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Micro-mobility systems (bike-sharing or scooter-sharing) have been widely adopted across the globe as a

sustainable mode of urban transportation. To efficiently plan and operate such systems, it is crucial to

understand the underlying rider demand — where riders come from and the rates of arrivals into the service

area. Estimating rider demand is nontrivial as most systems only keep track of trip data which is a biased

representation of the underlying demand. In this paper, we develop a locational demand model to estimate

rider demand based on only trip and vehicle location and status data. We establish conditions under which

our estimators are identifiable and consistent. In addition, we devise an expectation-maximization (EM)

algorithm with closed-form updates for efficient estimation. To scale the estimation procedures, this EM

algorithm is complemented with a location-discovery procedure that gradually adds new locations in the

service region with largest improvements to the log-likelihood. Experiments using both synthetic data and

real data from a dockless bike-sharing system in the Seattle area demonstrate the accuracy and scalability

of the model and its estimation algorithm.
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1. Introduction

Bike-sharing services have been widely adopted to provide a sustainable mode of urban transporta-

tion. In the United States, as of July 2022, there are 61 docked bike-sharing systems operating

8,473 docking stations (Bureau of Transportation Statistics 2023). Perhaps more excitingly, since

its debut in Seattle in 2017, dockless bike-sharing and e-scooter systems have been quickly expand-

ing coverage and gaining popularity due to its increased accessibility. As of July 2022, dockless

bike-sharing systems serve 35 cities and e-scooters serve 158 cities in the United States (Bureau of

Transportation Statistics 2023).

*Formerly affiliated with Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139,

where the co-author’s research was conducted.
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One critical aspect of monitoring and operating bike-sharing systems is to understand the rider

demand and how accessible the current service is to different communities in the service region.

For example, the city of Seattle has been actively monitoring the usage and accessibility of these

services using trip data (see Seattle Department of Transportation 2022 for a comprehensive online

dashboard). In addition, these systems often experience supply and demand imbalances that require

careful bike allocation and rebalancing. The success of these operations crucially depends on the

operator’s ability to estimate the ridership demand accurately over the planning horizon. These

motivate the topic of our paper.

Demand estimation in bike-sharing systems is non-trivial due to the following difficulties. First,

the operator often does not know the exact location of riders but only observes the booking data

which indicates the location and time a bike is reserved and picked up. Although technically

speaking, rider location data can be accessed through GPS on riders’ phones, to the best of the

authors’ knowledge, it is not an industry standard to record these data (Open Mobility Foundation

2022). These rider location data can be harder to collect and is subject to errors themselves —

for example, the place rider is checking her phone can be different from where she departs to pick

up a bike. Second, the observed trip locations and trip counts can form biased estimates for the

underlying demand — the booking location is likely not the actual rider location and a rider may

not choose to book or switch to other transportation services if there are no bikes available in the

vicinity of her location, and in such a case this demand will be censored in the observed trip data.

A standard approach for modeling such demand is to use a choice model, which specifies the

likelihood that a customer makes a certain choice when presented with a set of alternatives. Anal-

ogous to the retail settings to which such models are commonly applied, we can view each bike in

the system as a product to be considered among a set of available bikes. One characteristic of a

bike-sharing service is that products are horizontally differentiated — they are the same in terms

of price and quality and are largely differentiated by their proximity to the rider.

We primarily focus on this locational feature to build our demand model which is applicable to

both docked and dockless systems. In particular, we consider a model where riders arrive within a

set of locations inside the service region according to a Poisson process. Upon arrival, a rider makes

a choice of which bike to pick (or leaves the system) based on her walking distance to all available

bikes, governed by a general choice model. Our goal is to estimate the set of rider locations and

their corresponding arrival rates, using only booking and vehicle location and status data.

We summarize our key contributions as follows. We first study the statistical properties of the

demand model. Assuming that the rider choice model is known, we give conditions under which the

maximum likelihood estimator (MLE) of the location weights is identifiable and consistent. We also

discuss identifiability properties when riders make bike choices according to specific choice models
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including a multinomial logit model and a model based on distance ranking, under both docked

and dockless settings. Second, we derive an efficient expectation-maximization (EM) algorithm

with closed-form updates. To scale this algorithm and handle situations when the set of potential

rider locations is large or even not known a priori, we develop a location-discovery procedure

that iteratively explores and adds new rider locations in the service region. Lastly, we implement

our algorithms on a set of synthetic data and real dockless bike-sharing data in the Seattle area.

These experiments demonstrate the scalability and accuracy of our proposed demand model and

its estimation algorithm.

Our paper is organized as follows. In Section 2, we discuss relevant literature. In Section 3,

we describe the data generative process, our demand model, and discuss the identifiability and

consistency of the MLE. In Section 4, we introduce the EM algorithm and the location-discovery

procedure. We report the performance of our demand model and its estimation algorithm on an

extensive set of numerical experiments in Section 5 and conclude in Section 6. Data and code

to reproduce all experiments in the paper can be found at https://github.com/angxu1/bike_

sharing.

2. Literature Review

In this section, we briefly review related work. There have been numerous works that analyze bike-

sharing usage by incorporating data from heterogeneous sources (see, e.g., Rixey 2013, Singhvi

et al. 2015, El-Assi et al. 2017), among them being demographic characteristics, built environment

factors, weather and usage data of other connecting transportation services (see El-Assi et al.

2017 for a summary of the recent literature and references therein). In contrast, our work is more

related to the literature of structurally understanding demand censoring and substitution due to

the service (un)availability of bike-sharing systems. Close to our work are O’Mahony and Shmoys

(2015), Mellou and Jaillet (2019), Kabra et al. (2019), Freund et al. (2019) and He et al. (2021).

Although the main focuses of O’Mahony and Shmoys (2015), Freund et al. (2019) and Mellou

and Jaillet (2019) are on improving the operations of bike allocation and transshipment, they all

emphasize the importance of demand correction. Specifically, O’Mahony and Shmoys (2015) and

Freund et al. (2019) filter out time periods when the station runs out of bikes to correct for demand

censoring. Kabra et al. (2019) focus primarily on the question of how the accessibility and the

availability of a docked bike-sharing service impact ridership. To that end, the authors proposed a

structural demand model in which the rider arrival rate at a location is assumed to vary with several

covariates, such as the local population density and metro usage. The pick-up model is constructed

using a logit choice model where the utility is a piecewise linear function of walking distance with

a break-point at 300 meters. He et al. (2021) study the network effect of bike-sharing demand,
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i.e., riders choose to pick up a bike because both the origin and destination stations are attractive.

They developed an instrumental variable method to tackle the endogeneity issue of choice set in

estimating demand and applied the method to a London bike share system to estimate the rider

demand for network products. Our paper differs from these work as we primarily focus on the

locational aspect where the riders’ choices are based on the distance between their origin location

and bike locations. We look at a parsimonious and operational setting where the rider demands

are inferred solely based on trip and vehicle status data that fleet operators collect in their daily

operations. We reveal statistical properties of estimating rider arrival location and intensities and

develop scalable estimation procedures that are applicable to both docked and dockless systems.

These add to the toolkit of fleet operators or municipal agencies to effectively monitor, operate

and plan micro-mobility systems.

Our work is also closely related to the abundant list of literature on estimating the demand of

substitutable products using choice models based on possibly censored transaction data (Talluri and

van Ryzin 2004, Vulcano et al. 2012, Newman et al. 2014, Abdallah and Vulcano 2020). Assuming

customer demand follows a multinomial logit (MNL) choice model, Vulcano et al. (2012) pro-

pose an expectation-maximization (EM) method to estimate customers’ demand for substitutable

products from (censored) sales transaction data. Newman et al. (2014) develop a two-step strat-

egy that is served as an alternative to the EM method for parameter estimation. Their approach

entails breaking down the log-likelihood function into separate marginal and conditional compo-

nents. To improve upon these two methods, Abdallah and Vulcano (2020) propose a minorization-

maximization (MM) algorithm that can achieve a unique global maximum of the log-likelihood

function under some data requirements of the transaction data. However, it is less efficient in our

setting due to a lack of closed-form updates. van Ryzin and Vulcano (2014) propose a market dis-

covery algorithm to estimate customer demand based on ranking preferences. The algorithm starts

with a small set of customer types and enlarges the set by iteratively generating new customer type

(ranking preference) that increase the likelihood value. We draw inspiration from this algorithm

when developing our location-discovery procedure, though the underlying generative process and

the structure of the subproblem to generate new customer type (rider location in our context) are

vastly different.

Structurally speaking, our demand model and the EM algorithm share some similarities with

the latent-class logit (LCL) model discussed in Bhat (1997) and Greene and Hensher (2003). A

latent class in our setting corresponds to a particular rider location, but unlike LCL, we do not

restrict rider choice behaviors to follow MNL models. Another important distinguishing factor of

our model is that the features of different alternatives (walking distances to different bikes) depend
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on the latent class (rider location), which is assumed to be invariant across latent classes in LCL.

This renders existing identifiability results (e.g., Grün and Leisch 2008) or enhanced estimation

algorithms (e.g., Jagabathula et al. 2020) developed for LCL not applicable in our setting.

3. Model and Preliminaries

In this section, we introduce our model and preliminaries. We first discuss our data generative pro-

cess and describe the observed data from an operator’s perspective. Then we derive the likelihood

function of our statistical model. We conclude the section by discussing various identifiability and

consistency results regarding our estimators.

Generative Process. We consider a set of rider locations L := {1, · · · ,L} distributed over a

bounded space P ⊂R2 where potential riders come from. We assume that riders arrive at the area

according to a Poisson process with a total rate λ. For each arriving rider, its arrival location

follows a multinomial distribution with probabilities w= {w1, · · · ,wL} satisfying
∑

l∈Lwl = 1. One

can think of this arrival process as one that is dedicated to a particular hour of day or week. We

consider a total length of arrival period T . We define B := {1, · · · ,B} as the set of bikes in the

system. At time t∈ [0, T ], we define the coordinate of bike b∈B as (xb,t, yb,t). Let zb,t = 1 if bike b is

available to be booked at time t, and zb,t = 0 if bike b is not available at time t because it is booked

or occupied. Let Bt := {j ∈ B : zb,t = 1} ⊂ B be the set of bikes that are available for booking at

time t.

When a rider arrives at a location l ∈ L at time t, she is presented with a bike pattern St :=

{(xb,t, yb,t)}b∈Bt which contains the coordinates of all available bikes at time t. This captures both

dock-based and dockless systems. Let pl,b,St be the probability that a rider at location l chooses bike

b∈Bt at time t. In addition, let pl,0,St denote the probability that a rider at location l leaves without

choosing a bike at time t. We require that
∑

b∈Bt∪{0} pl,b,St = 1. One example of such riders’ choice

behavior is a multinomial logit (MNL) choice model. Walking distance to the bike is arguably the

most important feature. Let dl,b,St be the distance from rider location l ∈ L to bike b ∈ B in bike

pattern St. For each rider location l ∈L and available bike b∈Bt,

pl,b,St =
exp(β0,l +β1,ldl,b,St)

1+
∑

b∈Bt
exp(β0,l +β1,ldl,b,St)

, pl,0,St =
1

1+
∑

b∈Bt
exp(β0,l +β1,ldl,b,St)

, (1)

where β0,l ∈R, β1,l ∈R<0 are parameters measuring rider tolerance for walking distance at different

locations. Another example is a distance-ranking choice model in which the preference is determined

by the ranking of distances to the available bikes. In specific,

pl,b,St =
1{dl,b,St ≤ dl,b′,St , ∀b′ ∈Bt, dl,b,St ≤ r̄l}∣∣{b′ ∈Bt : dl,b′,St =min{dl,b′′,St : b

′′ ∈Bt}
}∣∣ , pl,0,St = 1{dl,b,St > r̄l, ∀b∈Bt}, (2)
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where 1(·) is the indicator function, r̄l is the consideration radius at rider location l which specifies

how far a rider is willing to walk to a bike. In words, a rider at location l chooses to pick up an

available bike b ∈ Bt if and only if bike b is the closest available bike to rider location l and its

distance does not exceed r̄l. When a tie occurs, each bike with the shortest distance within the

consideration radius has the same probability to be booked by a rider.

Data and Observations. The data available to the operator consists of records of bookings and

returns as well as the statuses and locations of all bikes in real-time. The statuses of a bike include

“available” or “occupied”. When a rider books a bike, the status changes from “available” to

“occupied”. When she drops off the bike at her destination, the status changes back to “available”.

As a key feature of our problem, the operator cannot observe riders’ arriving locations. As a

consequence, it cannot distinguish between no arrival with a rider arriving without choosing a bike.

3.1. Model Formulation

Given the above generative process and observations, our goal is to estimate the following two

quantities: (1) riders’ total arrival rate λ into the service region; (2) the probability/weight vector

w distributed over the set of rider locations L. The choice behavior of picking up a bike at each

rider location l is assumed to be known, and we will provide an extension in Section B.2 of the

appendix where the arrival rates at different rider locations and the parameters governing the choice

behavior are jointly estimated. We proceed to derive the likelihood of a given set of observations.

To simplify the notation, define the observed arrival rate

λ̃(t) := λ

(
1−

∑
l∈L

wlpl,0,St

)
.

This quantity takes out the portion of riders who choose not to pick up any bike upon arrival from

the total arrival rate λ. Suppose there are N bookings in total during the arrival period [0, T ].

We denote the sequence t := {tn}Nn=1 where t1, . . . , tN ∈ [0, T ], t1 < t2 < · · ·< tN as the time epochs

that bookings occur and b := {bn}Nn=1 where b1, . . . , bN ∈B as the bikes booked by the riders in the

corresponding booking times. Define t0 = 0 and tN+1 = T . Consider a short enough time period

δ > 0 around each booking times {tn}Nn=1 such that bike patterns St do not change during these

intervals t∈ [tn, tn + δ], n= 1, · · · ,N . The incomplete data log-likelihood function is then given by

lI(w, λ) : = lim
δ↓0

log

(
N∏

n=0

P(no rider books bikes from tn + δ to tn+1)

·
N∏

n=1

P(a rider books bike bn from tn to tn + δ)

δ

)

= lim
δ↓0

(
N∑

n=0

logP(no rider books bikes from tn + δ to tn+1)
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+
N∑

n=1

logP(a rider books bike bn from tn to tn + δ)−
N∑

n=1

log(δ)

)

= lim
δ↓0

(
N∑

n=0

log

(
exp

(
−
∫ tn+1

tn+δ

λ̃(t)dt

)
︸ ︷︷ ︸

Prob. of no booking
in [tn, tn + δ]

)

+
N∑

n=1

log

(∫ tn+δ

tn

λ̃(t)dt · exp
(
−
∫ tn+δ

tn

λ̃(t)dt

)
︸ ︷︷ ︸

Prob. of one booking
in [tn, tn + δ]

·
∑

l∈Lwlpl,bn,Stn

1−
∑

l∈Lwlpl,0,Stn︸ ︷︷ ︸
Prob. of booking bn conditional
on one booking in [tn, tn + δ]

)
−

N∑
n=1

log(δ)

)

=−
∫ T

0

λ̃(t)dt+
N∑

n=1

log λ̃(tn)+
N∑

n=1

log

∑
l∈Lwlpl,bn,Stn

1−
∑

l∈Lwlpl,0,Stn

. (3)

Equation (3) holds because
∫ tn+δ

tn
λ̃(t)dt= λ̃(tn)δ as St does not change within [tn, tn+δ]. Taking

the first-order condition with respect to λ, it can be seen that the total arrival rate λ has a unique

closed-form maximizer.

