

Theorem 4 (Reformulation). Any optimal solution x∗ of the integer RAP–NCpl
v,w(L,R)

is also an optimal solution of the continuous RAP–NCpl
v,w(L,R).

Proof. By contradiction. Suppose that x∗ is not an optimal solution of the continuous

RAP–NCpl
v,w(L,R). Hence, there exists x such that f̄pl(x) < f̄pl(x∗), and the set {i | xi −

bxic > 0} contains at least two elements since
∑σ[w]

i=σ[v−1]+1 xi = R− L ∈ Z. Let s and t be,

respectively, the first and second indices in this set. We know that the functions fpl
s and

fpl
t are linear in [bxsc, dxse] and [bxtc, dxte], respectively, with slope Φs and Φt. Observe
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that the solution

x′ =

x + min{dxse − xs, xt − bxtc}(es − et) if Φs ≤ Φt,

x + min{dxte − xt, xs − bxsc}(et − es) otherwise,
(61)

is feasible and such that f̄pl(x′) ≤ f̄pl(x). Also, note that the number of non-integer values

of x′ has been strictly decreased (by one or two). Repeating this process, we obtain an

integer solution x∗∗ such that f̄pl(x∗∗) ≤ f̄pl(x) < f̄pl(x∗). This contradicts the original

assumption that x∗ is an optimal solution of the integer RAP–NCpl
v,w(L,R).

Theorem 5 (Integer variables). Theorems 1, 2, 3 and Algorithm 2 remain valid for

RAP–NCs with integer variables.

Proof. The mathematical arguments used in these proofs are independent of the continuous

or integer nature of the variables. Moreover, the solution transformation of Algorithm 1

preserves the integrality of the variables. The only element that requires continuous

variables is the use of the (necessary) KKT conditions in Equations (44)–(47). However, as

we have demonstrated in Theorem 4, an optimal solution of the RAP–NCpl
v,w(L,R) with

integer variables is also an optimal solution of the continuous RAP–NCpl
v,w(L,R). Thus,

the KKT conditions with functions fpl
i are necessary, hence completing the proof.

Finally, we exploit a proximity result for the solutions of the continuous and integer

RAP–NCpl
v,w(L,R):

Theorem 6 (Proximity). For any integer optimal solution x∗ of RAP–NC with n ≥ 2

variables, there is a continuous optimal solution x such that

|xi − x∗i | < n− 1, for i ∈ {1, . . . , n}. (62)

This theorem allows us to search for an ε-approximate solution of the continuous

problem by defining an integer RAP–NC in which all parameters (ai, bi, ci, di) have been

scaled by a factor dn/εe, solving this problem, and transforming back the solution. It

constitutes a special case of Theorem 1.3 from Moriguchi et al. (2011), as the RAP–NC can

be shown to be a special case of resource allocation problem under submodular constraints.

Moreover, without even relying on submodular optimization arguments, this result can also

be obtained directly via first-order (KKT) optimality conditions. This alternative proof

shares many similarities with that of Theorem 3, and it is made available in Appendix A

for the interested reader.
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3.3 Computational Complexity

Convex objective. Each call to the main algorithm MDA(v, w) involves a recursive call

to MDA(v, u) and MDA(u+ 1, w) with u = bv+w
2
c, as well as

• the solution of Rapv,w(L,R, c̄, d̄) for L ∈ {av−1, bv−1} and R ∈ {aw, bw};
• up to four calls to the Adjust function;

• a linear number of operations to set the bounds c̄i and d̄i.

The function Adjust uses a number of elementary operations which grows linearly with the

number of variables. Moreover, in the presence of integer variables, each RAP subproblem

with n variables and bound B = R−L can be solved in O(n log B
n

) time using the algorithm

of Frederickson et Johnson (1982) or Hochbaum (1994). As a consequence, the number of

operations Φ(n,m,B) of MDA, as a function of the number of variables n and constraints

m, is bounded as

Φ(n,m,B) ≤
h∑
i=1

Kn+
2h−i∑
j=1

4K ′
(
σ[2ij]− σ[2i(j − 1)]

)
log

(
B

σ[2ij]− σ[2i(j − 1)]

)
≤ Knh+ 4K ′nh logB,

where K and K ′ are constants and h = 1 + dlog2me. Thus, Φ(n,m,B) ∈ O(n logm logB)

in the integer case. For the continuous case, after scaling all problem parameters by dn/εe,
the complexity of the algorithm for the search for an ε−approximate solution becomes

O(n logm log nB
ε

).

