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Abstract—The ability to accurately predict traffic speed in
a large and heterogeneous road network has many useful
applications, such as route guidance and congestion avoidance. In
principle, data driven methods such as Support Vector Regression
(SVR) can predict traffic with high accuracy, because traffic
tends to exhibit regular patterns over time. However, in practice,
the prediction performance can vary significantly across the
network and during different time periods. Insight into those
spatial and temporal trends can improve the performance of
Intelligent Transportation Systems (ITS). Traditional prediction
error measures such as Mean Absolute Percentage Error (MAPE)
provide information about individual links in the network, but
do not capture global trends. We propose unsupervised learning
methods, such as k-means clustering, Principal Component
Analysis (PCA), and Self Organizing Maps (SOM) to mine
spatial and temporal performance trends at both network level
and for individual links. We perform prediction for a large,
interconnected road network, for multiple prediction horizons,
with SVR based algorithm. We show the effectiveness of the
proposed performance analysis methods by applying them to the
prediction data of SVR.

Index Terms—Large-scale network prediction, spatial and
temporal error trends.

I. INTRODUCTION

Intelligent Transport Systems (ITS) can provide enhanced

performance by incorporating data related to future state of

the road networks [1]. Traffic prediction is useful for many

applications such as route guidance and congestion avoidance

[1]–[3]. Traffic prediction requires learning non-linear

relationships between past and future traffic states [2], [3].

Data driven methods such as Support Vector Regression

(SVR) tend to provide better prediction results than competing

methods [2]–[9]. However, these studies usually consider

scenarios such as expressways, or a few intersections. Studies

such as done in [2], [3], [10]–[12] consider highways or

motorways only. Some other studies such as [6], [8] do

consider more general scenarios, albeit for some small regions.

Consequently, the performance patterns in large heterogeneous
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networks have not been investigated. Min et al. considered a

moderate sized road network consisting of about 500 road

segments [13]. However, they developed a custom model

for the test area, which is not available. This limits any

meaningful comparison with their proposed method. They

analyzed the performance by taking into account different

road categories. We will also consider road category wise

comparison as one of the indices for performance evaluation.

Traffic prediction for large networks requires modular and

easily scalable algorithms. The methods should also provide

accurate prediction for multiple prediction horizons. In this

study, we analyze the performance of data driven methods

such as SVR for large-scale prediction. The network comprises

of roads with different speed limits, capacities and covering

different areas (urban, rural, downtown).

Traffic prediction studies usually consider point estimation

methods like Mean Absolute Percentage Error (MAPE) to

analyze prediction performance [2]–[11], [13], [14]. These

measures work well for overall performance comparison.

However, they fail to provide any insight into underlying

spatial and temporal prediction patterns. Forecasting methods

may not provide uniform prediction performance across

the road network. Moreover, prediction accuracy may also

depend upon the time and the day. These spatial and

temporal performance trends contain useful information about

predictability of the network. ITS applications can provide

more robust and accurate solutions by utilizing such trends.

We apply temporal window SVR to perform large-scale

traffic prediction. For analysis, we consider a large road

network from Outram Park to Changi in Singapore. The

road network consists of more than 5000 road segments. We

compare the performance of SVR with other commonly used

time series prediction algorithms such as Artificial Neural

Networks (ANN) and exponential smoothing. We also provide

performance comparison for different road categories in this

study. To extract spatial and temporal prediction patterns for

large networks, we propose unsupervised learning methods

such as k-means clustering and Principal Component Analysis

(PCA). For link level temporal prediction patterns, we use

Self Organizing Maps (SOM). We apply these data mining

algorithms to extract performance trends in SVR prediction

data.

The paper is structured as follows. In section II, we

briefly discuss the problem of large-scale prediction. In

section III, we propose different data driven algorithms for

large-scale prediction. In Section IV, we explain the data

set and performance measures for comparison. In section



V, we compare prediction performance of SVR with other

methods. In section VI, we develop unsupervised learning

techniques for extracting spatial and temporal performance

trends in large-scale prediction. In section VII, we evaluate

the efficiency of proposed data mining methods with prediction

data of SVR. In Section VIII, we summarize our contributions

and suggest topics for future work.

II. LARGE-SCALE PREDICTION

In this section, we briefly discuss the problem of large scale

prediction. We also discuss the selection of training and test

data for supervised learning algorithms.

A. Traffic Prediction

We represent the road network by a directed graph G =
(N,E). The set E contains p road segments (links) {si}

p
i=1.