−
∫ T

0

(
1−

∑
l∈L

wlpl,0,St

)
dt+

N∑
n=1

1−
∑

l∈Lwlpl,0,Stn

λ̃(tn)
= 0 ⇒ λ=

N∫ T

0

(
1−

∑
l∈Lwlpl,0,St

)
dt
. (4)

Plugging the closed form of λ into (3), we can rewrite the incomplete log-likelihood function as

a function of w only,

lI(w) : =−N +

(
N logN +

N∑
n=1

log

(
1−

∑
l∈Lwlpl,0,Stn∫ T

0

(
1−

∑
l∈Lwlpl,0,St

)
dt

))
+

N∑
n=1

log

∑
l∈Lwlpl,bn,Stn

1−
∑

l∈Lwlpl,0,Stn

=−N +N logN −N log

∫ T

0

(
1−

∑
l∈L

wlpl,0,St

)
dt+

N∑
n=1

log

(∑
l∈L

wlpl,bn,Stn

)
. (5)

A key quantity involved in the above equation is
∫ T

0
(1−

∑
l∈Lwlpl,0,St)dt. Remarkably,

∫ T

0
(1−∑

l∈Lwlpl,0,St)dt/T measures the average percentage of riders who enter the system and pick up a

bike. Typically, bike pattern St changes at events such as: (1) a rider books a bike; (2) a rider drops

off her bike at her destination; (3) the operator relocates bikes. On the other hand, for the likelihood

function (5) to be valid, there is no requirement on how bike patterns St change. Note that since St

does not change continuously over time, the integral over t in (5) can be reorganized as a finite sum.

Assume that the pattern changes at time epochs t′1, · · · , t′Q where Q is the total number of changes

within [0, T ]. Then we have
∫ T

0

(
1−

∑
l∈Lwlpl,0,St

)
dt=

∑Q

q=0

(
1−

∑
l∈Lwlpl,0,Stq

)(
t′q+1− t′q

)
with

t′0 = 0 and t′Q+1 = T .

The log-likelihood function (5) is non-concave in general. The non-concavity stems from the fact

that the operator is not able to observe rider arrival locations. In the case of complete data where

the operator is able to observe every rider’s arrival and their arriving locations, the likelihood

function becomes strictly concave, as we will show in Section 4.
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3.2. Consistency of Location Weights Estimator

Let ŵ ∈ argmaxw∈∆L lI(w) be the MLE. In this subsection, we investigate the consistency of ŵ

— whether the estimator ŵ converges to true values in an asymptotic limit when the length of

the arrival period T →∞. Note that the consistency of the arrival rate estimator λ̂ follows directly

from the consistency of the location weights through equation (4).

We first consider the following asymptotic regime when the length of the arrival period T gets

large. We assume that there areK bike patterns (K is finite), which is denoted by S := {S1, · · · , SK}.

We assume that Sk ̸= ∅, ∀k ∈ {1, · · · ,K}. The long-run average fraction of time that we observe bike

pattern Sk follows limT→∞
∫ T

0
1(St = Sk)dt/T = αk > 0 for all k ∈ {1, · · · ,K} with α1+ · · ·+αK = 1.

This setting typically models dock-based systems. For example, O’Mahony (2015) and Banerjee

et al. (2022) use a continuous-time Markov chain (CTMC) to model state evolution where each

state (bike pattern) is defined as the number of bikes in each station. Then {α1, · · · , αK} can

be thought of as the steady-state distribution of this CTMC. Let w∗ denote the underlying true

weight vector. We first establish the identifiability of our estimator ŵ (i.e., different parameter

values correspond to different data-generating distributions)1, which is a necessary condition for

consistency. Its proof relies on showing that the long-run average expected likelihood function

limT→∞E[lI(w)] (the expectation is taken over bookings) has a unique maximizer at w =w∗, an

equivalent condition for identifiability (see Lemma 5.35 in van der Vaart 2000).

Theorem 1 (Identifiability). The location weights w are identifiable if the set of vectors{
[p1,b,Sk

, · · · , pL,b,Sk
] : b ∈ B, k ∈ {1, · · · ,K}

}
spans the vector space RL. Moreover, the condition

becomes necessary and sufficient when we have w∗
l = 0 for at most one l ∈L.

Theorem 1 shows that a sufficient condition for identifiability is to have L linearly independent

vectors from the vectors of riders’ choice probabilities originating from different locations. This

condition becomes necessary when the operator has relatively precise prior knowledge of where

rider locations are — at most one location can be redundant in the candidate set L. This result

also implies that if riders’ choice behavior depends only on distances, a minimum of L distinct bike

locations across all bike patterns are required to possibly have identifiability of the estimator. We

now provide a few concrete examples below to illustrate this result.

Example 1 (Identifiability). Suppose that we have two rider arrival locations shown in Fig-

ure 1 (red circles). We consider a case with only one bike pattern S = {S}. We adopt Euclidean

distance when calculating walking distances. In Figure 1a, we begin by examining a scenario in

which a single bike (green circle) remains fixed at a specific location throughout the arrival period

1 We consider the data-generating distribution of bookings over any length of arrival period T such that
∫ T

0
1(St =

Sk)dt/T = αk > 0, ∀k ∈ {1, · · · ,K}.
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until it is booked. In this scenario, the location weights cannot be consistently estimated with any

choice model that only depends on distances. Intuitively, riders only have two options — book the

bike or leave. Therefore, the only observation here is the booking time, which results in the weights

being non-identifiable. On the other hand, when we have two bikes fixed at two distinct locations,

the identification depends on the specification of the choice model. By Theorem 1, the weights

can be identified if and only if p1,1,Sp2,2,S ̸= p1,2,Sp2,1,S, i.e., vectors [p1,1,S, p2,1,S] and [p1,2,S, p2,2,S]

are linearly independent. For the MNL model specified in equation (1), this can be simplified to

β1,1(d1,1,S − d1,2,S) ̸= β1,2(d2,1,S − d2,2,S), where dl,b,S is the distance from location l to bike b under

pattern S. For the distance-ranking choice model specified in equation (2), the necessary and suffi-

cient conditions for the location weights to be identifiable are: (1) the closer bike to locations 1 and

2 are different; (2) for both locations 1 and 2, at least one bike is within their consideration radiuses.

To ease the presentation, we assume that β0,1 = β0,2 and β1,1 = β1,2 in the MNL choice model, and

the consideration radius r is infinite in the distance-ranking choice model. Figure 1b illustrates

a scenario in which non-identifiability of location weights occurs under any choice model since

bikes 1 and 2 both have the same distance to locations 1 and 2. Figure 1c gives a scenario where

location weights are identifiable under both MNL and distance-ranking choice models. Finally, in

Figure 1d, location weights are identifiable under the MNL model but not the distance-ranking

choice model. This is because, in the latter, a rider always chooses bike 1 over bike 2 regardless

of where she arrives. It is not hard to prove that in this example of two rider locations and two

bike locations, if location weights are identifiable under the distance-ranking model, they must be

identifiable under the MNL model as well. Interestingly, this is not true in general. In Appendix

B.1, we give a counter-example with three bikes and three rider locations where the rider location

weights are identifiable under the distance-ranking model but not the MNL model, though it is

generally expected that the MNL model possesses better identifiability properties because of the

smoothness in choice probabilities.

In general, establishing consistency requires not only identifiability but also the uniform con-

vergence of the log-likelihood function (see, e.g., Theorem 5.7 in van der Vaart 2000). We give

two sufficient conditions below that ensure strong consistency of the MLE, that is ŵ→w∗ with

probability one as T →∞.

Proposition 1 (Strong Consistency of the MLE). Suppose that the location weights w

are identifiable, then the MLE ŵ converges to w∗ with probability one if one of the following

conditions holds:

1. choice probability pl,b,Sk
> 0 for all l ∈L, b∈Bk, k ∈ {1, · · · ,K};

2. there exists ϵ > 0 such that w∗
l ≥ ϵ for all l ∈L.
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(0,1)

(0,−1)

Location 1

Location 2

(2,1.5)

Bike 1

(a) Non-identifiable under any
choice model

Location 1

Location 2

(0,1)

(0,−1)
Bike 1

(−1,0) (1,0)

Bike 2

(b) Non-identifiable under any
choice model based on distance

(0,1)

(0,−1)

Location 1

Location 2

Bike 1

Bike 2

(3,−2)

(2,2)

(c) Identifiable under both MNL
and distance-ranking model

(0,1)

(0,−1)

Location 1

Location 2

Bike 1 Bike 2(0,0.5)

(3,0.5)

(d) Identifiable under MNL but
not under the distance-ranking
model

Figure 1 Examples of identifiability of location weights with only one bike pattern. In the graphs, red circles

represent arrival locations and green circles represent bike locations.

The first condition holds under an MNL choice model such as (1). The second condition holds

when the operator has precise knowledge of the set of true locations. Either assumption guarantees

a finite log-likelihood value for all w in a compact parameter space that contains the true location

weights w∗, where the log-likelihood function is dominated by an integrable function. Then by the

uniform law of large numbers, the uniform convergence of the log-likelihood can be established by

the dominance condition together with the continuity of the log-likelihood function (see Theorem

7.48 in Shapiro et al. 2009).

In most dockless systems, bikes are located at any place where parking is allowed. We thus provide

a generalization to scenarios where bike patterns are continuously distributed over space. Let (S,F)

be a measurable space of bike patterns. Let π and µ both be measures on F . Furthermore, π is an
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invariant probability measure that is absolutely continuous with respect to µ, which measures the

long-run average portion of each bike pattern, π(A) = limT→∞(1/T )
∫ T

t=0

∫
S IA(St)dµ(St)dt, ∀A ∈

F . We have the following corollary regarding the identifiability of the MLE. Consistency can be

established in a similar fashion as Proposition 1. We omit the discussion here.

Corollary 1. The location weights w are identifiable if the set of vectors {(p1,b,S, · · · , pL,b,S) :

b∈B, S ∈ S ′} spans the vector space RL for any S ′ ⊆S such that π(S ′) = 1. The condition becomes

necessary and sufficient when we have w∗
l = 0 for at most one l ∈L.

We now strengthen our analysis in dock-based systems where bikes are located in a finite set

of stations. In particular, we analyze cases where riders make choices according to the distance-

ranking model (2). These results bypass the general identifiability and consistency results stated

in Theorem 1 and Proposition 1, and give intuitive conditions under which the MLE of location

weights has strong consistency. Under this setup, we only need to define a bike station pattern as

the set of available stations at some time (a station is available if it contains at least one available

bike) to replace bike patterns.

We first analyze a stylized case where the service region P ⊂R is a one-dimensional line segment.

For any location x ∈ P , let r(x) be the consideration radius of riders arriving at location x. We

assume that r(·) is large enough so that when every bike station has at least one available bike,

riders will always choose a bike regardless of where they arrive in P. For convenience, we assume

that all possible bike station patterns are observed with a positive fraction of time as T →∞,

although strictly speaking this can be relaxed as we show in its proof.

Theorem 2. In a one-dimensional service region, suppose that the consideration radius r(·) is

Lipschitz continuous with constant one, i.e., ∥r(x)− r(x′)∥ ≤ ∥x− x′∥ for all x,x′ ∈ P. Then for

each rider location l ∈ L, if the sequence of stations within its consideration radius is uniquely

ordered based on the distance to location l (i.e., without any ties), and this sequence is distinct from

the sequences of other rider locations, then with probability one, ŵl→w∗
l as T →∞.

Theorem 2 shows that in a one-dimensional service region, under smoothly changing consider-

ation radius, we can consistently estimate the location weight whose distance ranking is unique.

This result is crisper than the previous ones as we give consistency results for estimating each

individual rider location weight. It also complements Proposition 1 to shed light on the consistency

of location weights under a distance-ranking model. The proof of Theorem 2 uses very different

techniques from the proofs of Theorem 1 and Proposition 1 and requires deliberately constructing

a unique solution of location weights from choice probabilities of certain stations being picked
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among a set of available stations, which are shown to be consistently estimated. It relies on recov-

ering interesting structures through which the unique distance rankings differ in a one-dimensional

space (see Lemmas EC.2 and EC.3).2 In service regions of higher dimensions, counter-examples

can be established that even rider locations with unique distance rankings can be non-identifiable.

Nevertheless, we have the following generic result.

Proposition 2. For each rider location l ∈L, if the ranking of the first two closest stations (or

the only station) in its consideration radius is unique, then with probability one, we have ŵl→w∗
l

as T →∞.

4. Estimation Procedures

We show how we can obtain the set of rider locations and the MLE of their weights ŵ in this sec-

tion. First, given a set of candidate rider locations, we show how we can computationally approach

the MLE using an expectation-maximization (EM) algorithm with closed-form updates. We then

introduce a location-discovery procedure to iteratively explore new rider locations until conver-

gence.

4.1. Estimation of Location Weights

Given a candidate set of rider locations L, we consider the optimization problem maxw lI(w). In this

subsection, we develop an EM algorithm with closed-form updates to optimize the weight vector

w. The EM algorithm, proposed by Dempster et al. (1977), is an iterative algorithm that consists

of an expectation step (E-step) and a maximization step (M-step) in each iteration. The algorithm

computes the conditional expected log-likelihood with respect to unobserved data (E-step) and

then updates the estimates through maximizing the expected log-likelihood in the E-step (M-step).

This procedure is repeated until convergence. In our case, the observed data contains sequences of

booking times t, booked bikes b, and bike patterns St at any time t∈ [0, T ]. The unobserved data

include: (1) the arrival times of riders who leave without choosing a bike (unobserved riders); and

(2) the arrival locations of riders. Define the total number of arrivals Ñ :=N +N ′ where N ′ is the

number of unobserved riders. We first consider the complete data log-likelihood function, which is

the log-likelihood function derived under the full observation of all arrival times, arrival locations

and booked bikes. Let l̃ := {l̃n}Ñn=1 be the arrival locations of all riders in the sequence, t̃ := {t̃n}Ñn=1

be the arrival times and b̃ := {b̃n}Ñn=1, b̃n ∈ B ∪ {0} be the sequence of bikes booked by the riders.

Here, b̃n = 0 means that the nth rider arrives without picking up a bike. Using these notations, we

2 Although this one-dimensional result is arguably stylized in the bike-sharing setting, it can be suitable to model
consumer choice behavior in horizontal product differentiation where prices and quality levels are equal across all
products, such as yogurt with different flavors and shoes of different colors (see, e.g., Hotelling 1929, Lancaster 1966,
1975 in the economics literature and Gaur and Honhon 2006 in the operations literature on related locational choice
models).
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can write down the complete data log-likelihood function by following a similar procedure as in

equation (3).

lC(w, λ) = lim
δ↓0

log

 Ñ∏
n=0

P(no rider books bikes from tn + δ to tn+1)

·
Ñ∏

n=1

P(a rider arriving at l̃n books bike b̃n (or leave) from tn to tn + δ)

δ


= log (exp (−λT ))+

Ñ∑
n=1

log
(
λwl̃n

pl̃n,b̃n,St̃n

)
=−λT + Ñ logλ+

Ñ∑
n=1

log(wl̃n
)+

Ñ∑
n=1

log
(
pl̃n,b̃n,St̃n

)
.

Similarly, the arrival rate λ can be substituted with the MLE λ̂= Ñ/T . This simplifies the log-

likelihood function to lC(w) which only depends on the location weights w,

lC(w) =−Ñ + Ñ log(Ñ/T )+
Ñ∑

n=1

log
(
wl̃n

)
+

Ñ∑
n=1

log
(
pl̃n,b̃n,St̃n

)
.

E-step. In the E-step, we compute the expectation of the complete data log-likelihood con-

ditional on the observed data b and t and the current estimate w(m) at the mth iteration. The

expectation is taken over the randomness of unobserved data, which includes: (1) the number of

unobserved riders N ′; (2) the arrival times of unobserved riders t̃\t; and (3) the arrival locations

of all riders l̃.

E
[
lC(w) | b, t,w(m)

]
=E

−Ñ + Ñ log

(
Ñ

T

)
+

Ñ∑
n=1

log(wl̃n
)+

Ñ∑
n=1

log
(
pl̃n,b̃n,St̃n

) ∣∣∣∣∣∣b, t,w(m)

 .(6)
Notice that the only part of the expectation in equation (6) that depends on w is

∑Ñ

n=1 log(wl̃n
).