Quadratic and linear objectives. More efficient RAP solution methods are known for

specific forms of objective functions. The quadratic RAP with continuous variables, in

particular, can be solved in O(n) time (Brucker 1984). For the integer case, reviewed

in Katoh et al. (2013), an O(n) algorithm can be derived from Section 4.6 of Ibaraki et

Katoh (1988). Finally, in the linear case, each RAP subproblem can be solved in O(n)

time as a weighted median problem (see, e.g., Korte et Vygen 2012). All these cases lead

to O(n logm) algorithms for the corresponding RAP–NC. Note that no transformation

or proximity theorem is needed for the continuous quadratic RAP, since the solutions of

quadratic problems are representable.

4 Computational Experiments

We perform computational experiments to evaluate the performance of the proposed

algorithm in the presence of a linear objective, and for two convex objective functions
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arising in project crashing and speed optimization applications. For linear problems, we

compare with the network flow algorithm of Ahuja et Hochbaum (2008), which achieved the

previous best-known complexity of O(n log n) for the problem; this complexity is slightly

improved to O(n logm) by the proposed MDA. For general convex objectives, no dedicated

algorithm is available and we compare with the interior-point-based algorithm of MOSEK

v7.1 for separable convex optimization. We finally report experimental analyses to evaluate

the potential of this solver within a projected gradient method for the SVOREX problem

(Section 2), for ordinal regression. The algorithms are implemented in C++ and executed

on a single core of a Xeon 3.07 GHz CPU. For accurate time measurements, any algorithm

with a CPU time smaller than one second was executed multiple times in a loop (up to a

total time of 10 seconds) to determine the average time of a run.

We generated benchmark instances with a number of variables n ∈ {10, 20, 50, 100, 200, . . . , 106}.
Overall, 10 random benchmark instances were produced for each problem size, leading to a

total of 16×10 instances with the same number of nested constraints as decision variables

(n = m). For fine-grained complexity analyses in the case of the linear objective, we also

removed random nested constraints to produce an additional set of 13×10 instances with

m = 100 constraints and n ∈ {100, 200, 500, . . . , 106}. For each instance, we generated the

parameters ci and di for i ∈ {1, . . . , n} from uniform distributions in the range [0.1, 0.5]

and [0.5, 0.9], respectively. Then, we defined two sequences of values vi and wi, such that

v0 = w0 = 0, vi = vi−1 +Xv
i , and wi = wi−1 +Xw

i for i ∈ {1, . . . , n}, where Xv
i and Xw

i are

random variables drawn from a uniform distribution in the range [ci, di]. Finally, we set

ai = min{vi, wi} and bi = max{vi, wi} for all i. We also selected a random parameter pi

in [0, 1] to characterize the objective function. We conducted the experiments with four

classes of objectives: a linear objective
∑n

i=1 pixi, and three convex objectives defined as:

[F] fi(x) =
x4

4
+ pix, (63)

[Crash] fi(x) = ki +
pi
x
, (64)

and [Fuel] fi(x) = pi × ci ×
(ci
x

)3

, (65)

where the last two objectives are representative of applications in project crashing (Foldes

et Soumis 1993) and ship speed optimization (Ronen 1982).

4.1 Linear Objective

We start the experimental analyses with the linear RAP–NC. We will refer to the network-

flow-based approach of Ahuja et Hochbaum (2008) as “FLOW” in the text and tables. This
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method was precisely described in the original article, but no computational experiments

or practical implementation were reported, so we had to implement it. The authors

suggest the use of a red-black tree to locate the minimum-cost paths and a dynamic

tree (Tarjan 1997, Tarjan et Werneck 2009) to manage the capacity constraints. This

advanced data structure requires significant implementation effort and can result in high

CPU time constants. We thus adopted a simpler structure, a segment tree (Bentley 1977)

with lazy propagation, which allows evaluating and updating these capacities with the

same complexity of O(log n) per operation (and possibly a higher speed in practice). The

proposed MDA was implemented as in Algorithm 2, solving each linear RAP subproblem

in O(n) time as a variant of a weighted median problem (Korte et Vygen 2012).