Space averaged speed value z(si, t j), represents the weight

of the link si, during the interval (t j − δt , t j). The sampling

interval δt is 5 minutes. Future traffic trends strongly depend

on current and past behavior of that road and its neighbors [2],

[3], [13]. Suppose {θu ∈ Θsi
}l

u=1 is the set of road segments

containing si and its neighbors, such that Θsi
⊆ E . Our aim

will be to find the relationship function f between current/past

traffic data {z(θu, t j − qδt)|u = 1, ...l,q = 0, ...mθu
} and the

future traffic variations ẑ(si, t j + kδt) such that:

ẑ(si, t j + kδt) = f
(

z(θ1, t j), ...z(θl , t j −mθl
δt)

)

. (1)

The feature set {mθu
}l

u=1 determines the horizon of the past

speed values of link θu which are used for predicting k-step

ahead speed values of si. We will refer to k-step ahead

prediction as kth prediction horizon.

We need to determine relevant links Θsi
(spatial features)

and time lags mθu
(temporal features) to predict ẑ(si, t j +kδt).

Extracting spatial features is a computationally expensive task

[15]. This additional computational cost severely limits the

scalability of prediction algorithm for large and generic road

networks. Therefore, we will not consider spatial features in

this study. For large scale prediction, we consider the following

variant of (1), termed as temporal window method [6]:

ẑ(si, t j + kδt) = f
(

z(si, t j), ...z(si, t j −msi
δt)

)

. (2)

In (2), we only consider past historical trends of si to

predict ẑ(si, t j + kδt ). Temporal window method for feature

selection has been demonstrated to work effectively for data

driven traffic prediction algorithms [3], [4], [6], [7], [9],

[16]. Different methods have been proposed to take further

advantage of inherent temporal traffic patterns for enhanced

prediction accuracy [8], [10], [12], [17]–[21]. These methods

employ different feature selection techniques to pre-partition

the data according to temporal patterns (time of the day,

weekdays/weekends etc.). The feature selection algorithms

include Self Organizing Maps (SOM) [12], [18], [21],

genetic algorithms [8], [19], wavelets [20] and committees

of neural networks [10]. Another proposed method combines

Kalman filter with Seasonal Autoregressive Integrated Moving

Average (SARIMA) [12], [17]. These techniques, however,

are computational expensive, which limits their scalability for

large networks. Furthermore, M. Lippi et. al. showed that

traditional SVR can provide similar performance to these

ensemble methods without suffering from extra computational

overheads [12]. Consequently, we will consider SVR with

temporal window for large scale prediction. We train separate

predictors for each link si and for each prediction horizon

k. Temporal window method for feature selection allows

predictors from different links and prediction horizons to run

in parallel. Furthermore, these algorithms are independent of

each other. Therefore, they can efficiently run on distributed

platforms with minimum communication overhead.

B. Training and test data for supervised learning

Supervised learning methods such as SVR and Artificial

Neural Networks (ANN) assume that the labeled training

data and the test data come from the same distribution

[22]–[24]. Hence, it is unnecessary to retrain the algorithm

every time new data becomes available. Traffic prediction

methods also follow the same assumption [2]–[9], [13], [16],

[25]. Similar to other studies, we train the algorithm with

50 days of data and perform prediction for 10 days [3], [5],

[13]. It is important to point out that this assumption may

not hold true in the long term. Factors such as changes in

transportation infrastructure, residential location, fuel prices

and car ownership can significantly affect long term traffic

patterns [25], [26]. Supervised learning methods may not work

well in such cases. Techniques based on transfer learning

might prove useful in such scenarios [24].

III. TRAFFIC PREDICTION ALGORITHMS

We apply SVR to perform large scale prediction. We

briefly explain the algorithm in this section. We compare the

performance of SVR with ANN and exponential smoothing.

We also briefly discuss these algorithms in this section.

A. Support Vector Regression

SVR is a data driven prediction algorithm. It is commonly

employed for time series prediction [27]. With temporal

feature selection, the input feature vector x j ∈ R
n at time t j

for link si will be x j = [z(si, t j)...z(si, t j −msi
δt)]

T . The feature

vector x j contains current average speed of the road z(si, t j)
and msi

past speed values. Let y jk = z(si, t j +kδt) be the future

speed value at time t j + kδt . We aim to find the relationship

between y jk and x j. To this end, we use historical speed

data of si to train SVR. The training data contains r 2-tuples

{(x j,y jk)}
r
j=1. We use SVR to infer non-linear relationships

between x j and y jk, to find fk in (2) for kth prediction horizon.