Thus, it is sufficient to solely focus on the conditional expectation E
[∑Ñ

n=1 log(wl̃n
)
∣∣ b, t,w(m)

]
.

We denote by {l1, l2, · · · , lN} the sequence of the arrival locations of the observed riders, which is a

subsequence of {l̃1, · · · , l̃Ñ}, the sequence of arrival locations of all riders. For the sake of exposition,
we consider two quantities, which are P(ln = l | b, t,w(m)) and E[N ′ | b, t,w(m)]. The first quantity

refers to the probability that the nth observed rider arrives at location l ∈ L, whereas the second

quantity refers to the expected number of unobserved riders. They can be computed as follows.

P
(
ln = l | b, t,w(m)

)
=
P
(
bn | ln = l, t,w(m)

)
P
(
ln = l | t,w(m)

)
P (bn | t,w(m))

=
pl,bn,Stn

w
(m)
l∑

l′∈Lw
(m)

l′ pl′,bn,Stn

, (7)

E
[
N ′ | b, t,w(m)

]
=E[N | b, t,w(m)]

∫ T

0

∑
l′∈Lw

(m)

l′ pl′,0,Stdt∫ T

0

(
1−

∑
l′∈Lw

(m)

l′ pl′,0,St

)
dt
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=N

∫ T

0

∑
l′∈Lw

(m)

l′ pl′,0,Stdt∫ T

0

(
1−

∑
l′∈Lw

(m)

l′ pl′,0,St

)
dt
. (8)

We now separate the conditional expectation E
[∑Ñ

n=1 log(wl̃n
)
∣∣∣ b, t,w(m)

]
into two parts, which

consist of observed and unobserved data. Let the sequence {l′1, l′2, · · · , l′N ′} denote the arrival loca-

tions of the unobserved riders.

E

[
Ñ∑

n=1

log(wl̃n
)

∣∣∣∣∣ b, t,w(m)

]

=E

[
N∑

n=1

log(wln)

∣∣∣∣∣ b, t,w(m)

]
+E

[
N ′∑
n=1

log(wl′n)

∣∣∣∣∣ b, t,w(m)

]

=
∑
l∈L

N∑
n=1

P
(
ln = l

∣∣ b, t,w(m)
)
log(wl)

+E
[
N ′
∣∣ b, t,w(m)

]∑
l∈L

∫ T

0
w

(m)
l pl,0,Stdt∫ T

0

∑
l′∈Lw

(m)

l′ pl′,0,Stdt︸ ︷︷ ︸
prob. of arriving at l
conditional on leaving

log(wl) (Wald’s Lemma)

=
∑
l∈L

(
N∑

n=1

P
(
ln = l | b, t,w(m)

)
+E

[
N ′ | b, t,w(m)

] ∫ T

0
w

(m)
l pl,0,Stdt∫ T

0

∑
l′∈Lw

(m)

l′ pl′,0,Stdt

)
log(wl)

=
∑
l∈L

(
N∑

n=1

pl,bn,Stn
w

(m)
l∑

l′∈Lw
(m)

l′ pl′,bn,Stn

+N

∫ T

0
w

(m)
l pl,0,Stdt∫ T

0
(1−

∑
l′∈Lw

(m)

l′ pl′,0,St)dt︸ ︷︷ ︸
cl

)
log(wl) (9)

=
∑
l∈L

cl log(wl).

Equation (9) holds by replacing the terms with equations (7) and (8). We have thus simplified the

conditional expectation into a weighted sum of logarithms, which can be maximized in closed form

in the M-step described below.

M-step. Let c :=
∑

l∈L cl be the sum of cl for all l ∈L. By weighted AM–GM inequality, we have

0 = log

(∑
l∈L

cl
c

(
cwl

cl

))
≥ log

(
L∏

l=1

(
cwl

cl

) cl
c

)
=
∑
l∈L

cl
c
(log(cwl)− log cl)

⇐⇒
∑
l∈L

cl log(wl)≤
∑
l∈L

cl log(cl)−
∑
l∈L

cl log(c).

The equality holds if and only if wl = cl/c, which shows that the optimal w has a closed-form

solution wl = cl/(
∑

l∈L cl) for l ∈ L. We summarize our EM algorithm below. To simplify the

exposition, define s=
∫ T

0

(
1−

∑
l∈Lwlpl,0,St

)
dt. Recall that s/T measures the average percentage

of riders who arrive and book a bike.
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Algorithm 1 EM Algorithm for Location Weights Estimation

Given a set of candidate locations L with coordinates (x1, y1), · · · , (xL, yL).

Initialize the location weights w←w0 ∈∆L.

while w does not converge do

s←
∫ T

0

(
1−

∑
l∈Lwlpl,0,St

)
dt.

cl←
∑N

n=1

(
pl,bn,tnwl

/(∑L

l′=1wl′pl′,bn,tn
))

+N(T − s)/s for all l ∈L.

wl← cl/
∑L

l′=1 cl′ for all l ∈L.

end while

Output location weights w.

We show that our EM algorithm meets the regularity conditions in Wu (1983) which leads to

the convergence result below.

Theorem 3. Let w(m) be the location weights at the mth iteration of Algorithm 1. All limit points

of the sequence {w(1),w(2), · · · } are stationary points of the incomplete-data log-likelihood lI(w) and

the sequence {lI(w(1)), lI(w
(2)), · · · } converges monotonically to lI(w

∗) for some stationary point

w∗.

Though our EM method does not promise to converge to global maxima, as we will discuss in

Section 5, the sequence of points estimated by our EM method always converges to a limit point and

empirically gives a close approximation to the ground truth. In Appendix B.2, we extend the EM

method to jointly estimate the location weights and parameters governing riders’ choice behaviors.

When arriving riders pick up bikes according to an MNL model, we show that the EM procedures

can be adapted to efficiently estimate the choice model parameters as well (see Proposition EC.3

in Appendix B.2).

We conclude this subsection by commenting that a broader class of algorithms for maximiz-

ing the log-likelihood used in the related literature is the Minorization-Maximization (MM) algo-

rithm (Hunter and Lange 2000). MM algorithms maximize simple concave surrogate functions that

minorize the log-likelihood function. Different MM algorithms differ in the way the surrogate func-

tion is constructed. EM can be viewed as a special case of an MM algorithm using a surrogate

function that is constructed by Jensen’s inequality (see Section 3.1 of Hunter and Lange 2004). In

Section 5, we compare the performance of our EM algorithm with another MM algorithm that is

constructed by viewing the log-likelihood function (5) as a difference of two concave functions, and

constructing surrogate functions using supporting hyperplanes of the second concave function. We

show that our EM algorithm has superior performance due to its simple closed-form updates.
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4.2. Estimation of Location Coordinates

In practice, the operator often does not have full knowledge of the possible rider arrival locations. As

a result, the set of candidate rider locations L is usually underdetermined and has to be estimated

from data. A näıve approach is to enumerate a large set of all possible candidate locations, for

example, all of the residential buildings in a service area. We then implement our EM algorithm

on this set to estimate each location’s weight. We refer to this algorithm as the all-in algorithm. If

the underlying arrival locations are entirely contained in the initial set, then by various results in

Section 3.2, the MLE can be identifiable and consistent under certain conditions. In such cases, the

MLE converges to the ground truth for candidate locations that coincide with the true underlying

locations, and 0 for all other locations. However, this algorithm has the following drawbacks due

to a large cardinality of all possible rider locations: (1) it significantly increases the number of

iterations necessary for convergence, resulting in a computationally demanding task; (2) it renders

the data requirement for identifiability (e.g., Theorem 1) harder to satisfy, making the estimates

less accurate.

A location-discovery procedure. Motivated by van Ryzin and Vulcano (2014) where they

proposed a market-discovery algorithm to estimate ranking-based customer preferences, we develop

a location-discovery algorithm to address the aforementioned drawbacks of the all-in algorithm.

The algorithm iteratively and adaptively explores new locations until convergence. Suppose L is

the set of all possible rider locations. We begin with a parsimonious set of locations L0 ⊂ L, a
discovery procedure is employed to gradually enlarge our location set. The main idea is to maximize

the log-likelihood by iteratively adding new locations with the largest potential for improvements

and then executing the EM algorithm (Algorithm 1) to update their weights.

To start the derivation, we define the restricted Lagrangian function ΘL0(w, µ) with location set

L0 by relaxing the equality constraint
∑

l∈L0
wl = 1 with a Lagrangian multiplier µ.

ΘL0(w, µ) =−N log

∫ T

0

(
1−

∑
l∈L0

wlpl,0,St

)
dt+

N∑
n=1

log
∑
l∈L0

wlpl,bn,Stn
+µ

(
1−

∑
l∈L0

wl

)
. (10)

Consider a local optimum w̄ of the problem maxw∈∆|L0| lI(w) with location set L0. Recall that s=∫ T

0

(
1−
∑

l∈L0
wlpl,0,St

)
dt. Suppose that (w̄, µ̄) satisfies KKT conditions of the restricted Lagrangian

function ΘL0(w, µ). We have for all l ∈L0 such that w̄l > 0,

∂ΘL0(w, µ)

∂wl

∣∣∣∣
w=w̄,µ=µ̄

=
N

s

∫ T

0

pl,0,Stdt+
N∑

n=1

pl,bn,Stn∑
l∈L0

wlpl,bn,Stn

− µ̄= 0,

which gives that

µ̄=
N

s

∫ T

0

pl,0,Stdt+
N∑

n=1

pl,bn,Stn∑
l∈L0

wlpl,bn,Stn

, for any l ∈L0 such that w̄l > 0.

Electronic copy available at: https://ssrn.com/abstract=3311371



Xu et al.: A Locational Demand Model for Bike-Sharing
17

The essence of our location-discovery procedure is to discover a new location that potentially

defines the largest improvement direction for the log-likelihood value. To do so, we consider the

full Lagrangian function ΘL(w, µ) with the full set of all possible rider locations L. Define ¯̄w ∈∆|L|

such that ¯̄wl = w̄l,∀l ∈L0 and ¯̄wl = 0,∀l ∈L\L0. Suppose that

∂ΘL(w, µ)

∂wl

∣∣∣∣
w= ¯̄w,µ=µ̄

=
N

s

∫ T

0

pl,0,Stdt+
N∑

n=1

pl,bn,Stn∑
l∈L0

wlpl,bn,Stn

− µ̄≤ 0, ∀l ∈L\L0, (11)

then ( ¯̄w, µ̄) satisfies the KKT conditions of the full Lagrangian function ΘL(w, µ) as well. If not,

then there exists some l ∈L\L0 such that ∂ΘL(w, µ)/∂wl > 0 evaluated at w= ¯̄w and µ= µ̄. Note

that since the log-likelihood function lI(w) is not concave in w, KKT conditions are not sufficient

for local optimum. This means that including such a new location l is not guaranteed but may lead

to an improved estimate with greater likelihood. Nevertheless, this gives a principled procedure to

gradually include new locations. We summarize the estimation algorithm with a location discovery

procedure in Algorithm 2 below.

Finding the location with the largest partial derivative of the Lagrangian. At each

iteration of Algorithm 2, a new location is selected by solving

max
l′∈L\L0

N

s

∫ T

0

pl′,0,Stdt+
N∑

n=1

pl′,bn,Stn∑
l∈L0

wlpl,bn,Stn

(12)

to maximize the partial derivative of the full Lagrangian function ΘL(w, µ). The terms in the

objective function have quite intuitive interpretations. It finds a location that strikes a balance

between explaining riders’ leaving without picking up bikes (the first term) and the observed

booking sequence (the second term). Based on the current estimates, if s is small or
∑

l∈L0
wlpl,bn,Stn

is large, then the first term possesses a heavier weight than the second term. The new location l′

tends to improve the explanation of riders’ leaving behaviors by uplifting the leaving probability

pl′,0,St . Conversely, with a large s or small booking probability
∑

l∈L0
wlpl,bn,Stn

, the new location l′

focuses more on explaining the booking behaviors by increasing the value of booking probabilities

pl′,bn,Stn
.

As we will illustrate later, this objective as a function of the new location coordinates (xl′ , yl′)

is not concave in general and may exist multiple local optima (see Figure 3 in Section 5 for an

example). Problem (12) thus, unfortunately, does not possess much structure. We could apply a

general nonlinear programming algorithm such as gradient-based methods to approach its local

optimum. On the other hand, since only two variables xl′ and yl′ need to be optimized, an alternative

simple and effective method is to use grid search. The grid search method optimizes the objective

function in a full factorial sampling plan, which places a grid of evenly spaced points across the
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search area. We implement a multi-round variant of the search method to speed up the search

process. In each round, the granularity of the search grid becomes finer and finer within a shrinking

and more targeted search region. More details are provided in Section 5.

Another benefit of running a grid-search method is to easily enable batch addition of new loca-

tions. To be specific, instead of exploring one location at a time, we can simultaneously discover

a batch of locations in each iteration. For example, all local maxima, in addition to the global

maximum, can be included in each iteration. In the grid search procedure, we identify local maxima

by discovering new locations whose partial derivatives are greater than those of eight neighboring

locations in the search grid. As we will show later in Section 5, batch addition often speeds up the

convergence and improves the accuracy of the estimator.

Algorithm 2 Estimation Algorithm with a Location-Discovery Procedure

Initialize a parsimonious location set L0 ⊂L.

Initialize the location weights vector w by running Algorithm 1 with location set L0.

while stopping criteria are not met do

s←
∫ T

0

(
1−

∑
l∈L0

wlpl,0,St

)
dt.

l∗ ∈ argmax
l′∈L\L0

(
N
s

∫ T

0
pl′,0,Stdt+

∑N

n=1

pl′,bn,Stn∑
l∈L0

wlpl,bn,Stn

)
. ▷ discover a new location

L0←L0 ∪{l∗}.

Update w by running Algorithm 1 with location set L0.

end while

Output the location set L0 and its corresponding weight vector w.

Convergence and stopping criteria. A natural stopping criterion is to terminate Algorithm

2 when conditions (11) hold. In other words, the resulting location set L0 and its corresponding

weight vector w, together with the Lagrangian multiplier µ̄, satisfy the KKT conditions. With

this stopping criterion, when the set of all possible rider locations L is finite, it can be seen that

Algorithm 2 terminates within a finite number of iterations. This is because, at each iteration, either

the stopping criteria are met or a new location will be added. As there are only a finite number of

them, the algorithm will converge. However, as we mentioned before, the converging estimate does

not necessarily correspond to the MLE estimate as KKT conditions are not sufficient for optimality

due to the non-concavity of the log-likelihood function lI(w). Furthermore, with this stopping

criterion, the algorithm usually discovers much more locations than necessary since including new

location parameters into the likelihood function always improves the log-likelihood value. It is thus

Electronic copy available at: https://ssrn.com/abstract=3311371



Xu et al.: A Locational Demand Model for Bike-Sharing
19

practical to explore other stopping criteria that penalize model complexity to prevent over-fitting.

In particular, we use Bayesian Information Criterion (BIC), proposed by Schwarz (1978). BIC

addresses this issue by adding a penalty term for the number of parameters in the model. The

quantity is computed as

BIC=−lI(w)+ 0.5 ·L · ln(N),

where lI(w) is the log-likelihood function, L is the number of locations discovered and N is the

number of observed bookings. We terminate Algorithm 2 when the BIC value increases after we

add a new location or a batch of new locations.

5. Numerical Experiments

In this section, we present numerical experiments of our demand model and estimation procedures.