We executed both algorithms on each instance. The results for the instances with as

many nested constraints as decision variables (n = m) are reported in Figure 1. To evaluate

the growth of the computational effort of the algorithms as a function of problem size, we

fitted the computational time as a power law f(n) = α× nβ of the number of variables n,

via a least-squares regression of an affine function on the log-log graph (left figure). We

also display as boxplots the ratio of the computational time of MDA and FLOW (right

figure). The same conventions are used to display the results of the experimental analyses

with a fixed number of constraints (m = 100) and increasing number of variables n in

Figure 2. Finally, the detailed average computational times for each group of 10 instances

are reported in Table 1.
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Figure 1: Varying n ∈ {10, . . . , 106} and m = n. Left figure: CPU time of both methods
as n and m grow. Right figure: Boxplots of the ratio TFLOW/TMDA.

From these experiments, we observe that the computational times of the two methods

are very similar in terms of magnitude and growth rate. When m = n, the algorithms have

the same theoretical complexity of O(n log n), as confirmed by the power law regression,

with an observed growth that is close to linear (in n1.16 and n1.18). The FLOW algorithm
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Figure 2: Linear Objective. Varying n ∈ {10, . . . , 106} and fixed m = 100. Left figure:
CPU time of both methods as n grows. Right figure: Boxplots of the ratio TFLOW/TMDA.

Table 1: Detailed average CPU times for experiments with a linear objective

Variable m CPU Time(s) Fixed m CPU Time(s)

n m FLOW MDA n m FLOW MDA

10 10 2.75× 10=6 4.78× 10=6 100 100 5.09× 10=5 5.95× 10=5

20 20 6.26× 10=6 1.02× 10=5 200 100 1.36× 10=4 1.26× 10=4

50 50 2.15× 10=5 2.85× 10=5 500 100 3.94× 10=4 2.86× 10=4

100 100 5.06× 10=5 5.89× 10=5 1000 100 9.07× 10=4 5.52× 10=4

200 200 1.26× 10=4 1.26× 10=4 2000 100 2.07× 10=3 1.14× 10=3

500 500 3.72× 10=4 3.36× 10=4 5000 100 6.16× 10=3 2.96× 10=3

1000 1000 8.43× 10=4 7.57× 10=4 10000 100 1.44× 10=2 6.26× 10=3

2000 2000 1.87× 10=3 1.74× 10=3 20000 100 3.17× 10=2 1.57× 10=2

5000 5000 5.43× 10=3 5.20× 10=3 50000 100 9.27× 10=2 5.26× 10=2

10000 10000 1.23× 10=2 1.12× 10=2 100000 100 2.04× 10=1 1.08× 10=1

20000 20000 2.62× 10=2 3.21× 10=2 200000 100 4.41× 10=1 2.36× 10=1

50000 50000 7.94× 10=2 1.05× 10=1 500000 100 1.20 7.19× 10=1

100000 100000 1.52× 10=1 2.26× 10=1 1000000 100 2.56 1.60

200000 200000 3.67× 10=1 4.86× 10=1

500000 500000 9.68× 10=1 1.37

1000000 1000000 1.99 2.98

24



is on average 1.1× to 1.4× faster than MDA for n ∈ [10, 100]∪ [104, 106], for instances with

the same number of variables and constraints. On the other hand, MDA is on average 2×
faster than FLOW when m is fixed and n grows beyond 1000. This is due to the difference

in computational complexity: O(n logm) for MDA instead of O(n log n). MDA and FLOW

solve the largest instances, with up to n = m = 106 constraints and variables, in three and

two seconds on average, respectively.

Overall, the two algorithms have similar performance for linear objectives, and the CPU

differences are small. Since these algorithms are based on drastically different principles,

they lead the way to different methodological extensions. The computational complexity of

FLOW is tied to its efficient use of a dynamic tree data structure, while the complexity of the

MDA stems from its “monotonic” divide-and-conquer strategy. Because of this structure,

MDA should be a good choice for re-optimization after a change of a few parameters, as

well as for the iterative solution of multiple RAP–NC, e.g., for speed optimization within

an algorithm enumerating a large number of similar visit sequences, since it can reuse the

solutions of smaller subproblems (see, e.g., Norstad et al. 2011 and Vidal et al. 2014, 2015).