We briefly explain the SVR algorithm here. More rigorous

treatment of the topic can be found in [22], [23]. Let us

consider the formulation of SVR called ε-SVR, which is



formulated as [22]:

minimize
1

2
w ·w+C

r

∑
j=1

(ξ j + ξ ∗
j ),

subject to







y jk −w ·x j − b ≤ ε + ξ j

w ·x j + b− y jk ≤ ε + ξ ∗
j

ξ j,ξ
∗
j ≥ 0,

(3)

where, w is the required hyperplane and ξ j,ξ
∗
j are the slack

variables. It uses so called insensitive loss function which

imposes cost C on training points having deviation of more

than | ε |. It is often hard to predefine the exact value

of error bound ε [28]. This problem can be avoided by

adopting a variant of SVR called ν-SVR [28]. Hence, we will

employ ν-SVR to perform speed prediction. SVR non-linearly

maps (not explicitly) the input speed data into some higher

dimensional feature space Φ [22], [28]. It then finds the

optimal hyperplane in that high dimensional feature space Φ.

The kernel trick helps SVR to avoid this explicit mapping in

Φ. Let us chose κ as the desired kernel function. Then we

can replace dot products in the feature space by the relation

κ(xi,x j) = Φ(xi) ·Φ(x j) [22]. The function fk will be [22],

[28]:

fk(x) =
r

∑
j=1

(α j −α∗
j )κ(x,x j)+ b, (4)

where α j , α∗
j are the Lagrange multipliers. We employ (4), to

train SVR and perform speed prediction. The matlab package

LIBSVM is used for SVR implementation [29].

For this study, we consider Radial Basis Function

(RBF) kernel. It is highly effective in mapping non-linear

relationships [30]. Consequently, it is commonly employed for

performing traffic prediction [3], [4].

B. Artificial Neural Networks

Artificial Neural Networks (ANN) can perform time series

prediction with high accuracy [31]. Consequently, they have

been extensively used for traffic parameter forecasting in

different configurations [2], [4], [6], [8], [10], [11], [16],

[32]. Multi-layer feed forward neural networks is the most

commonly employed configuration for traffic prediction [4],

[16], [32].

We apply feed forward neural network for large scale

speed prediction of the network G across multiple prediction

horizons. We consider temporal window for feature selection

for ANN. We apply back-propagation to train ANN. We train

separate neural networks for different links and prediction

horizons.

C. Exponential Smoothing

Exponential smoothing is a commonly employed method

to perform time series prediction. It is also applied for traffic

parameter prediction [33]. The prediction is computed as a

weighted average of past data points. Specifically, weights of

past values decay exponentially with decay factor χk for kth

prediction horizon.

TABLE I: Categories of road segments

Category CATA CATB CATC Slip Roads Other

No. of links 703 2818 841 592 70
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Fig. 1: Performance comparison of prediction algorithms for

different prediction horizons.

IV. DATA SET AND PERFORMANCE MEASURES

In this section, we explain the data set for performance

evaluation. We consider a large sub-network in Singapore,

which covers region from Outram park to Changi. The

road network G consists of a diverse set of roads having

different lane count, speed limits and capacities. It includes

three expressways, which are East Coast Parkway, Pan

Island Expressway and Kallang-Paya Lebar Expressway.

The network also includes areas carrying significant traffic

volumes, such as Changi Airport and the central business

district.

Overall, the network G consists of p = 5024 road segments.

These road segments are grouped into different categories by

Land Transport Authority (LTA) of Singapore. Table I shows

the number of road segments for each category in G. In this

study, we consider speed data provided by LTA. The data set

has an averaging interval of 5 minutes. We choose speed data

from the months of March and April, 2011.

We now explain the performance measures used to assess

prediction accuracy of the proposed algorithms. We calculate

Absolute Percentage Error (APE) for si at time t j for kth

prediction horizon e(si,k, t j) as follows:

e(si,k, t j) =
| ẑk(si, t j)− z(si, t j) |

z(si, t j)
. (5)

Mean Absolute Percentage Error (MAPE) for link si and kth

prediction horizon es(si,k), is defined as:

es(si,k) =
1

d

d

∑
j=1

| ẑk(si, t j)− z(si, t j) |

z(si, t j)
, (6)

where d is the number of test samples and ẑk(si, t j) is the

predicted speed value at time t j for kth prediction horizon.