These are broadly divided into two parts, experiments based on synthetic data and real-world

bike-sharing data. In Section 5.1, we demonstrate the performance of the algorithm over synthet-

ically generated data on a square. We benchmark the EM algorithm and give evidence that the

location-discovery procedure significantly improves the accuracy of the estimator. In Section 5.2,

we illustrate our algorithm and its estimation results on a set of real-world dockless bike-sharing

data in Seattle. We show that our methods produce a high accuracy in predicting ridership in

out-of-sample tests. In addition, based on the estimation results, we provide managerial insights

regarding bike allocations to increase service levels in the Seattle area. All algorithms are imple-

mented in Python 3.8.10 with NumPy 1.23.3 on a virtual machine with 8 vCPUs using Microsoft

Azure. Data and code to reproduce all experiments presented in this section can be found at

https://github.com/angxu1/bike_sharing.

5.1. Experiments Based on Synthetic Data

We describe the generating process of our synthetic data. We consider an arrival period of length T .

For each simulation run, we sample the initial locations of each bike (at t= 0) independently and

uniformly from a 10×10 square. In specific, the (x, y) coordinates live in [−5,5]2. We then sample a

sequence of arrivals based on a homogeneous Poisson process with rate λ within [0, T ] representing

the rider arrival times. We use a discrete-event simulation that processes arrival times one by one in

chronological order. Each rider arrives at a location l ∈L sampled from a multinoulli distribution

with probability w∗
l such that

∑
l∈Lw

∗
l = 1. A rider chooses to book an available bike based on

an underlying MNL choice model with model parameters β0,l = 1 and β1,l =−1 for all l ∈ L. We

use Euclidean distance (the L2-norm between two location coordinates) as our measurement of

distance. When a rider books a bike, we randomly sample her destination uniformly from the
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10×10 square. We also generate her booking duration (in hours) according to a rectified Gaussian

distribution max{N(walking time+ traveling time, 0.1), 0.05} where walking time is computed as

the distance from the rider’s arrival location to the bike location divided by 4 km per hour (walking

speed) and the traveling time is computed as the distance from the bike location to the rider’s

destination divided by 18 km per hour (cycling speed). If the rider chooses to leave, we simply

move on to the next arrival. Bike patterns will be updated accordingly. We repeat this procedure

until all rider arrivals are processed.

5.1.1. Performance of the EM algorithm We first benchmark the performance of our

EM algorithm in maximizing the log-likelihood function by comparing it with an MM algorithm

described at the end of Section 4.1. This approach iteratively optimizes a concave surrogate function

which minorizes the log-likelihood function. In particular, ignoring the constant, we re-arrange the

log-likelihood function (5) into a difference of two concave functions g(w)− h(w) where g(w) =∑N

n=1 log
∑

l∈Lwlpl,bn,Stn
and h(w) =N log

∫ T

0

(
1−

∑
l∈Lwlpl,0,Stn

)
dt. To find a concave surrogate,

we replace h(·) with its first-order approximation. Then the problem reduces to iteratively solving

the following concave program with a simplex constraint

w(m) ∈ argmax
w≥0,

∑
l∈L wl=1

g(w)−h
(
w(m−1)

)
−∇h

(
w(m−1)

)T (
w−w(m−1)

)
. (13)

We solve this program using CVXPY 1.3 through the splitting conic solver (SCS). To compare

their performances, we position a 5× 5 Cartesian grid in the aforementioned 10×10 square and

randomly select certain points from the 25 intersections of the Cartesian grid as the underlying true

rider arrival locations. Their corresponding weights are independently sampled from a symmetric

Dirichlet distribution with parameter 1. We fix the total number of bikes B = 30 and consider

the number of ground-truth rider arrival locations L∗ ∈ {2,5,10}, respectively. The length of the

period T is set to be 100, and the underlying rider arrival rate is set to be λ= 10. We consider all

25 intersections on the 5×5 Cartesian grid as the set of potential rider arrival locations L.

To evaluate the accuracy of the estimator, we compute the Wasserstein distance between the

predicted location weights and the true location weights. In our model, given the estimated rider

locations and their weights (L̂, ŵ) and the underlying truth (L∗,w∗), the Wasserstein 2−distance

is defined as

W
(
(L̂, ŵ), (L∗,w∗)

)
= inf

λi,j


|L̂|∑
i=1

|L∗|∑
j=1

λi,j∥l̂i− l∗j∥22 :
|L̂|∑
i=1

λi,j =w∗
j ,

|L∗|∑
j=1

λi,j = ŵi, λi,j ≥ 0


1/2

,

where ∥l̂i − l∗j∥2 :=
√

(x̂i−x∗
j )

2 +(ŷi− y∗
j )

2 refers to the Euclidean distance between locations l̂i

and l∗j .
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Table 1 Performance comparison of the EM and MM algorithms in estimating location weights.

EM algorithm MM algorithm

L∗ Iterations WD Lkd Time Iterations WD Lkd Time

2 665.4 3.37 -1,619 7.04 15.3 3.27 -1,619 460.05
5 473.7 3.41 -2,990 10.00 8.1 3.25 -2,990 269.41
10 325.8 2.71 -4,109 9.40 13.3 2.85 -4,109 140.52

Table 1 reports the number of iterations until convergence, Wasserstein distance (WD) between

the predicted location weights and the true weights, the log-likelihood values upon convergence

(Lkd), and the CPU times in seconds of the algorithms averaged over 10 simulation runs. When

computing the log-likelihood value, we exclude the constant term −N +N logN . We observe that

both algorithms produce very similar prediction accuracy and the converging location weights are

in close proximity. However, the EM algorithm requires significantly less computation time — it

benefits from closed-form updates, which makes each iteration hundreds of times faster than the

MM algorithm. On the other hand, the MM algorithm requires much fewer iterations, but each

iteration is expensive as it requires solving a convex optimization problem (13).

5.1.2. Performance of the location-discovery procedure We now evaluate the perfor-

mance of the location discovery procedure. Similarly to Section 5.1.1, we randomly generate rider

arrival locations and their corresponding weights on Cartesian grids of sizes 5× 5 and 10× 10 in

the same square service region. Rider arrival locations can only be sampled from the intersections

of the Cartesian grids. For each grid size, we consider two scenarios with different numbers of

ground-truth rider locations and bikes: (L∗,B) ∈ {(5,20), (10,40)}. We test with different amount

of data by setting the length of the arrival period to T ∈ {100,500}. We compare the following

methods.

• All-in algorithm. For Cartesian grids of sizes 5× 5 and 10× 10, we choose all 25 and 100

intersections as the set of candidate rider locations L, respectively. We then run Algorithm 1 to

obtain their location weights.

• Location-discovery algorithm. For Cartesian grids of sizes 5 × 5 and 10 × 10, we start

with two rider arrival locations uniformly sampled from the 25 and 100 intersections. We consider

two variants of the implementation: a single mode and a batch mode. In the single mode, rider

location is added one by one. To find a new location to include, we simply compute the partial

derivative of all remaining rider locations in the set and select the one with the largest value. For

the batch mode, we discover and include all “local maximal” rider locations in the set whose partial

derivatives are greater than those of their neighboring locations. The location-discovery algorithm

(Algorithm 2) is stopped when the BIC value in the current iteration is greater than that derived

in the previous iteration.
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• Clustering algorithm. We also test a simple baseline method based on clustering. In par-

ticular, we simply choose all intersections of the Cartesian grids as the cluster centroids and assign

bookings to its closest intersection. Location weights are then computed by normalizing the number

of bookings belonging to each cluster so that they sum up to 1.

Table 2 Prediction performance with a finite and known set of candidate rider locations

5× 5 Cartesian Grid 10× 10 Cartesian Grid

Algorithm T (L∗,B) Locs WD Lkd BIC Time Locs WD Lkd BIC Time

Clustering 100 (5, 20) 24.9 4.35 -2,354 2,426 < 0.01 43.2 3.89 -2,468 2,594 < 0.01
(10, 40) 25.0 3.33 -4,765 4,845 < 0.01 43.7 3.46 -4,795 4,935 < 0.01

500 (5, 20) 25.0 4.43 -13,572 13,663 0.01 42.3 4.13 -14,104 14,260 0.01
(10, 40) 25.0 3.34 -27,999 28,098 0.02 40.2 3.70 -28,424 28,585 0.02

All-in 100 (5, 20) 11.4 3.39 -2,249 2,282 0.83 25.6 3.30 -2,355 2,429 3.97
(10, 40) 14.2 2.68 -4,666 4,711 2.19 27.6 2.92 -4,669 4,758 14.93

500 (5, 20) 11.7 3.46 -13,068 13,111 4.40 27.0 3.26 -13,449 13,549 20.41
(10, 40) 14.5 2.77 -27,502 27,560 13.09 29.4 2.95 -27,590 27,708 63.04

Loc. Disc. 100 (5, 20) 6.8 3.28 -2,260 2,279 0.80 6.8 3.14 -2,369 2,389 0.98
(Single) (10, 40) 9.5 2.67 -4,676 4,707 2.49 9.2 2.59 -4,681 4,711 3.91

500 (5, 20) 7.6 3.19 -13,080 13,108 5.87 8.5 2.93 -13,467 13,498 8.98
(10, 40) 11.0 2.40 -27,512 27,556 26.23 11.5 2.36 -27,596 27,642 37.41

Loc. Disc. 100 (5, 20) 8.5 3.06 -2,252 2,277 0.82 9.3 2.82 -2,358 2,385 0.96
(Batch) (10, 40) 11.4 2.47 -4,668 4,705 2.74 12.6 2.34 -4,672 4,712 3.41

500 (5, 20) 9.2 3.03 -13,074 13,107 6.08 11.3 2.62 -13,450 13,492 7.48
(10, 40) 12.6 2.36 -27,505 27,556 22.38 15.5 2.16 -27,580 27,642 29.28

Table 2 reports the performances of different algorithms by averaging over 100 simulation runs.

We exclude all rider locations with predicted weights smaller than 0.01 to ensure numerical stability.

The table includes several metrics: “Locs” refers to the number of predicted locations; “WD” refers

to the Wasserstein distance between the predicted location weights and the underlying true location

weights; “Lkd” and “BIC” refer to the log-likelihood and BIC values respectively. We also report

computation time measured in seconds. We have the following key observations. (1) All algorithms

significantly outperform the baseline clustering algorithm in terms of the Wasserstein distance and

the BIC value. (2) The all-in algorithm significantly overestimates the number of rider locations

especially when the set of candidate locations is large (10×10 Cartesian grid). This leads to worse

predictive accuracy in terms of Wasserstein distance and BIC value. Another observation about the

all-in algorithm is that the Wasserstein distance does not significantly decrease as one gets more

data, which is likely related to stricter identifiability conditions caused by a large set of candidate

locations (Theorem 1). (3) The location-discovery algorithms have overall the best performance

and the batch mode improves over the single mode as evidenced by the lower Wasserstein distance

and similar BIC values. The batch mode does discover more locations than the single mode.
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We now consider a different set of experiments where no prior information is available about rider

candidate locations other than they live in a square service region. In other words, we allow rider

arrival locations to be arbitrary places within the service region. We make the following adjustments

to various aforementioned algorithms to fit this setting. (1) We change the clustering algorithm to

a K-means clustering algorithm. We give this K-means clustering some advantages by assuming

that the number of underlying rider arrival locations L∗ is known beforehand. That is, we set the

number of clusters K = L∗. (2) For the all-in algorithm, we continue to use a 10× 10 Cartesian

grid overlaid onto the square service region, creating a set of 100 candidate rider locations. (3)

For the location-discovery algorithms, we implement a two-round grid search. In the single mode,

we begin our search by initializing a coarse Cartesian grid of dimensions 10× 10 onto the square

service region. We find the rider location in the grid that maximizes the partial derivative. We

then perform a second grid search that is confined to a smaller square region whose boundary is

defined by the neighboring locations of the one selected from the first round. We again overlay a

10× 10 Cartesian grid onto this smaller square region and identify the location having the largest

partial derivative. In the batch mode, we select all local maxima in the first round, and a second

grid search is conducted near all locations selected in the first round.

Table 3 Prediction performance when the set of candidate rider locations is unknown.

T (L∗,B) Algorithm Locs WD Lkd BIC Time Algorithm Locs WD Lkd BIC Time

100 (5,20) K-means 5.0 2.96 -2,302 2,316 0.04 All-in 26.4 2.95 -2,183 2,259 3.54
(10,40) 10.0 2.48 -4,607 4,639 0.07 27.6 2.53 -4,488 4,576 14.23

500 (5,20) 5.0 3.05 -12,822 12,840 0.04 28.1 2.89 -12,244 12,346 16.60
(10,40) 10.0 2.46 -26,577 26,616 0.17 29.5 2.58 -25,988 26,105 57.56

100 (5,20) Loc. Disc. 6.4 3.04 -2,204 2,222 1.54 Loc. Disc. 9.1 2.73 -2,185 2,211 2.42
(10,40) (Single) 8.6 2.58 -4,505 4,532 7.32 (Batch) 11.8 2.27 -4,491 4,528 10.40

500 (5,20) 7.6 2.86 -12,269 12,297 11.27 10.2 2.43 -12,242 12,280 14.83
(10,40) 10.5 2.34 -26,005 26,047 58.10 14.2 1.99 -25,979 26,036 67.49

Table 3 reports the performance of various algorithms under this setting averaged over 100

simulation runs. Qualitatively it is very similar to Table 2. Given the advantage of knowing the exact

number of ground-truth rider arrival locations L∗, the K-means algorithm produces a relatively

lower Wasserstein distance. However, similar to Table 2, it fails to converge to the true location as

the length of the arrival period T increases. In Figure 2, we visualize an instance of the predicted

locations and their corresponding weights with L∗ = 10, B = 40 and λ= 10, under the K-means

algorithm and the location-discovery algorithm with batch mode when T = 100 and T = 2,000. We

observe that as T increases from 100 to 2,000, the predicted locations in the discovery algorithm

approach the true locations more closely, whereas the K-means algorithm does not exhibit any

significant improvement. The all-in algorithm performs quite poorly in this setting. Similar to
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Table 2, it significantly overestimates the number of rider locations. Moreover, it struggles at

balancing the granularity and complexity of the model — increasing the size of the grid makes

location estimates more granular but at the expense of a model harder to identify and expensive

to estimate. This is reflected by the observation that its performance is quite insensitive to sample

sizes. In contrast, our location discovery algorithms, especially the one with batch addition, achieve

improved results with larger sample sizes, as demonstrated by the significantly lower Wasserstein

distance obtained for T = 500 compared to T = 100.
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(b) K-means, T = 2,000

−4 −2 0 2 4

−4

−2

0

2

4

6
True locations

Predicted locations

0

0.05

0.1

0.15

0.2

(c) Loc. Disc. (Batch), T = 100
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(d) Loc. Disc. (Batch), T = 2,000

Figure 2 Predicted and true rider locations and their corresponding weights. We use triangles to represent the

underlying true locations and circles to represent the predicted locations. Different colors represent dif-

ferent weights of the corresponding locations.
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Figure 3 Objective values (12) of all locations in the square service region at each iteration of the location-

discovery algorithm with batch addition.

Finally, Figure 3 displays the objective values (12) of all locations in the square region during

the first six iterations of the location discovery algorithm with batch addition, on an instance with

B = 40, L∗ = 10, λ = 10 and T = 100. The peak values undergo a sharp slump in the first three

iterations and then fluctuate around 1,000. Moreover, iteration by iteration, the function becomes

more multi-modal — the first graph only depicts two local maxima whereas the last graph exhibits

more than five local maxima.

In Section B.2 of the appendix, we provide additional computational results when the choice

model parameter β1,l is unknown. By slightly extending the EM algorithm to jointly estimate the

model parameter in each iteration, both the location weights and the value of β1,l can be estimated

with high accuracy (see Table EC.1 of the appendix).