4.2 Separable Convex Objectives

In contrast with the case of linear objective functions, no specialized algorithm has been

designed for the RAP–NC with separable convex costs to date. To illustrate the possible

gain achieved by the use of a dedicated algorithm rather than a general-purpose solver,

we do a simple comparison of the CPU time of MDA to that of the MOSEK v7.1 solver

on two sets of instances with objective functions derived from project crashing and speed

optimization applications. MOSEK is based on an interior-point method and is a good

representative of the current generation of separable convex optimization solvers. We

set a time limit of one hour. To simplify the execution of these experiments, we use a

binary search over the single dual variable to solve each continuous RAP subproblem

(Patriksson 2008) within a precision of 10−9. As these approximations may stack up

logm times in the recursion, we obtain an overall good accuracy but do not guarantee

ε-proximity in these tests.

The results are reported in Figure 3 and Table 2. In the figure, the power-law regressions

are presented only for MDA, since MOSEK does not exhibit polynomial behavior, likely

due to the computational effort related to the initialization of the solver for small problems.

In contrast, the computational time of MDA grows steadily in O(n1.19) at most. This

observation is consistent with the theoretical O(n logm) complexity of the method. Within

one hour, MOSEK solved all the instances up to n = 5, 000 decision variables. In contrast,

MDA solved all the available instances with up to one million variables. For the largest
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Figure 3: Convex Objective. From left to right and top to bottom: CPU time of both
methods as n grows and m = n for the objectives [F], [Crash], and [Fuel]. Bottom right
figure: Boxplots of the ratio TMosek/TMDA.

26



Table 2: Detailed average CPU-time for experiments with a separable convex objective

CPU Time(s) – MDA CPU Time(s) – MOSEK

n m [F] [Crash] [Fuel] [F] [Crash] [Fuel]

10 10 5.28×10=5 3.27×10=5 6.11×10=5 7.69×10=3 7.83×10=3 8.06×10=3

20 20 1.14×10=4 7.32×10=5 1.33×10=4 8.27×10=3 8.60×10=3 8.64×10=3

50 50 3.80×10=4 2.63×10=4 4.45×10=4 9.95×10=3 1.03×10=2 1.04×10=2

100 100 8.04×10=4 5.39×10=4 9.30×10=4 1.73×10=2 1.75×10=2 1.74×10=2

200 200 1.93×10=3 1.23×10=3 2.16×10=3 6.31×10=2 6.22×10=2 6.30×10=2

500 500 5.45×10=3 3.55×10=3 6.21×10=3 7.79×10=1 7.56×10=1 7.86×10=1

1000 1000 1.27×10=2 8.61×10=3 1.43×10=2 6.31 6.29 6.37

2000 2000 2.88×10=2 1.87×10=2 3.19×10=2 8.57×101 9.38×101 9.05×101

5000 5000 9.27×10=2 6.05×10=2 9.86×10=2 1.70×103 1.61×103 1.55×103

10000 10000 2.01×10=1 1.34×10=1 2.13×10=1 — — —

20000 20000 4.69×10=1 3.04×10=1 4.82×10=1 — — —

50000 50000 1.31 8.74×10=1 1.33 — — —

100000 100000 3.12 2.02 3.07 — — —

200000 200000 6.68 4.58 6.61 — — —

500000 500000 1.98×101 1.35×101 1.91×101 — — —

1000000 1000000 4.54×101 3.10×101 4.30×101 — — —

benchmark instances, the CPU time of the method did not exceed 50 seconds. As illustrated

in the bottom-right subfigure, the ratio of the CPU time of MOSEK and MDA ranges

between 16 and 28,000. For all the instances, significant CPU time is saved when using the

monotonic divide-and-conquer algorithm instead of a general-purpose solver.

4.3 Non-Separable Convex Objective – Support Vector Ordinal

Regression

Our last experimental analysis is concerned with the SVOREX model, presented in Section 2.

It is a non-separable convex optimization problem over a special case of the RAP–NC

constraint polytope. The current state-of-the-art algorithm for this problem, proposed

by Chu et Keerthi (2007), is based on a working-set decomposition. Iteratively, a set of

variables is selected to be optimized over, while the others remain fixed. This approach

leads to a (non-separable) restricted problem with fewer variables which can be solved to

optimality. The authors rely on a minimal working set containing the two variables which

most violate the KKT conditions (see Chu et Keerthi 2007, pp. 799–800, for all equations

involved).