MAPE is a commonly used metric to assess the accuracy of

traffic prediction algorithms [3], [4], [7], [14]. For the whole

network G containing p links, we calculate MAPE eG(k) for

kth prediction horizon as:

eG(k) =
1

p

p

∑
i=1

es(si,k). (7)

We calculate Standard Deviation (SD) of error σk for each



prediction horizon as:

σk =

√

1

p

p

∑
i=1

(

es(si,k)− eG(k)
)2
. (8)

We use these measures to assess the performance of SVR,

ANN and exponential smoothing models for large-scale

prediction.

V. COMPARISON OF DIFFERENT PREDICTION

ALGORITHMS

In this section, we compare the prediction performance

of SVR with ANN and exponential smoothing. Fig. 1

provides the network level comparison of performance of the

algorithms. Fig. 2 shows the distribution of prediction error

across different horizons. Fig. 3 and 4 show the performance

of proposed methods for different road categories.

SVR has the smallest MAPE across different prediction

horizons for the whole network G (see Fig 1a). It also

has the smallest SD of error between different links (see

Fig. 1b). ANN provides slightly larger error as compared to

SVR. This can be attributed to the problem of local minima

associated with ANN training algorithms [34]. Overall,

prediction performance for all three algorithms degrades as

prediction horizon increases. Performance degradation tends

to flatten out especially for data driven methods (SVR, ANN)

for large prediction horizons (see Fig. 1a, 3).

Error distribution plots (see Fig. 2) show variations in

prediction error across the road network. We observe that

distribution of prediction error (MAPE) varies from one

prediction horizon to another. We also observe more than

one peak for each prediction horizon. This implies that

there might exist different groups of links with similar

prediction performance. Let us analyze the prediction behavior

of different road categories.

Fig. 3 and 4 show how prediction error and standard

deviation vary from one road category to another. SVR

still provides lowest MAPE (see Fig. 3) and error standard

deviation (Fig. 4, except CATA see Fig. 4a). As expected

expressways are relatively easy to predict as compared to

other road categories. This can be verified by comparing the

performance of the predictors for CATA roads (expressways,

see Fig. 3a and 4a) with other categories. However, we still

observe high SD of error within expressways, especially for

large prediction horizons. We find similar patterns for other

road categories. Overall SD of error within different road

categories is not that different from network wide SD (see Fig.

4 and 1b). We find that roads belonging to the same category

can still have dissimilar prediction performance.

Point estimation methods work well to evaluate and

compare prediction performance of different methods.

However, they provide little insight into the spatial distribution

of performance patterns. For instance, we fail to identify

which set of links provide worse prediction performance and

vice versa. Moreover, we cannot extract temporal performance

patterns across the network and for individual roads.

In the next section, we propose unsupervised learning

methods to analyze these trends.

VI. SPATIAL AND TEMPORAL PATTERNS IN

PREDICTION PERFORMANCE

In this section, we consider prediction data analysis

as a data-mining problem. For this purpose, we propose

unsupervised learning methods to find spatial and temporal

performance patterns in large-scale prediction. We analyze the

efficiency of proposed algorithms by applying them to the

prediction data of SVR.

Traffic prediction studies commonly employ measures such

as MAPE to evaluate the performance of algorithms [2]–[11],

[13], [14], [16]. These measures are inadequate to provide any

information about underlying spatial and temporal behavior of

prediction algorithms. If es(si,k) represents mean prediction

error observed for si, then MAPE eG(k) across the test network

G in more convenient form will be:

eG(k) =
1

pd

p

∑
i=1

d

∑
j=1

| ẑk(si, t j)− z(si, t j) |

z(si, t j)
. (9)

In (9), we obtain averaged out effect of errors across different

links and during different time periods. Consider a large

network G containing thousands of links and prediction

performed for multiple prediction horizons. The prediction

error of a particular link si at time t j might be different from

that at t
j
′ . It might vary from day to day or change during

different hours. Similarly, prediction performance between any

two links si and s j may also vary significantly. However, in

(9) all these trends are averaged out. We observed earlier

that prediction performance may not remain uniform across

large networks (see Fig. 1, 2, 3 and 4). We also observed

that point estimation methods provide little detail about these

spatial variations. Moreover, these measures do not give any

information about temporal performance variations.

The spatial and temporal patterns provide insight about

long-term and short-term predictability. Hence, they can be

highly useful for ITS applications like route guidance and

traffic management.