5.2. Experiments Based on Seattle Bike-Sharing Data

We now run experiments using data from Seattle’s dockless bike-sharing system. The data set

records all bookings and real-time bike locations and statuses from a dockless bike-sharing company

in the Seattle region during July 2019. The data set and code can be accessed at https://github.

com/angxu1/bike_sharing which contains a detailed description. We confine our analysis to the

downtown Seattle area (see Figure 4 for the service region) and look at time periods from 5 pm to

7 pm every day in July 2019. There are 3,497 bookings in total and 438 bikes.
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We use an MNL model to fit rider choice behaviors. Kabra et al. (2019) estimates a structural

demand model using Paris bike-sharing data. Their user choice model is specified as an MNL model

with walking distance (in km) as the feature and fixed time and location effects. They specify the

disutility of walking distance using a piecewise linear structure where the coefficient of walking

distance is estimated to be −2.229 for walking distance less than 300 meters and −15.445 for

walking distance greater than 300 meters. In our model, we set β0,l = 1 and β1,l =−5 for all rider

locations l. These two values are selected by searching within the neighborhood informed by the

aforementioned model parameters estimated in Kabra et al. (2019) to find values that lead to the

lowest BIC value.

We compare the following four different algorithms: (1) an all-in algorithm with 20×20 candidate

locations; (2) an all-in algorithm with 40×40 candidate locations; (3) a location-discovery algorithm

of single mode with a two-round grid search each with a granularity of 20× 20; (4) a location-

discovery algorithm of batch mode with a two-round grid search each with a granularity of 20×20,

and we set the maximum number of discovered locations at each iteration to be 10. We initialize

the location-discovery algorithms by randomly generating two coordinates on the service region as

initial locations. We also require a minimum of 75 locations to be generated as our service region

is comprised of approximately 75 census tracts (GeoData 2020).

We partition our data into training and testing sets. We implement the aforementioned algo-

rithms for the training set and evaluate their performances on the testing set. The training and

testing sets consist of bookings ranging from July 1st to July 21st and from July 22nd to July 31st,

respectively. Based on our predictions of locations L̂ and weights ŵ using the training set, then the

arrival rate λ̂ can be estimated as λ̂ =Ntrain/
∫ Ttrain

0

(
1−

∑
l∈L̂ ŵlpl,0,St

)
dt by equation (4) where

Ntrain is the number of bookings observed in the training set and Ttrain is the length of the training

period. Let Ttest be the length of the testing period. Then an estimate of the number of bookings

in the testing period N̂test can be computed as N̂test = λ̂
∫ Ttrain+Ttest

Ttrain

(
1−

∑
l∈L̂ ŵlpl,0,St

)
dt. We mea-

sure the predictive accuracy of the number of ridership in terms of the mean absolute percentage

error (MAPE), which can be calculated as MAPE= |N̂test−Ntest|/Ntest× 100%. We also measure

the log-likelihood value and BIC value on the testing data.

Table 4 reports the performance of all tested algorithms. The all-in algorithm with 40×40 can-

didate locations performs the worst — increasing the grid size from 20× 20 to 40× 40 incurs a

larger BIC value for the all-in algorithm. The two location-discovery algorithms achieve better

performance in both training and testing data. The single and batch modes are comparable in their

prediction accuracies while the batch mode has significantly lower computation time. This is likely

due to the saved EM iterations thanks to the batch addition of new locations.
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Table 4 Prediction performance on Seattle data.

All-in (20×20) All-in (40×40) Loc. Disc. (Single) Loc. Disc. (Batch)

Train Test Train Test Train Test Train Test

Locs 147 – 224 – 75 – 81 –
Lkd -43,862 -23,229 -43,837 -23,252 -43,869 -23,282 -43,900 -23,288
BIC 44,426 23,749 44,697 24,046 44,159 23,547 44,212 23,575

MAPE (%) – 12.9 – 13.0 – 5.6 – 5.4
Time (min:sec) 29:34 – 179:18 – 92:01 – 42:25 –

(a) Average walking distance (km) (b) Predicted stockout ratio for riders

Figure 4 The average walking distance and bike stockout ratio for each arrival location in the Seattle area.

Different colors represent different average walking distances (left) or stockout ratios (right). Each circle

represents a discovered location. For a clear view, the radius of each circle is computed as a log-linear

transformation of the weight in that location (a larger radius corresponds to a larger weight). Specifically,

the radius for location l in the plot is log(ŵl)+ 2.3.

Figure 4 depicts two important service level metrics based on the estimation results using

the batch version of the location-discovery algorithm based on all data in July 2019. Figure 4a

shows the average walking distance at each rider’s arrival location conditional on riders choos-

ing to pick up bikes. Formally, for each location l ∈ L, this quantity can be computed as (1/N) ·∑N

n=1

∑B

b=1 pl,b,tndl,b,tn/(1− pl,0,tn). Figure 4b depicts the stockout ratio of each location, which is

the probability that an arriving rider chooses to leave without picking up a bike. These two metrics

do not have to be perfectly (positively) correlated. For example, the arrival location on the east

of Washington Park Arboretum has a relatively low average walking distance but a high stockout

ratio. This likely suggests that there is a scarcity of bikes but once there is a bike, it is often

close to the rider’s location. Some operational insights can be inferred from these results. Rider

locations along Lake Washington (the east side of the service region) and in Queen Anne have
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particularly low service levels and large potential demand, calling for more bike allocations. These

bikes can potentially be relocated from the downtown area where bikes are well stocked and service

levels are high. These performance metrics reveal hidden insights and add value to the existing

monitoring tools used by municipal agencies which only visualize trip data (Seattle Department of

Transportation 2022).

6. Concluding Remarks

In this paper, we present a locational demand model for a bike-sharing system (free-floating

or docked-based) that aims to recover rider arrival locations and their corresponding intensities

(weights) using only rider booking and vehicle availability data. We give conditions under which

the location weights are identifiable and can be consistently estimated and devise a simple and

efficient EM algorithm with closed-form updates. This EM algorithm is further complemented by

a location-discovery procedure that allows it to scale to larger instances and handle cases where

the set of candidate rider locations is unknown a priori. Computational experiments based on

both synthetic data and real data from the Seattle area demonstrate its effectiveness over various

benchmarks.
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Online Appendix

Appendix A: Proofs of Technical Results

Proof of Theorem 1. To prove the sufficiency, we show that there exists a unique maximizer of w and

λ corresponding to the true parameters for the long-run average expected log-likelihood function, under the

condition that the set of vectors
{
[p1,b,Sk

, · · · , pL,b,Sk
]
⊺
: b∈Bk, k ∈ {1, · · · ,K}

}
spans RL. That is, we want to

show that any maximizer (λ,w) of the problem maxλ,w limT→∞(1/T )E [lI(λ,w)] satisfies (λ,w) = (λ∗,w∗)

where λ∗ and w∗ are the ground truths of arrival rate and location weight vector. Here, the expectation is

taken over bookings. We start with the incomplete data log-likelihood function given bookings over a period

of length T ,

lI(λ,w) =−λ
∫ T

0

(
1−

∑
l∈L

wlpl,0,St

)
dt+N logλ+

N∑
n=1

log
∑
l∈L

wlpl,bn,Stn
. (EC.1)

Recall that s =
∫ T

0
(1 −

∑
l∈Lwlpl,0,St

)dt =
∫ T

0

∑
l∈L

∑
b∈B wlpl,b,St

dt and we define a similar term s∗ :=∫ T

0
(1−

∑
l∈Lw∗

l pl,0,St
)dt corresponding to the ground-truth weights. The expected log-likelihood can then

be computed as follows

E [lI(λ,w)] =−λs+E[N ]

(
logλ+E

[
log
∑
l∈L

wlpl,bn,Stn

])
(Wald’s Lemma)

=−λs+λ∗s∗

(
logλ+

∫ T

0

∑
b∈B

((∑
l∈Lw∗

l pl,b,St

s∗

)(
log
∑
l∈L

wlpl,b,St

))
dt

)
. (EC.2)

By following the first-order condition on λ, the unique maximizer λ̂ of equation (EC.2) satisfies λ̂= λ∗s∗/s.

Again, for convenience, we define E[lI(w)] :=E[lI(λ̂,w)],

E[lI(w)] =−λ∗s∗ +λ∗s∗ logλ∗−λ∗s∗ log
s

s∗
+λ∗

∫ T

0

∑
b∈Bt

((∑
l∈L

w∗
l pl,b,St

)
log

(∑
l∈L

wlpl,b,St

))
dt

= λ∗
∫ T

0

∑
b∈Bt

((∑
l∈L

w∗
l pl,b,St

)
log

(
s∗
∑
l∈L

wlpl,b,St

s

))
dt−λ∗s∗ +λ∗s∗ logλ∗

= λ∗s∗
∫ T

0

∑
b∈Bt

((∑
l∈L

w∗
l pl,b,St

s∗

)
log

(
s∗
∑
l∈L

wlpl,b,St

s

))
dt−λ∗s∗ +λ∗s∗ logλ∗.

Recall that for each k ∈ {1, · · · ,K}, bike pattern Sk appears with a positive fraction of time αk > 0

such that
∑K

k=1αk = 1. Let s̄ := limT→∞(1/T )
∫ T

0
(1−

∑
l∈Lwlpl,0,St

)dt =
∑K

k=1αk

(
1−

∑
l∈Lwlpl,0,Sk

)
and

s̄∗ := limT→∞(1/T )
∫ T

0
(1−

∑
l∈Lw∗

l pl,0,St
)dt =

∑K

k=1αk

(
1−

∑
l∈Lw∗

l pl,0,Sk

)
be the long-run averages. It is

clear that limT→∞ s∗/s= s̄∗/s̄. Let Bk be the set of available bikes under bike pattern Sk. We can then write

the long-run average expected log-likelihood function as

lim
T→∞

1

T
E [lI(w)]

= lim
T→∞

λ∗s̄∗
∫ T

0

∑
b∈Bk

((∑
l∈L

w∗
l pl,b,St

T s̄∗

)
log

(
s̄∗
∑
l∈L

wlpl,b,St

s̄

))
dt−λ∗s̄∗ +λ∗s̄∗ logλ∗
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= lim
T→∞

λ∗s̄∗
1

T

∫ T

0

B∑
b∈Bt

((∑
l∈L

w∗
l pl,b,St

s̄∗

)(
log s̄∗ + log

(∑
l∈L

wlpl,b,St

s̄

)))
dt−λ∗s̄∗ +λ∗s̄∗ logλ∗

= lim
T→∞

λ∗s̄∗
1

T

∫ T

0

∑
b∈Bt

((∑
l∈L

w∗
l pl,b,St

s̄∗

)
log

(∑
l∈L

wlpl,b,St

s̄

))
dt+λ∗ (−s̄∗ + s̄∗ logλ∗ + s̄∗ log s̄∗)︸ ︷︷ ︸

c0

= λ∗s̄∗
K∑

k=1

(
αk

∑
b∈Bk

(∑
l∈L

(
w∗

l pl,b,Sk

s̄∗

)
log

(∑
l∈L

wlpl,b,Sk

s̄

)))
+ c0, (EC.3)

where c0 is a constant that is independent of w. Due to the fact that

K∑
k=1

(
αk

∑
b∈Bk

(∑
l∈L

w∗
l pl,b,Sk

s̄∗

))
=

K∑
k=1

(
αk

∑
b∈Bk

(∑
l∈L

wlpl,b,Sk

s̄

))
= 1,

we can use Gibb’s inequality to derive an upper bound of the likelihood function by adding and subtracting

a term αk inside the logarithm function in equation (EC.3),

lim
T→∞

1

T
E [lI(w)] = λ∗s̄∗

K∑
k=1

∑
b∈Bk

(
αk

∑
l∈L

(
w∗

l pl,b,Sk

s̄∗

)
log

(
αk

∑
l∈L

wlpl,b,Sk

s̄

))

−λ∗s̄∗
K∑

k=1

∑
b∈Bk

(
αk

∑
l∈L

(
w∗

l pl,b,Sk

s̄∗

)
logαk

)
+ c0

≤ λ∗s̄∗
K∑

k=1

∑
b∈Bk

(
αk

∑
l∈L

(
w∗

l pl,b,Sk

s̄∗

)
log

(
αk

∑
l∈L

w∗
l pl,b,Sk

s̄∗

))

−λ∗s̄∗
K∑

k=1

∑
b∈Bk

(
αk

∑
l∈L

(
w∗

l pl,b,Sk

s̄∗

)
logαk

)
+ c0 (Gibb’s Inequality)

= λ∗s̄∗
K∑

k=1

∑
b∈Bk

(
αk

∑
l∈L

(
w∗

l pl,b,Sk

s̄∗

)
log
∑
l∈L

w∗
l pl,b,Sk

s̄∗

)
+ c0.

The equality holds if and only if ∑
l∈L

wlpl,b,Sk

s̄
=
∑
l∈L

w∗
l pl,b,Sk

s̄∗
, (EC.4)

for all b∈Bk and k ∈ {1, · · · ,K}. Now consider equations (EC.4) as a system of linear equations with respect

to w/s̄. Since the set of vectors {[p1,b,Sk
, · · · , pL,b,Sk

] : b ∈ Bk, k ∈ {1, · · · ,K}} spans the space RL, then the

coefficient matrix for this system of linear equations has full column rank L. Thus, (EC.4) has no solution

or exactly one solution. On the other hand, observe that w/s̄=w∗/s̄∗ is a solution. This implies that it is

a unique solution. Since 1/s̄=
∑

l∈Lwl/s̄=
∑

l∈Lw∗
l /s̄

∗ = 1/s̄∗, this implies s̄= s̄∗ and thus w =w∗ is the

unique solution to (EC.4) satisfying
∑

l∈Lwl = 1. Since the unique maximizer of λ is λ∗s∗/s, we have proved

that (λ∗,w∗) is the unique maximizer for limT→∞(1/T )E [lI(λ,w)], which implies the identifiability of the

model. The sufficiency is trivial. To show the necessity under the condition w∗
l = 0 for at most one l ∈L, we

establish the existence of some w ̸=w∗ such that w corresponds to the same generating distribution as w∗ if

the set of vectors {[p1,b,Sk
, · · · , pL,b,Sk

] : b∈Bk, k ∈ {1, · · · ,K}} cannot span the space RL. We start by finding

a solution set {w1, · · · ,wN , s̄} other than the true values regarding the following system of linear equations{∑
l∈Lwlpl,b,Sk

− s̄
∑

l∈Lw∗
l pl,b,Sk

/s̄∗ = 0, ∀b∈B, k ∈ {1, · · · ,K},∑
l∈Lwl = 1.

(EC.5)
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Note that the constraint s̄=
∑K

k=1

(
αk

∑
b∈Bk

∑
l∈Lwlpl,b,Sk

)
is implied from (EC.5). Since

∑
l∈Lw∗

l pl,b,Sk
/s̄∗

is a linear combination of p1,b,Sk
, · · · , pL,b,Sk

, we know the dimension of the vector space generated by

{[p1,b,Sk
, · · · , pL,b,Sk

,
∑

l∈Lw∗
l pl,b,Sk

/s̄∗] : b∈Bk, k ∈ {1, · · · ,K}} is strictly less than L. Hence, the rank of the

coefficient matrix of the system of linear equations (EC.5) is strictly less than L+1. This implies that the

system has infinitely many solutions — there exists a nonzero θ ∈RL such that w∗+βθ satisfies (EC.5) for all

β ∈R. Since we have w∗
l = 0 for at most one l ∈L, there always exists some small β ̸= 0 such that the resulting

solution w′ =w∗ + βθ is feasible but differs from the underlying truth w∗. We now show that w′ and w∗

imply the same data-generating distribution of booking data. We consider the data-generating distribution

of bookings over any length of arrival period T such that
∫ T

0
1(St = Sk)dt/T = αk > 0, ∀k ∈ {1, · · · ,K}.

lI(w) =−N +N logN −N log

∫ T

0

(
1−

∑
l∈L

wlpl,0,St

)
dt+

N∑
n=1

log

(∑
l∈L

wlpl,bn,Stn

)

=−N +N logN +

N∑
n=1

log

∑
l∈Lwlpl,bn,Stn∫ T

0

(
1−

∑
l∈Lwlpl,0,St

)
dt

=−N +N logN +

N∑
n=1

log

∑
l∈Lwlpl,bn,Stn

s̄
. (EC.6)

Since w′ and w∗ both satisfy the system of linear equations (EC.5), from (EC.6), we have lI(w
′) = lI(w

∗)

for any booking data, which violates the identifiability of the model. This completes the proof. □

Proof of Proposition 1. We show the result by invoking Theorem 5.3 in Shapiro et al. (2009). In

particular, we show that there exists a compact set C that satisfies all four conditions in Theorem 5.3 of

Shapiro et al. (2009): (i) the true location weights w∗ is contained in C; (ii) the long-run-average expected

log-likelihood function limT→∞(1/T )E[lI(w)] is finite valued and continuous on C; (iii) the empirical time-

averaged log-likelihood function (1/T )lI(w) converges to limT→∞(1/T )E[lI(w)] with probability one as T →
∞, uniformly in w ∈C; and (iv) with probability one, for T large enough the set of maximizers of (1/T )lI(w),

ŜT , is nonempty and ŜT ⊂C.