The advantage of a minimal working set comes from the availability of analytical
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solutions for the restricted problems. On the other hand, larger working sets can be

beneficial in order to reduce the number of iterations until convergence (see, e.g., Joachims

1999). However this would require an efficient method for the resolution of the reduced

problems. This is how the proposed RAP–NC solver can provide a meaningful option

along this direction. In order to evaluate such a proof of concept, we conduct a simple

experiment which consists of generating larger working sets within the approach of Chu et

Keerthi (2007) and solving the resulting reduced problems with the help of the RAP–NC

algorithm. As these reduced problems are non-separable convex, the RAP–NC algorithm is

being used for the projection steps within a projected gradient descent procedure. The

overall solution approach is summarized in Algorithm 3, in which W is the working set, z

is the objective function, and γ is the fixed step size of the gradient descent.

Algorithm 3: Solving SVOREX via RAP-NC subproblems

1 α = α∗ = 0 ; // Initial Solution set to 0

2 while there exists samples that violate the KKT conditions do

3 Select a working set W of maximum size nws

4 for ngrad iterations do

// Take a step

5 for j ∈ {1, . . . , r} and i ∈ {1, . . . , nj} do

6 α̂ji =

α
j
i + γ ∂z

∂αji
if (i, j) ∈ W

αji otherwise
;

α̂∗ji =

α
∗j
i + γ ∂z

∂α∗ji
if (i, j) ∈ W

α∗ji otherwise

// Solve the projection subproblem as a RAP-NC7

(α,α∗)←


min
α,α∗

∑
(i,j)∈W

(
(αji − α̂

j
i )

2 + (α∗ji − α̂
∗j
i )2
)

s.t. Equations (30)–(33)

αji = α̂ji and α∗ji = α̂∗ji if (i, j) /∈ W

To obtain a larger working set, we repeatedly select the most-violated sample pair until

either reaching the desired size or not finding any remaining violation. In our experiments,

we consider working sets of size nws ∈ {2, 4, 6, 10}, a step size of γ = 0.2 and ngrad = 20

iterations for the projected gradient descent. We use the eight problem instances introduced

in Chu et Keerthi (2007), with the same Gaussian kernel, penalty parameter, and guidelines

for data preparation (normalizing the input vectors to zero mean and unit variance, and

28



using equal-frequency binning to discretize the target values into five ordinal scales).

Table 3 gives the results of these experiments. The columns report, in turn, the

problem instance name, its number of samples N , the dimension D of its feature space,

and characteristics of the optimal solutions: the number of variables set to 0 (correct

classification), to C (misclassified), and to intermediate values (support vectors). For each

working-set size nws, the total number of working set selections Iws done by the algorithm

is also presented, as well as the CPU time in seconds. The fastest algorithm version is

underlined for each instance.

Table 3: SVOREX resolution – impact of the working-set size and solution features

Instance N D
Solution Variables s.t.

nws Iws T(s)
α = 0 α = C α ∈]0, C[

Abalone 1000 8 39% 32% 29%

2 118233 13.46

4 96673 21.51

6 78433 26.34

10 60605 35.46

Bank 3000 32 25% 0% 75%

2 139468 68.41

4 52073 63.02

6 31452 45.22

10 21310 47.66

Boston 300 13 41% 0% 59%

2 7207 0.43

4 3697 0.40

6 2840 0.46

10 2076 0.54

California 5000 8 51% 43% 6%

2 250720 124.46

4 189289 185.79

6 166879 245.08

10 146170 360.52

Census 6000 16 38% 4% 59%

2 349894 242.11

4 206951 301.74

6 180608 393.28

10 155731 574.28

Computer 4000 21 64% 32% 4%

2 290207 168.94

4 140270 161.45

6 98948 153.56

10 68616 193.10

Machine CPU 150 6 49% 9% 41%

2 28856 1.24

4 11534 0.86

6 8144 0.91

10 6363 1.24

Pyrimidines 50 27 21% 0% 79%

2 935 0.035

4 367 0.021

6 218 0.018

10 144 0.023
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As measured in these experiments, the CPU time of the algorithms ranges between

0.018 seconds for the smallest problem instances (with 50 samples and 27 dimensions) and

574.28 seconds for the largest case (6000 samples and 16 dimensions). The size of the

working set has a significant impact on the number of iterations of the method and its

CPU time.