For analysis, we consider three components of (9), which

are space (si), time (t j) and prediction horizon (k). We perform

cluster analysis to obtain spatial prediction patterns. This will

help to find roads with overall similar performance across

different prediction horizons. To find temporal performance

patterns, we combine PCA with k-means clustering. Temporal

patterns help us to identify roads with variable and consistent

prediction performances during different time periods. We also

analyze daily and hourly performance patterns for individual

links by applying SOM.

A. Analysis of Spatial Prediction Patterns

In this section, we propose k-means clustering to find

spatial prediction patterns. The method creates different groups

(clusters) of road segments. We represent these clusters

by labels {ωi}
w
i=1. Each group (cluster) contains roads

that provide similar prediction performance across different

prediction horizons. To compare the links, we represent each

link si, by a vector esi
= [es(si,1)...es(si,k)]

T , where es(si,k)
is the MAPE for kth prediction horizon for si. The distance
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Fig. 2: Error distribution of algorithms for different prediction horizons.
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Fig. 3: Road category wise performance comparison.
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Fig. 4: Standard deviation of error within each road category.

measure ∆s(si,s j) between the links si and s j is defined as:

∆s(si,s j) =
√

(esi
− es j

)T (esi
− es j

). (10)

We apply unsupervised clustering method as no prior

knowledge about the groups of links {ωi}
w
i=1 is available.

Unsupervised learning approach creates clusters of links

depending on their predictability (mean prediction error).

We use k-means clustering to find the roads with similar

performance [35]. For k-means clustering we need to

specify the number of clusters w beforehand. However, this

information is not available for the network G. We require the

clusters to be composed of roads with similar performance.

Moreover, performance of different clusters should be different

from one another. This way, we expect to have a cluster

of roads with high prediction accuracy and vice versa. This

problem is usually referred as cluster validation [36], [37].

We consider commonly applied cluster validation

techniques such as Silhouette index [38], Hartigan index [39]

and homogeneity and separation index [36], [37] in this study.

Silhouette index Ψsil(si) for link si belonging to cluster ω j

is defined as:

Ψsil(si) =
β2(si,ω

′
j)−β1(si)

max
(

β1(si),β2(si,ω ′
j)
) , (11)

where β1(si) is the mean distance (in sense of (10)) of si with

other links in the cluster ω j. In (11), β2(si,ω
′
j) is the mean

distance of si with links in the nearest cluster ω ′
j. We chose

the clustering structure with the highest mean value ζsil(w)
such that:

ζsil(w) =
1

p
∑si∈G

Ψsil(si). (12)

Hartigan index ζhar(w) for data size N is calculated as [40]:

ζhar(w) = (N −w− 1)
Ω(w)−Ω(w+ 1)

Ω(w+ 1)
. (13)

It considers change in mean intra-cluster dispersion Ω(w) due

to change in the number of clusters w [39], [40]. Consider a

clustering structure with w clusters and {gi}
w
i=1 links in each

cluster. Intra-cluster dispersion for the structure will be:

Ω(w) =
w

∑
j=1

g j

∑
i=1

∆s(si,c j)
2
, (14)

where {ci}
w
i=1 are the cluster centroids.

We use these indices to select the optimal number of

clusters. To this end, we require that the indices agree upon

on a certain w∗. We will treat the corresponding clustering

structure {ωi}
w∗

i=1 as the best model for the network G.

B. Analysis of Temporal Prediction Patterns

In this section, we propose methods to infer variations in

prediction performance during different time intervals.

Prediction error for a certain set of links τi may not change

significantly during different times of the day and across



different days. For the other group τ j prediction performance

might vary significantly from one period to another. We refer

to these as consistent and inconsistent clusters respectively. We

combine PCA and k-means clustering to identify consistent

and inconsistent clusters.

We also analyze the temporal performance trends for

individual roads. For a given link si some days (hours) will

have similar performance patterns and vice versa. We apply

SOM to extract these trends.

We now explain our proposed methods to infer network

level and link level temporal prediction patterns.

1) Network level temporal prediction patterns: We consider

variations in prediction error of the links during different

days and hours to group them together. We use Principal

Component Analysis (PCA) to deduce these daily and hourly

performance patterns.

We define daily {d j(si) ∈ R
nd}

md

j=1 and hourly {hl(si) ∈

R
nh}

mh

l=1 performance patterns as follows. The vector

{d j(si)}
md
j=1 comprises the APE for all the time periods and

prediction horizons for that day { j}
md
j=1 for link si. The vector

{hl(si)}
mh

l=1 contains APE across all the days and prediction

horizons for the link si during the hour {l}
mh

l=1.