If we have pl,bn,Stn
> 0 for all l ∈L and n∈ {1, · · · ,N}, we know that

∑
l∈Lwlpl,bn,Stn

> 0 for allw belonging

to the simplex {w≥ 0 :
∑

l∈Lwl = 1}. Then C can simply be this simplex which is a compact set. Similarly,

if we have w∗
l ≥ ϵ, ∀l ∈L for some ϵ > 0, the compact set C can be C := {wl ≥ ϵ, ∀l ∈L :

∑
l∈Lwl = 1}. Then

conditions (i), (ii), and (iv) in Theorem 5.3 are satisfied. It remains to show the uniform convergence of the

time-averaged log-likelihood function (condition (iii)).

To show the uniform convergence, we invoke Theorem 7.48 of Shapiro et al. (2009) which gives sufficient

conditions of uniform convergence of (1/T )lI(w) to the long-run average expected log-likelihood function

limT→∞(1/T )E[lI(w)] as T →∞. It requires that: (a) for any w ∈C, lI(w) is continuous at w for almost all

booking data; (b) lI(w), w ∈ C is dominated by an integrable function that only depends on data; (c) the

sample is IID. Condition (a) clearly holds. We then show that the log-likelihood is dominated by another

integrable function on the compact set C. For the case where pl,b,Sk
> 0 for all l ∈ L, b ∈ Bk, k ∈ {1, · · · ,K},

let δ=minl∈L,b∈Bk,k∈{1,··· ,K} pl,b,Sk
. We have

|lI(w)|=

∣∣∣∣∣−N +N logN −N log

∫ T

0

(
1−

∑
l∈L

wlpl,0,St

)
dt+

N∑
n=1

log

(∑
l∈L

wlpl,bn,Stn

)∣∣∣∣∣
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<N +N log(N)+N | logT |+N |log δ|+N |log δ| , (EC.7)

which holds for all w ∈C. In the case that w∗
l ≥ ϵ, ∀l ∈L, we have C = {wl ≥ ϵ, ∀l ∈L :

∑
l∈Lwl = 1}. With

a slight abuse of notation, let δ=minl∈L,b∈Bk,k∈{1,··· ,K}:pl,b,Sk
>0 pl,b,Sk

. We have for all w ∈C,

Tδϵ≤
∫ T

0

(
1−

∑
l∈L

wlpl,0,St

)
dt≤ T.

This gives that, for all w ∈C,

|lI(w)|=

∣∣∣∣∣−N +N logN −N log

∫ T

0

(
1−

∑
l∈L

wlpl,0,St

)
dt+

N∑
n=1

log

(∑
l∈L

wlpl,bn,Stn

)∣∣∣∣∣
<N +N log(N)+N | logT |+N |log δϵ|+N |log δϵ| , (EC.8)

Note that (EC.7) and (EC.8) are both integrable with respect to the data-generating distribution, so the

dominance property holds. To meet the IID condition, we can always reshuffle the booking data into IID

episodes with equal length T ′ such that within each episode, the data-generating distribution of bookings

satisfies
∫ T ′

0
1(St = Sk)dt/T

′ = αk > 0, ∀k ∈ {1, · · · ,K}. In such a way, the asymptotic limits of the length of

the arrival period approaching infinity and the number of episodes approaching infinity become equivalent.

This completes proving the uniform convergence of the time-averaged log-likelihood function. Since in Theo-

rem 1 we already show that the long-run average expected log-likelihood has a unique maximizer at its true

value w∗, this completes the proof that ŵ converges to w∗ with probability one by invoking Theorem 5.3 in

Shapiro et al. (2009). □

Proof of Corollary 1. To show the sufficiency, by the Radon–Nikodym Theorem, there exists a density

function for the invariant probability measure π, f(S)> 0, S ∈ S, such that π(A) =
∫
A
f(S)dµ for any A∈F .

With a little abuse of notation, let BS be the set of bikes in bike pattern S. Recall that c0 = λ∗(−s̄∗ +

s̄∗ logλ∗ + s̄∗ log s̄∗) as defined in the proof of Theorem 1. Similar to equation (EC.3), we have

lim
T→∞

1

T
E [lT (w)] = λ∗s̄∗

∫
S∈S

f(S)
∑
b∈BS

(∑
l∈L

(
w∗

l pl,b,S

s̄∗

)
log
∑
l∈L

wlpl,b,S

s̄

)
dµ+ c0

= λ∗s̄∗
∫
S∈S

∑
b∈BS

(
f(S)

∑
l∈L

(
w∗

l pl,b,S

s̄∗

)
log
∑
l∈L

wlpl,b,S

s̄

)
dµ+ c0

= λ∗s̄∗
∫
S∈S

∑
b∈BS

(
f(S)

∑
l∈L

(
w∗

l pl,b,S

s̄∗

)
log

(
f(S)

∑
l∈L

wlpl,b,S

s̄

))
dµ

−λ∗s̄∗
∫
S∈S

∑
b∈BS

(
f(S)

∑
l∈L

(
w∗

l pl,b,S

s̄∗

)
log f(S)

)
dµ+ c0 (EC.9)

Note that the Gibbs inequality is not applicable here due to the continuity of bike pattern distribution.

However, a similar result can be derived from the almost positive definite property of Kullback–Leibler

divergence. By Lemma 3.1 of Kullback and Leibler (1951),

(EC.9)≤ λ∗s̄∗
∫
S∈S

∑
b∈BS

(
f(S)

∑
l∈L

(
w∗

l pl,b,S

s̄∗

)
log

(
f(S)

∑
l∈L

w∗
l pl,b,S

s̄∗

))
dµ
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−λ∗s̄∗
∫
S∈S

∑
b∈BS

(
f(S)

∑
l∈L

(
w∗

l pl,b,S

s̄∗

)
log f(S)

)
dµ+ c0

= λ∗s̄∗
∫
S∈S

∑
b∈BS

(
f(S)

∑
l∈L

(
w∗

l pl,b,S

s̄∗

)
log
∑
l∈L

w∗
l pl,b,S

s̄∗

)
dµ+ c0.

The equality holds if and only if

f(S)
∑
l∈L

wlpl,b,S

s̄
= f(S)

∑
l∈L

w∗
l pl,b,S

s̄∗
⇐⇒

∑
l∈L

wlpl,b,S

s̄
=
∑
l∈L

w∗
l pl,b,S

s̄∗
(EC.10)

holds for all b∈B and almost all S ∈ S. By the conditions in the statement of the corollary, we know w=w∗

is the unique solution for (EC.10), and thus the sufficiency holds.

To show the necessity, following the proof of Theorem 1, there exists w′ ̸=w∗ such that when the observed

period T →∞, (1/T )lI(w
′) − (1/T )lI(w

∗)→ 0 with probability 1. This contradicts to the identifiability

condition, which completes the proof. □

Proof of Theorem 2. We let M = {1,2, · · · ,M} to be the set of all bike stations. We first give the

formal definition of distance rankings. For each rider location l ∈ L and bike station s ∈M, let dl,s be the

distance from rider location l to bike station s.

Definition EC.1. A distance ranking σl for a rider location l ∈ L is a sequence of distinct stations

s(1), s(2), · · · , s(|σl|) ∈M defined as follows:

(1) dl,s(1) , · · · , dl,s(|σl|) is non-decreasing;

(2) dl,s(1) , · · · , dl,s(|σl|) ≤ r̄l and dl,s > r̄l for s∈M\{s(1), s(2), · · · , s(|σl|)}.

We let Σ to be the set of unique distance rankings. We comment that the cardinality |Σ| is bounded by

O(M2d+1), where d is the dimension of the service region. This is established by Skala (2009) where the

author shows that the number of unique distance permutations is bounded by O(M2d). Here we have one

degree higher as each distance ranking does not have to be of length M since the consideration radius is

limited.

Based on the definition, we further define Σ(σ) as the set of distance rankings whose first |σ| choices are

exactly the same as σ. With a slight abuse of notation, we refer to wσ as the corresponding probability that

a rider arrives at a location with distance ranking σ. Then to prove the theorem, it is equivalent to show

that the MLE ŵσ is consistent for all σ ∈Σ. We use S to denote all possible station patterns, i.e., a set of

available stations. For each S ∈ S, we further define Pj(S) as the probability that a rider chooses to pick up

a bike at station j under some station pattern S. Similarly, P0(S) is defined as the probability that a rider

chooses to leave under station pattern S. Note that Pj(S) can be written as the sum of all rider location

weights who choose to pick up a bike at station j under bike station pattern S. We first prove three useful

lemmas. The first one concerns the consistency of the MLE of the arrival rate λ̂ and choice probabilities

P̂j(S).

Lemma EC.1. The MLEs λ̂→ λ∗ and P̂j(S)→ P∗
j (S) with probability one for all S ⊂M and j ∈ S ∪{0}

as T →∞, where λ∗ and P∗
j (S) are the corresponding true values.
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Proof. Since each station pattern is observed with a positive fraction when T →∞, the station pattern

where all bikes are available S =M is observed with an infinite amount of time. Since P0(M) = 0, it is clear

that λ can be consistently estimated by simply applying the strong law of large numbers to the renewal

process (see, e.g., Proposition 3.3.1 in Ross 1996, note that the MLE of λ is simply the number of total

arrivals over the length of the arrival period with S =M). For the same reason, for any other station pattern

S ∈ S, the observed arrival rate under that pattern λ̃S can be consistently estimated. We know that P0(S) =

1− λ̃S/λ, which can also be consistently estimated. Finally, for any j ∈ S, we have Pj(S) = λ̃S,j(1−P0(S))/λ̃S

where λ̃S,j is the observed arrival rate for riders who choose station j under station pattern S, which can be

consistently estimated as well. This completes the proof. □

Lemma EC.1 states that the MLEs of choice probabilities and the arrival rate are strongly consistent.

What is left to be shown is thus one can uniquely determine weights of distance rankings from the choice

probabilities. We first discuss a few interesting observations regarding how distance rankings vary in a one-

dimensional space.

Lemma EC.2. Given a subset of bike stations S ⊂ M with |S| = k, for any permutation of S,(
s(1), · · · , s(k)

)
such that Σ

((
s(1), · · · , s(k)

))
̸= ∅, there exists at most two distinct bike stations s(k+1) such

that Σ
((
s(1), · · · , s(k), s(k+1)

))
̸= ∅. Moreover, there exists at most one permutation s(1), · · · , s(k) where s(k+1)

can have two distinct options, the rest of the permutations have at most one such s(k+1).

Proof. Figure EC.1 is an illustration of the proof. Let xs denote the coordinate of a station s ∈

M. It is easy to check the first part of the statement. First of all, for any s(1) ̸= · · · ≠ s(k) such that

Σ((s(1), · · · , s(k))) ̸= ∅, they have to form a group such that for all s ̸= s(1), · · · , s(k), either xs <xs(1) , · · · , xs(k)

or xs >xs(1) , · · · , xs(k) . Moreover, s(k+1) has to be the closest one on the left or on the right, i.e., s(k+1) has

to be either sright = argmins∈M:xs>x
s(1)

,··· ,x
s(k)

or sleft = argmaxs∈M:xs<x
s(1)

,··· ,x
s(k)

.

possible s(k+1) possible s(k+1)

srightsleft
(sleft+ sright)/2

s(1), · · · , s(k)

Figure EC.1 Identifiability proof under a one-dimensional space.

To see the second part of the statement, suppose that there exists such two choices of s(k+1) ∈ {sleft, sright}

(if not, the statement is trivial). We draw the middle point of the two potential stations of s(k+1), (sleft +

sright)/2, depicted by the dashed vertical line. The main idea is to show that there exists at most one

permutation (s(1), s(2), · · · , s(k)), such that the subregion within which riders’ first k nearest stations are

(s(1), s(2), · · · , s(k)), covers the point (sleft + sright)/2.

For ease of presentation, we define R(σ) as the subregion of the rider locations corresponding to distance

ranking σ in the space and R(σ)⊇R(σ) for the subregion whose first |σ| closest bike stations is exactly σ.

There are two situations to discuss:
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(1) The middle point (sleft + sright)/2 falls into a subregion corresponding to R((s(1), · · · , s(k))) where

s(1), · · · , s(k) is a particular permutation of S. Then subregion R((s(1), · · · , s(k))) is separated into two

parts. The part on the left of (sleft + sright)/2 would possibly correspond to distance rankings in

Σ((s(1), · · · , s(k), sleft)) while the part on the right of (sleft+sright)/2 would possibly correspond to rankings in

Σ((s(1), · · · , s(k), sright)). We say “possibly” here because it could be the case that Σ((s(1), · · · , s(k), sleft)) = ∅
or Σ((s(1), · · · , s(k), sright)) = ∅ due to limited consideration radius. For any other permutation s′(1), · · · , s′(k),
such that Σ((s′(1), · · · , s′(k))) ̸= ∅, subregions corresponding to any σ ∈ Σ((s′(1), · · · , s′(k))) will be either on

the left side of (sleft+sright)/2 or on the right side of (sleft+sright)/2. Thus s
(k+1) will be either sleft or sright

depending on which side it locates. It can also be the case that s(k+1) does not exist if it is outside their

consideration radiuses.

(2) The middle point (sleft + sright)/2 does not fall into subregion R((s(1), · · · , s(k))) for any permutation

of S: s(1), · · · , s(k). Since the union of subregions R((s(1), · · · , s(k))) over all permutations s(1), · · · , s(k) form
a convex set. This convex set thus locates either on the left side of (sleft + sright)/2 or on the right side of

(sleft + sright)/2, which means that for all permutations, s(k+1) is either sleft or sright depending on which

side it locates, or s(k+1) simply does not exist due to limited consideration radius. This completes the proof

of Lemma EC.2. □

Lemma EC.3. For the consideration radius function r(·) such that ∥r(x)− r (x′)∥ ≤ ∥x−x′∥ ,∀x,x′ ∈ P,
given a subset of stations S ⊂ M with |S| = k, there exists at most two distinctive permutations of S,

s(1), · · · , s(k) and s′(1), · · · , s′(k) such that:

•
(
s(1), · · · , s(k)

)
∈Σ, and there exists s(k+1) with Σ

((
s(1), · · · , s(k+1)

))
̸= ∅.

•
(
s′(1), · · · , s′(k)

)
∈Σ, and there exists s′(k+1) with Σ

((
s′(1), · · · , s′(k+1)

))
̸= ∅.

If the two permutations co-exist, it must be that s(k+1) ̸= s′(k+1).