In all cases, the number of iterations decreases significantly when the size of the working

set grows. In terms of CPU time, the fastest results are either achieved with a working

set of size two or six (with three instances in each case). We observe that the three

instances for which a larger working set contributed to CPU-time reductions are those with

higher-dimension feature spaces (dimension 21 to 32). For these instances, using a larger

working set helped reduce the CPU time by a factor of 1.1 to 1.9 as compared to using a

two-samples working set. In comparison, Joachims (1999) reported a speedup of 1.5 to 2.0

when using ten-samples working sets for SVM, which can be viewed as a special case of

SVOREX with two classes.

To achieve a gain in CPU time, the number of iterations should decrease more than

linearly as a function of the working set size. This is due to the effort spent updating the

gradient, necessary for the verification of the KKT conditions and the working-set selection,

which grows linearly with the product Iws ×N × nws (using efficient incremental updates),

and which remains a major bottleneck for SVOREX and SVM algorithms (see, e.g., the

discussions in Joachims 1999 and Chang et Lin 2011). Usually, instances with a feature

space of high dimension exhibit a fast decrease in the number of iterations as a function

of the working set size, as their solutions include a larger proportion of variables taking

values in (0, C) (support vectors), values which are more quickly reached via simultaneous

optimizations of several variables. As such, larger working sets are likely to be more useful

in feature spaces of higher dimension.

Moreover, future research avenues concern possible improvements of the algorithm

(e.g., using shrinking or a double-loop scheme – Keerthi et al. 2001), adaptive choices of

working-set size based on analyses of the structure of the data set and solutions, as well

as more advanced selection rules, e.g., based on Zoutendijk’s descent direction (Joachims

1999) or second order information (Fan et al. 2005). These options for improvement are

now possible due to the availability of a fast algorithm for the resolution of the restricted

problems.
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5 Concluding Remarks

In this article, we have highlighted the importance of the RAP–NC, which is a problem

connected with a wide range of applications in production and transportation optimization,

portfolio management, sampling optimization, telecommunications and machine learning.

To solve this problem, we proposed a decomposition algorithm, based on monotonicity

principles coupled with divide-and-conquer, leading to new complexity breakthroughs

for a variety of objectives (linear, quadratic, and convex), with continuous or integer

variables, and to the first known strongly polynomial algorithm for the quadratic integer

RAP–NC. In terms of practical performance, the algorithm matches the best dedicated

(flow-based) algorithm for the linear case, outperforms general-purpose solvers by several

orders of magnitude in the convex case, and opens interesting perspectives of algorithmic

improvements for the SVOREX problem in machine learning.

The algorithm can be seen as a generalization of the method of Vidal et al. (2016), with

some fundamental differences related to the number and the nature of the subproblems.

It is not based on classical greedy steps and scaling, or on flow propagation techniques,

often exploited for this problem family. It is an important research question to see how

far this decomposition technique can be generalized. In particular, the approach can very

likely be extended to the resource allocation problem with a TREE of lower and upper

constraints (Hochbaum 1994). Other optimization problems related to PERT (Program

Evaluation and Review Technique) may exhibit monotonicity properties as a function of

time constraints or budget bounds, and we should investigate how to decompose efficiently

their variables and constraints while maintaining a low computational complexity. Similarly,

extended formulations involving the intersection of two or more RAP–NC type of constraint

polytopes deserve a closer look. These are all open important research directions which

can be explored in the near future.
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Appendix A – Proof of Theorem 6, based on KKT

conditions

Proof. The proof shares many similarities with that of Theorem 2. It exploits the fact

that an integer solution x∗ of the RAP–NCpl is also an optimal solution of the continuous

problem (Theorem 4) and thus satisfies the KKT conditions of Equations (44)–(47) based

on the functions fpl
i . We first state two lemmas, that will be used later to link the values

of the subderivatives of fi and fpl
i .

Lemma 1. Consider y ∈ R and x ∈ Z such that y + 1 ≤ x, and a convex function f . If

φy ∈ ∂f(y) and φx ∈ ∂fpl(x), then φy ≤ φx.

Proof of Lemma 1. By definition, f(x) − f(y) ≥ φy(x − y) and fpl(x − 1) − fpl(x) ≥
φx(x− 1− x) = −φx. Moreover, y ≤ x− 1 ≤ x, f is convex, and f coincides with fpl at x

and x− 1, so

φy ≤
f(x)− f(y)

x− y
≤ f(x)− f(x− 1)

x− (x− 1)
= fpl(x)− fpl(x− 1) ≤ φx.