Proof. We prove this by contradiction. We show the second part of the statement first. Suppose that

s(k+1) = s′(k+1). Knowing that R((s(1), · · · , s(k))) and R((s′(1), · · · , s′(k))) are two disjoint convex sets. With-

out loss of generality, we assume s(k+1) is on the left of R((s(1), · · · , s(k))). We now consider two situations:

(1) R((s′(1), · · · , s′(k))) is on the right side of R((s(1), · · · , s(k))): Because (s(1), · · · , s(k)) ∈Σ, there exists

x0 ∈ R((s(1), · · · , s(k))) such that ∥x0 − xs(k+1)∥ > r(x0) (since R((s(1), · · · , s(k))) is non-empty). Let x∗ =

supx∈R((s(1),··· ,s(k))) x denote the rightmost point in the subregion R((s(1), · · · , s(k))). Given that ∥r(x∗)−
r(x0)∥= r(x∗)− r(x0)≤ ∥x∗−x0∥= x∗−x0, it is clear that ∥x∗−xs(k+1)∥= x∗−xs(k+1) = ∥x∗−x0∥+ ∥x0−
xs(k+1)∥> r(x∗). For all x′ ∈R((s′(1), · · · , s′(k))):

∥x′−xs(k+1)∥ ≥ ∥x∗−xs(k+1)∥> r(x∗).

since R((s′(1), · · · , s′(k))) is on the right-hand side of R((s(1), · · · , s(k))). In the case of r(x∗) ≥ r(x′), we

immediately get ∥x′−xs(k+1)∥> r(x′). In the case of r(x∗)< r(x′), we know ∥x′−xs(k+1)∥−∥x∗−xs(k+1)∥=
∥x′−x∗∥ ≥ ∥r(x′)− r(x∗)∥= r(x′)− r(x∗). Then we have the following:

∥x′−xs(k+1)∥− r(x′)≥ ∥x∗−xs(k+1)∥− r(x∗)> 0.

We thus have ∥x′−xs(k+1)∥> r(x′) for all x′ ∈R((s′(1), · · · , s′(k))), which contradicts to the assumption that

there exists s′(k+1) with Σ((s′(1), · · · , s′(k), s′(k+1))) ̸= ∅.
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(2) R((s′(1), · · · , s′(k))) is on the left-hand side of R((s(1), · · · , s(k))): This case can be proved by following

the exactly same procedure from the first case by symmetry. We only need to swap all notations of s(i) with

s′(i) for i∈ {1, · · · , k+1}.

The first part of Lemma EC.3 can be shown with similar arguments. Suppose that there exists a

third different permutation s′′(1), · · · , s′′(k) such that (s′′(1), · · · , s′′(k)) ∈ Σ and there exists s′′(k+1) with

Σ((s′′(1), · · · , s′′(k), s′′(k+1))) ̸= ∅. From Lemma EC.2 we know that s′′(k+1) ∈ {s(k+1), s′(k+1)}. However, we

just proved that there does not exist two different permutations with the same (k+1)th station. This reaches

a contradiction and completes the proof. □

We are now ready to prove Theorem 2. We show that there is a unique solution of distance ranking

weights from choice probabilities, which can be consistently estimated from Lemma EC.1. In specific, we

want to prove for any 1≤ k≤M , and for any s(1) ̸= · · · ̸= s(k) ∈M,
∑

σ∈Σ((s(1),··· ,s(k)))wσ and w(s(1),...,s(k−1))

are uniquely identifiable by inducting on k. Intuitively, this induction allows us to gradually increase the

resolution of the distance rankings we are able to identify. We first prove the initial condition k= 1. Notice

that ∑
σ∈Σ((i))

wσ =Pi(M), (EC.11)

∑
σ∈Σ((i,j))

wσ =
∑

σ∈Σ((j))

wσ +
∑

σ∈Σ((i,j))

wσ −
∑

σ∈Σ((j))

wσ = Pj(M\{i})−Pj(M), (EC.12)

=⇒ w(i) =
∑

σ∈Σ((i))

wσ −
∑

σ∈Σ((i,j)),j∈M

wσ = Pi(M)−
∑
j∈M

(Pj(M\{i})−Pj(M)) , (EC.13)

for all i ̸= j and i, j ∈ {1, · · · ,M}. For the induction step at k, suppose that for any positive integer n≤ k,

we have s(1) ̸= · · · ≠ s(n) ∈M and
∑

σ∈Σ((s(1),··· ,s(n)))wσ and w(s(1),··· ,s(n−1)) are uniquely identifiable. Then,

we want to prove for any s(1) ̸= · · · ̸= s(k+1) ∈ M,
∑

σ∈Σ((s(1),··· ,s(k+1)))wσ and w(s(1),··· ,s(k)) are uniquely

identifiable. For a given set of k stations {s(1), · · · , s(k)}, each permutation of it can be classified into one of

the following types:

1.
(
s(1), · · · , s(k)

)
∈Σ and there does not exist s(k+1) such that Σ

((
s(1), · · · , s(k+1)

))
̸= ∅. Then it is clear

that

(
s(1), · · · , s(k)

)
=Σ

((
s(1), · · · , s(k)

))
Since

∑
σ∈Σ((s(1),...,s(k)))wσ is known according to the induction hypothesis, we thus are able to identify

w(s(1),··· ,s(k)) and
∑

σ∈Σ((s(1),··· ,s(k),s(k+1)))wσ.

2.
(
s(1), · · · , s(k)

)
̸∈Σ and there exists only one s(k+1) such that Σ

((
s(1), · · · , s(k+1)

))
̸= ∅. Then we have

Σ
((
s(1), · · · , s(k), s(k+1)

))
=Σ

((
s(1), · · · , s(k)

))
Similarly, we have w(s(1),··· ,s(k)) = 0 and

∑
σ∈Σ((s(1),··· ,s(k),s(k+1)))wσ =

∑
σ∈Σ((s(1),··· ,s(k)))wσ, which is known

according to the induction hypothesis.
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3. There exists s(k+1) and s′(k+1) such that Σ
((
s(1), · · · , s(k), s(k+1)

))
̸= ∅ and Σ

((
s(1), · · · , s(k), s′(k+1)

))
̸=

∅. With a slight abuse of notation, we define Σ(S, s) for some S ⊆M and s ∈M\S as the set of distance

rankings whose first |S| stations are any permutation of S and the (|S|+ 1)th station is s. Put set Sk =

{s(1), · · · , s(k)}. Then we have the following identity:∑
σ∈Σ((s(1),··· ,s(k),s(k+1)))

wσ =Ps(k+1)

(
M\Sk

)
−
∑
S⫋Sk

∑
σ∈Σ((S,s(k+1)))

wσ

−
∑

σ∈Σ((Sk,s(k+1)))\Σ((s(1),··· ,s(k),s(k+1)))

wσ. (EC.14)

The second term on the right-hand side is known according to the induction hypothesis. For the third term, by

lemma EC.2, since the permutation (s(1), · · · , s(k)) has two distinct options s(k+1) and s′(k+1), any rest of the

permutation of Sk, s′′(1), · · · , s′′(k), has at most one s′′(k+1) such that Σ
((
s′′(1), · · · , s′′(k+1)

))
̸= 0. Clearly, we

only need to consider the case when such s′′(k+1) exists. Now consider two subcases: 1) if (s(1), · · · , s(k)) ̸∈Σ,

we claim that (s′′(1), · · · , s′′(k)) ̸∈ Σ. We prove by contradiction. Without loss of generality, suppose that

s(k+1) and ((s′′(1), · · · , s′′(k))) are on the left-hand side of R((s(1), · · · , s(k))). Then if (s′′(1), · · · , s′′(k)) ∈Σ it

is clear that for all x ∈ R((s(1), · · · , s(k))), we have |x− xs(k+1) | > r(x) which contradicts to the fact that

(s(1), · · · , s(k), s(k+1))∈Σ. This suggests that the permutation s′′(1), · · · , s′′(k) belongs to the second type we

discussed above and is proven to be identifiable; if (s(1), · · · , s(k))∈Σ, then by Lemma EC.3, we know s′(k+1) ̸=

s(k+1), which implies that the permutation σ in the third term cannot be (s′(1), · · · , s′(k), s′(k+1)). Hence, by

equation (EC.14), we know that
∑

σ∈Σ((s(1),··· ,s(k),s(k+1)))wσ can be uniquely identified. By symmetry, we

can show that
∑

σ∈Σ((s(1),··· ,s(k),s′(k+1)))wσ is identifiable as well. We can further deduce w(s(1),··· ,s(k)) by

w(s(1),··· ,s(k)) =
∑

σ∈Σ((s(1),··· ,s(k)))

wσ −
∑

σ∈Σ((s(1),··· ,s(k),s(k+1)))

wσ −
∑

σ∈Σ((s(1),··· ,s(k),s′(k+1)))

wσ.

4. The permutation (s(1), · · · , s(k))∈Σ and there exists only one s(k+1) such that Σ
((
s(1), · · · , s(k+1)

))
̸= ∅.

Similarly, we can show that
∑

σ∈Σ((s(1),··· ,s(k+1)))wσ is identifiable using the same approach in type 3. We can

further deduce w(s(1),··· ,s(k)) by

w(s(1),··· ,s(k)) =
∑

σ∈Σ((s(1),··· ,s(k)))

wσ −
∑

σ∈Σ((s(1),··· ,s(k),s(k+1)))

wσ.

This completes the induction and proof of Theorem 2. We comment that the proof does not necessarily

require all possible station patterns to be observed with a positive fraction of time in the long run. We only

needM andM\Sk to be observed for all possible Sk that are constructed by looking at all distance rankings

in the set of rider locations L. □

Proof of Proposition 2 The result can be directly shown by equations (EC.11), (EC.12) and (EC.13)

in the proof of Theorem 2. □

Proof of Theorem 3 Since the closed-form solution ŵ derived in the M-step is a unique maximizer,

we know that in the EM algorithm, the M-step generates a sequence of vectors {w(m),m= 1,2, · · · } where

w(m) is the unique maximizer for the expected complete log-likelihood function E[lC(w) | b, t,w(m−1)] for
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m= 1,2, · · · . Here, w(0) refers to the initial weight vector to start the EM algorithm. Moreover, from equation

(6), it is clear that the expected complete log-likelihood function E[lC(w) | b, t,w(m)] is continuous in both w

and w(m). Then by Theorem 2 in Wu (1983), we can infer that the sequence {l(w(1)), l(w(2)), · · · } converges

monotonically to l(w∗) for some stationary point w∗. □

Appendix B: Additional Results

B.1. Estimating Location Weights

In Example 1 we give instances regarding the identifiability of location weights under the MNL and distance-

ranking models. Here, we provide another example that the location weights under the distance-ranking

model are identifiable while they are not under the MNL model. Again, we use the Euclidean distance as our

distance metric. Consider the bike and rider locations depicted in Figure EC.2. Denote the bike pattern by

S. We let β1,1 = β1,2 =− ln(2)/(2
√
3− 2) and β1,3 = (ln(3)− ln(4))/(

√
7−
√
3) and consider an asymptotic

scenario where β0,1, β0,2, β0,3→∞. Then for the MNL model, we have [p1,1,S, p2,1,S, p3,1,S] = [0.4,0.2,0.3],

[p1,2,S, p2,2,S, p3,2,S] = [0.2,0.4,0.3] and [p1,3,S, p2,3,S, p3,3,S] = [0.4,0.4,0.4], which leads to non-identifiability

according to Theorem 1 since these vectors are linearly dependent. On the other hand, consider a distance-

ranking model with infinite consideration radius. We have choice probabilities as [p1,1,S, p2,1,S, p3,1,S] =

[0.5,0,0], [p1,2,S, p2,2,S, p3,2,S] = [0.0,0.5,0] and [p1,3,S, p2,3,S, p3,3,S] = [0.5,0.5,1] that are linearly independent.

This implies that the model is identifiable.

(−1,0)

(0,0)

(1,0)

(0,
√
3)

(−2,−
√
3) (2,−

√
3)

Loc 1

L
o
c
3

Loc 2

Bike 1 Bike 2

Bike 3

Figure EC.2 Identifiable under a distance-ranking model but non-identifiable under the MNL model for certain

parameter values.

Theorem 1 describes the identifiability of all location weights. Here we give another result regarding partial

identifiability of the weight of a particular location l ∈L. Let el ∈ {0,1}L be a binary vector whose lth entry

is one and zero otherwise and 1L be a L-dimensional vector with all ones.

Proposition EC.1 (Partial Identifiability). For any l ∈L, if both el and 1L are a linear combination

of vectors {[p1,b,Sk
, · · · , pL,b,Sk

] : b∈Bk, k ∈ {1, · · · ,K}}, then wl is identifiable.
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Proof. For any l ∈ L, by equation (EC.4), it is sufficient to show that the system of linear equations∑
l∈Lwlpl,b,Sk

/s̄ =
∑

l∈Lw∗
l pl,b,Sk

/s̄∗, ∀k ∈ {1, · · · ,K} and b ∈ Bk has a unique solution wl = w∗
l . Since el

is a linear combination of vectors {[p1,b,Sk
, · · · , pN,b,Sk

] : b ∈ Bk, k ∈ {1, · · · ,K}}, we know wl/s̄ = w∗
l /s̄

∗. If

wl ̸=w∗
l , we have s̄ ̸= s̄∗. However, since 1L can also be written as a linear combination of these vectors, we

have
∑

l∈Lwi/s̄=
∑

l∈Lw∗
l /s̄

∗. Since
∑

l∈Lwl =
∑

l∈Lw∗
l = 1, we have s̄= s̄∗. This leads to wl =w∗

l . □

One way to interpret Proposition EC.1 and its proof is to think of all locations other than location l

as a whole. Then the problem can be simplified into a scenario only containing two arrival locations with

weights wl and 1−wl, thereby leading to partial identifiability by invoking Theorem 1. Proposition EC.1

is particularly useful under a distance-ranking model as the choice probabilities are mostly 0 or 1. We now

give an example below to illustrate Proposition EC.1.

Example EC.1. Consider a one-dimensional case (Figure EC.3) with three rider arrival locations and one

bike. The rider arrival locations are located at -1, 4, and 5 on the axis from left to right. Suppose that there

are two possible bike patterns S1, S2 where the bike locates at 0 under S1 and 3 under S2. Given a constant

consideration radius r= 3, we have [p1,1,S1
, p2,1,S1

, p3,1,S1
] = [1,0,0] and [p1,2,S1

, p2,2,S1
, p3,2,S1

] = [0,1,1]. Then

by Theorem 1, the location weights w are non-identifiable since these vectors cannot span R3. However, by

Proposition EC.1, we know that e1 and 13 are a linear combination of (1,0,0) and (0,1,1), which implies

that the w1 is identifiable.

−1 4 50

Bike Pattern S1

−1 4 53

Bike Pattern S2

Figure EC.3 An example of partial identifiability in the distance-ranking model. As before, red circles represent

rider locations and green circles represent bike location. The numbers underneath are coordinates.

B.2. Estimating MNL Model Parameters

In this section, we assume that the rider choices are governed by a multinomial logit (MNL) model stated in

equation (1) and consider jointly estimate w, β0 and β1. By following the proof of Theorem 1, w, β1 and

β0 are identifiable if and only if the system of nonlinear equations
∑

l∈Lwlpl,b,Sk
/s̄=

∑
l∈Lw∗

l p
∗
l,b,Sk

/s̄∗, b ∈
Bk, k ∈ {1,2, · · · ,K} has a unique solution w=w∗, β1 =β∗

1 and β0 =β∗
0. It is expected that this condition

a has higher chance to be satisfied as there are more bike patterns. This condition is hard to simplify in

general. Nevertheless, we provide below a set of simplified sufficient conditions for identifiability of β1 when

there is only one rider location and β0 is assumed to be known.

Proposition EC.2. Assume that riders only arrive at one given location and riders’ choice behavior

follows an MNL model with known β0. β1 is identifiable if at least one of the following conditions holds:

1. At least two bikes have different distances to the rider location in some bike pattern;

2. β∗
1 < 0 and one bike has different distances to the rider location in at least two bike patterns where each

pattern has the same number of available bikes.
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Proof. Let pl,b,Sk
, b∈Bk, k ∈ {1, · · · ,K} be the probability that a rider in the only rider location l chooses

bike b in bike pattern Sk and p∗
l,b,Sk

as the corresponding probability under the true value β∗
1 . By the

proof of Theorem 1, we want to show the equality pl,b,Sk
/s̄= p∗

l,b,Sk
/s̄∗ holds for all b ∈ Bk, k ∈ {1, · · · ,K}

only if β1 = β∗
1 . To show the necessity, we consider the first case where two distinct bikes b ̸= b′ ∈ Sk have

different distances dl,b,Sk
̸= dl,b′,Sk

to the rider location l in some bike pattern Sk. Without loss of generality,

dl,b,Sk
>dl,b,Sk′ . This gives,

pl,b,Sk

p∗
l,b,Sk

=
pl,b′,Sk

p∗
l,b′,Sk

=
s̄

s̄∗
⇒ β1(dl,b,Sk

− dl,b′,Sk
) = β∗

1(dl,b,Sk
− dl,b′,Sk

) ⇒ β1 = β∗
1 .

We then consider the second case where one bike b in two different bike patterns Bk and Bk′ have different

distances dl,b,Sk
̸= dl,b,Sk′ to the rider location l. If there are more than one bike having different distances

to the rider location in either pattern, then it returns to the first case and we have β̂1→ β∗
1 . Thus, we only

need to show the case when all bikes have the same distance to the rider location in each bike pattern. Let

B be the number of available bikes in bike patterns Bk and Bk′ . Since each pattern has the same number of

available bikes, we have

pl,b,Sk

p∗
l,b,Sk

=
pl,b,Sk′

p∗
l,b,Sk′

⇒

exp(β0 +β1dl,b,Sk
)

B−1 +exp(β0 + bkβ1dl,b,Sk
)

B−1 +exp(β0 +β1dl,b,Sk′ )

exp(β0 +β1dl,b,Sk′ )
=

exp(β0 +β∗
1dl,b,Sk

)

B−1 +exp(β0 +β∗
1dl,b,Sk

)

B−1 +exp(β0 +β∗
1dl,b,Sk′ )

exp(β0 +β∗
1dl,b,Sk′ )

.

The derivative of the left-hand side of the above equation with respect to β1 can be written as

c0 exp(β1(dl,b,Sk
+ dl,b,Sk′ ))

c0(dl,b,Sk
− dl,b,Sk′ )+ dl,b,Sk

exp(β1dl,b,Sk′ )− dl,b,Sk′ exp(β1dl,b,Sk
)(

(c0 +exp(β1dl,b,Sk
)) exp(β1dl,b,Sk′ )

)2 ,

where c0 :=B−1 exp(−β0). Since we have β1 < 0, it is not hard to see that the derivative would be strictly

positive when dl,b,Sk
> dl,b,Sk′ . Therefore, the left-hand side is strictly increasing with β1, which implies the

uniqueness of β1 that satisfies the above equation. This gives the identifiability of β1. □

We now discuss how the EM algorithm described in Section 4.1 can be adapted to the case where β0, β1

and w can be jointly estimated. Our first result below shows that the M-step has the same updating form for

w as that in Algorithm 1 and optimizing β0 and β1 in the M-step is a well behaved concave maximization

problem.

Proposition EC.3. Assume that rider choice behaviors are governed by an MNL model with parameters

β := (β0,β1). Then in the M-step of the EM algorithm, w has a closed-form update and the expected likelihood

in the E-step is concave with respect to β.

Proof. Analogous to equation (6), in the mth iteration, the conditional expectation can be written as

E
[
lC(w,β1)

∣∣∣ b, t,w(m),β(m)
]
=E

−Ñ + Ñ log

(
Ñ

T

)
+

Ñ∑
n=1

log(wl̃n
)+

Ñ∑
n=1

log
(
pl̃n ,̃bn,St̃n

) ∣∣∣∣∣∣b, t,w(m),β(m)

 .
As in equation (6), the first two terms inside the expectation do not depend on w or β. The third term

depends on w but not β, and the fourth term depends on β but not w. Hence, w has the same updating

process as before with the only difference lies in using β(m) to replace the true value. To optimize for β, we
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only need to consider the fourth term. To simplify the notation, let Θ(m) = (w(m),β(m)) and X = (b, t). We

first derive a few important quantities. The joint conditional density for a rider arriving at location l at time

t given that she chooses the leaving option is

f
(
l, t
∣∣∣ Θ(m), b= 0

)
= P

(
l
∣∣∣ t,β(m),w(m), b= 0

)
· f
(
t
∣∣∣ β(m),w(m), b= 0

)
=

p
(m)
l,0,St

w
(m)
l∑

l′∈Lw
(m)
l′ p

(m)
l′,0,St

·
∑

l′∈Lw
(m)
l′ p

(m)
l′,0,St∫ T

0

∑
l′∈Lw

(m)
l′ p

(m)
l′,0,St

dt

=
p
(m)
l,0,St

w
(m)
l∫ T

0

∑
l′∈Lw

(m)
l′ p

(m)
l′,0,St

dt
.

where p
(m)
l,b,St

, l ∈L, b∈B, t∈ [0, T ] is the rider’s choice probability under β
(m)
0,l and β

(m)
1,l . Similar to equations

(7) and (8), we have

P
(
ln = l

∣∣ Θ(m),X
)
=

p
(m)
l,bn,Stn

w
(m)
l∑

l′∈Lw
(m)
l′ p

(m)
l′,bn,Stn

, ∀n∈ {1, · · · ,N}, ∀l ∈L, (EC.15)

E
[
N ′
∣∣ Θ(m),X

]
=N

∫ T

0

∑
l′∈Lw

(m)
l′ p

(m)
l′,0,St

dt∫ T

0

(
1−

∑
l′∈Lw

(m)
l′ p

(m)
l′,0,St

)
dt

. (EC.16)

Let the sequence {t′1, t′2, · · · , t′N′} denote the arrival time of the unobserved riders. Then we can rewrite the

third term in the conditional expectation as

E

 Ñ∑
n=1

log(pl̃n ,̃bn,St̃n
)

∣∣∣∣∣ Θ(m),X


=E

[
N∑

n=1

log(pln,bn,Stn
)

∣∣∣∣∣ Θ(m),X

]
+E

[
N′∑
n=1

log(pl′n,0,St′n
)

∣∣∣∣∣ Θ(m),X

]

=
∑
l∈L

N∑
n=1

(
P
(
ln = l

∣∣ Θ(m),X
)
log pl,bn,Stn

)
+E

[
N ′
∣∣ Θ(m),X

]∫ T

0

∑
l∈L

f
(
l, t
∣∣ Θ(m), b= 0

)
log pl,0,St

dt

=
∑
l∈L

N∑
n=1

(
P
(
ln = l

∣∣ Θ(m),X
)
log pl,bn,Stn

)
+E

[
N ′
∣∣ Θ(m),X

]∑
l∈L

∫ T

0

f
(
l, t
∣∣ Θ(m), b= 0

)
log pl,0,St

dt

=
∑
l∈L

(
N∑

n=1

P
(
ln = l

∣∣ Θ(m),X
)
log pl,bn,Stn

+E
[
N ′
∣∣ Θ(m),X

]∫ T

0

f
(
l, t
∣∣ Θ(m), b= 0

)
log pl,0,St

dt

)
.

The above equation shows that β1,l is separable for l ∈L. Thus, to show the concavity, it suffices to show

the formula inside the parenthesis is concave regarding (β0,l, β1,l). For each rider location l ∈L and available

bike b∈Bt, recall that the choice probability is

pl,b,St
=

exp(β0,l +β1,ldl,b,St
)

1+
∑

b∈Bt
exp(β0,l +β1,ldl,b,St

)
, pl,0,St

=
1

1+
∑

b∈Bt
exp(β0,l +β1,ldl,b,St

)
.

Therefore, we have

log pl,bn,Stn
= β0,l +β1,ldl,bn,St

− log

1+
∑

b∈Btn

exp(β0,l +β1,ldl,bn,Stn
)

 ,

log pl,0,St
=− log

(
1+

∑
b∈Bt

exp(β0,l +β1,ldl,b,St
)

)
.
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Notice that for any t∈ [0, T ], the function log
(
1+

∑
b∈Bt

exp(β0,l +β1,ldl,b,St
)
)
is a composition of log-sum of

exponentials with an affine function, which is convex. This establishes that E
[∑Ñ

n=1 log(pl̃n ,̃bn,St̃n
)
∣∣Θ(m),X

]
is concave in β, which completes the proof. □

We now summarize the EM algorithm to estimate w and β jointly. Substituting equation (EC.15) and

(EC.16) into the third term of the conditional expectation yields

E

 Ñ∑
n=1

log(pl̃n ,̃bn,St̃n
)

∣∣∣∣∣ Θ(m),X

=
∑
l∈L

(
N∑

n=1

p
(m)
l,bn,Stn

w
(m)
l∑

l′∈Lw
(m)
l′ p

(m)
l′,bn,Stn

log pl,bn,Stn
+

N

s

∫ T

0

p
(m)
l,0,St

w
(m)
l log pl,0,St

dt

)
,

where s=
∫ T

0
(1−

∑
l∈Lw

(m)
l p

(m)
l,0,St

)dt. In the M-step, one needs to maximize the formula inside the parenthesis

of the above equation for each rider location l ∈ L. The complete algorithm is presented in Algorithm 3

Algorithm 3 EM Algorithm estimating MNL model parameters

Initialize a location set L0 with coordinates (x1, y1), · · · , (xL0
, yL0

).

Initialize the weight vector w←w(0) ∈∆L, β0←β
(0)
0 , β1←β

(0)
1 .

Initialize the number of iterations m← 0.

while stopping criteria are not met do

Compute s←
∫ T

0
(1−

∑
l∈Lw

(m)
l p

(m)
l,0,St

)dt.

For l ∈L, find

β
(m+1)
0,l , β

(m+1)
1,l ∈ argmax

β0,l,β1,l

(
N∑

n=1

p
(m)
l,bn,Stn

w
(m)
l∑

l′∈Lw
(m)

l′ p
(m)

l′,bn,Stn

log pl,bn,Stn
+

N

s

∫ T

0

p
(m)
l,0,St

w
(m)
l log pl,0,Stdt

)
.

Compute cl←
∑N

n=1

p
(m)
l,bn,Stn

w
(m)
l∑

l′∈L w
(m)

l′ p
(m)

l′,bn,Stn

+N(T − s)/s, for l ∈L.

Update w
(m+1)
l ← cl/

∑
l′∈L cl′ , for l ∈L.

m←m+1.

end while

Output w(m), β
(m)
0 and β

(m)
1 .

below. A similar location-discovery procedure can be developed to complement Algorithm 3.

We generate synthetic data to evaluate this algorithm. For simplicity, we assume that β0 is known to

the operator and β1 is to be estimated. We further assume that β0 and β1 have the same value across all

locations. We thus treat them as scalars (β0, β1). We use the same simulation setup described in Section

5.1.2. We test five pairs of ground-truth (β∗
0 , β

∗
1), which are (1,−1), (3,−1), (5,−1), (5,−2) and (5,−3).

When searching the value of β1, we employ a golden-section search and presume a possible range for β1

to be (−10,0). For the location-discovery algorithm, we stop the algorithm when all of the following three

conditions are satisfied: (1) a minimum number of locations N = 5 has been discovered; (2) the BIC value

is larger than that in the previous iteration; and (3) the relative percentage difference of β1 between two

Electronic copy available at: https://ssrn.com/abstract=3311371



e-companion to Xu et al.: A Locational Demand Model for Bike-Sharing ec15

consecutive iterations is less than 5%. We generate 20 instances for each scenario and output the average

performance among all instances. Again, we trim the locations with weights under 0.01 before we output

the result. The performance is reported in Table EC.1. In this table, “MAPE” column reports the mean

absolute percentage error between the predicted value of β1 and its underlying truth, and “Time” column

records the CPU times in seconds.

Table EC.1 Prediction performance when β1 is unknown.

(β∗
0 , β

∗
1) (L∗,B) Algorithm Locs WD Lkd BIC Time (sec) MAPE (β1)

(1,-1) (5,20) K-means 5.0 2.94 -2,213 2,228 <1 –
(10,40) 10.0 2.40 -4,718 4,750 <1 –

(3,-1) (5,20) 5.0 3.09 -4,197 4,213 <1 –
(10,40) 10.0 2.25 -6,606 6,640 <1 –

(5,-1) (5,20) 5.0 3.08 -5,529 5,546 <1 –
(10,40) 10.0 2.43 -7,295 7,329 <1 –

(5,-2) (5,20) 5.0 2.86 -1,622 1,635 <1 –
(10,40) 10.0 2.36 -4,588 4,620 <1 –

(5,-3) (5,20) 5.0 2.90 -492 503 <1 –
(10,40) 10.0 2.14 -2,137 2,165 <1 –

(1,-1) (5,20) All-in 36.0 3.22 -2,211 2,314 48 138%
(10,40) 36.4 2.84 -4,733 4,849 210 135%

(3,-1) (5,20) 35.5 3.20 -4,333 4,447 122 153%
(10,40) 31.3 2.72 -6,540 6,646 547 59%

(5,-1) (5,20) 27.6 3.25 -5,578 5,671 294 102%
(10,40) 29.6 2.75 -7,164 7,266 632 51%

(5,-2) (5,20) 34.2 3.38 -1,571 1,662 42 126%
(10,40) 28.8 2.54 -4,413 4,505 404 32%

(5,-3) (5,20) 34.5 3.25 -439 510 8 118%
(10,40) 30.9 2.55 -2,063 2,149 80 67%

(1,-1) (5,20) Loc. Disc. 7.9 3.02 -2,104 2,126 18 15%
(10,40) (Single) 9.1 2.40 -4,618 4,647 71 16%

(3,-1) (5,20) 6.9 2.78 -4,030 4,052 24 7%
(10,40) 8.7 2.52 -6,481 6,510 78 10%

(5,-1) (5,20) 6.7 2.81 -5,333 5,355 38 5%
(10,40) 8.6 2.52 -7,157 7,187 78 6%

(5,-2) (5,20) 6.0 3.41 -1,450 1,466 8 10%
(10,40) 8.8 2.57 -4,386 4,414 47 8%

(5,-3) (5,20) 5.9 3.15 -424 437 3 17%
(10,40) 8.8 2.62 -1,978 2,003 21 12%

(1,-1) (5,20) Loc. Disc. 11.4 3.01 -2,104 2,137 22 18%
(10,40) (Batch) 14.8 2.30 -4,614 4,661 98 15%

(3,-1) (5,20) 8.7 3.02 -4,038 4,066 28 10%
(10,40) 13.6 2.19 -6,467 6,513 114 9%

(5,-1) (5,20) 8.8 3.05 -5,336 5,366 42 6%
(10,40) 16.0 1.97 -7,160 7,215 142 17%

(5,-2) (5,20) 8.8 2.86 -1,449 1,473 11 10%
(10,40) 15.0 2.11 -4,380 4,429 91 14%

(5,-3) (5,20) 10.0 2.65 -414 435 4 23%
(10,40) 17.4 1.85 -1,934 1,983 49 9%
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We have the following observations from Table EC.1. These observations are similar as those in Table 3. (1)

The all-in algorithm gives a poor estimation on β1 whereas the discovery algorithms have relatively accurate

estimation, as indicated by the MAPEs. (2) The computation time for the all-in algorithm significantly

increases due to the line search for β1 in the M-step. Meanwhile, the discovery algorithm shows a less

significant increase in computation time, as the embedded EM updates account for only a small portion of

the total time. (3) The location-discovery algorithm with batch addition has overall the best performance.

It improves over the single mode as evidenced by the lower Wasserstein distance and similar MAPE of β1,

though the batch mode discovers more locations than the single mode.
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