Lemma 2. Consider y ∈ Z and x ∈ R such that y + 1 ≤ x, and a convex function f . If

φy ∈ ∂fpl(y) and φx ∈ ∂f(x), then φy ≤ φx.
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Proof of Lemma 2. By definition, fpl(y + 1)− fpl(y) ≥ φy and f(y)− f(x) ≥ φx(y − x).

Moreover, y ≤ y + 1 ≤ x, f is convex and f coincides with fpl at y and y + 1, so

φy ≤ fpl(y + 1)− fpl(y) =
f(y + 1)− f(y)

(y + 1)− y
≤ fpl(x)− fpl(y)

x− y
≤ φx.

The main proof follows. Let x be an optimal continuous solution of the RAP–NC. If Equa-

tion (62) is satisfied, then the proof is complete; otherwise there exists s ∈ {1, . . . , n} such

that |xs−x∗s| ≥ n−1. We consider here the case where xs ≥ x∗s+n−1, the other case being

symmetric. Let r be the greatest index in {1, . . . , s} such that
∑r−1

k=1 xk ≥
∑r−1

k=1 x
∗
k, and t be

the smallest index in {s, . . . , n} such that
∑t

k=1 xk ≤
∑t

k=1 x
∗
k. By the definition of r and t,

it follows that
∑t

i=r x
∗
i ≥

∑t
i=r xi, and thus

∑
i∈{r,...,t}−s x

∗
i ≥

∑
i∈{r,...,t}−s xi + n− 1. Since

|{r, . . . , t} − s| ≤ n− 1, there exists u ∈ {r, . . . , t} − s such that x∗u ≥ xu + 1.

Two cases can arise:

If u < s, for each j such that σ[j] ∈ {u, . . . , s− 1}, āj ≤
∑σ[j]

k=1 xk <
∑σ[j]

k=1 x
∗
k ≤ b̄j and

thus κ∗j = λj = 0. As a consequence, Φi ≥ Φi+1 and Φ∗i ≤ Φ∗i+1 for i ∈ {u, . . . , s− 1}.
If u > s, for each j such that σ[j] ∈ {s, . . . , u− 1}, āj ≤

∑σ[j]
k=1 x

∗
k <

∑σ[j]
k=1 xk ≤ b̄j and

thus λ∗j = κj = 0. As a consequence, Φi ≤ Φi+1 and Φ∗i ≥ Φ∗i+1 for i ∈ {s, . . . , u− 1}.
Moreover, {x∗s + n − 1 ≤ xs,Φ

∗
s ∈ ∂fs(x

∗
s),Φs ∈ ∂fpl

s (xs)} ⇒ Φ∗s ≤ Φs (Lemma 1),

and {xu + 1 ≤ x∗u,Φu ∈ ∂fpl
u (xu),Φ

∗
u ∈ ∂fu(x∗u)} ⇒ Φu ≤ Φ∗u (Lemma 2). Combining all

the relations leads to Φs ≤ Φu ≤ Φ∗u ≤ Φ∗s ≤ Φs, and thus there exists Ψ ∈ < such that

Φ∗i = Φi = Ψ for i ∈ {u, . . . , s} if u < s (or i ∈ {s, . . . , u} if s < u). As in the proof of

Theorem 2, this implies that the functions fs and fu are affine with slope Ψ over [xmins , xmaxs ]

and [xminu , xmaxu ], respectively, where xmini = min{xi, x∗i }. Observe that the new solution

x′ = x− es + eu is a feasible solution with the same cost as x, hence optimal. Moreover, we

note that
∑n

i=1 max{|x′i − x∗i | − (n− 1), 0} ≤
∑n

i=1 max{|xi − x∗i | − (n− 1), 0} − 1 and/or∑n
i=1 1{|x′i− x∗i | ≤ (n− 1)} ≤

∑n
i=1 1{|xi− x∗i | ≤ (n− 1)}− 1, where 1(p) = 1 if and only

if p is true. Repeating this process leads, in a finite number of steps, to a solution x′′ such

that |x′′i − x∗i | < n− 1, for i ∈ {1, . . . , n}.
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