The daily variation matrix D(si) = [d1(si)...dmd
(si)] and

the hourly variation matrix H(si) = [h1(si)...hmh
(si)] contain

all such patterns for the link si. To quantify performance

variations within different days {d j(si)}
md
j=1 and hours

{hl(si)}
mh

l=1, we construct corresponding covariance matrices

Σd(si) and Σh(si). By centralizing {d j(si)}
md
j=1 and {hl(si)}

mh

l=1

about their means we obtain D′(si) and H′(si) respectively.

The covariance matrices Σd(si) and Σh(si) are calculated as

follows:

Σd(si) =
1

nd

D′(si)
T D′(si), (15)

Σh(si) =
1

nh

H′(si)
T H′(si). (16)

Eigenvalue decomposition of covariance matrices will yield:

Σd(si) = Ud(si)Λd(si)Ud(si)
T
, (17)

Σh(si) = Uh(si)Λh(si)Uh(si)
T
, (18)

where matrices {U j(si) = [ϕ j1(si)...ϕ jm j
(si)]} j∈{d,h} and

{Λ j(si)} j∈{d,h} contain the normalized eigenvectors and the

corresponding eigenvalues of {Σ j(si)} j∈{d,h} respectively. We

calculate Principal Components (PC) by rotating the data along

the direction of eigenvectors (direction of maximum variance)

of the covariance matrix [41]:

Pd(si) = D′(si)Ud(si), (19)

Ph(si) = H′(si)Uh(si). (20)

Each eigenvalue λ j(si) represents the amount of variance in the

data explained by the corresponding PC p j(si). For instance,

let us consider daily performance patterns. Strongly correlated

(pointing in the similar direction) error profiles {d j(si)}
md
j=1 for

link si imply that prediction errors across different days { j}
md
j=1

follow similar patterns. In this case, few PC fd(si) can cover

most of the variance in the daily error performance data D′(si)
of si [41]. If most days show independent behavior, then we

would require more PC f ′d(si) to explain same percentage of

variance in data.

The same goes for hourly error patterns. For a link si

with similar performance across different hours, we require

a small number of hourly PC fh(si). In case of large hourly

performance variations, we will need a large number of hourly

PC to explain the same amount of variance.

The number of PC { f j(si)} j∈{d,h} are chosen using a certain

threshold of total variance ησ (typically 80%) in the data [41].

We define following distance measure to compare consistency

in prediction performance of two links:

∆t(si,s j) =

√

(

fd(si)− fd(s j)
)2

+
(

fh(si)− fh(s j)
)2
. (21)

We find the clusters of consistent τ1 and inconsistent τ2

links by applying (21) and k-means clustering. Consistent

(inconsistent) links will have similar (variable) performance

patterns across days and during different hours.

2) Link level temporal prediction patterns: In the previous

subsection, we proposed a method to find consistent and

inconsistent links. In this section, we propose an algorithm

to cluster days/hours with similar performance for each road

segment si. The algorithm also conserves the topological

relation between the clusters. Topological relations are

considered in the sense of mean prediction performance of

different clusters [42]. To this end, we use Self Organizing

Maps (SOM). Self Organizing Maps belong to category of

neural networks that can perform unsupervised clustering. In

SOM, each cluster is represented by a neuron. Neurons are

organized in a grid pattern M. The weight {qρ}ρ∈M of the

neuron represents the center of the cluster ρ . We use Kohonen

rule [42] to find the optimal weights (cluster centers).

Consider a road segment si with prediction performance

matrix D(si). The matrix D(si) is composed of daily prediction

error profiles {d j(si)}
md
j=1 for md days. Let us represent each

day by index { j}
md
j=1. We aim to identify subset (cluster) of

days ρ ⊆ { j}
md
j=1 with similar performance patterns. Secondly,

we aim to find a 2-D grid M for clusters. In the grid, clusters

ρ ∈ M with similar behavior (daily prediction performance)

will be placed adjacent to each other. However, each daily

performance profile contains data for multiple prediction

horizons and time instances. It is hard to visualize the data

in such high dimensional representation. We apply SOM

to visualize and map daily performance patterns on a 2-D

clustering grid M [43].

We apply the same procedure to find different groups of

hourly patterns with similar prediction performance for each

road segment si. To this end, SOM performs clustering by

considering hourly profile matrix H(si) for each link si.

In this section, we have proposed unsupervised learning

methods to find spatial and temporal performance patterns.

In the next section, we apply these proposed performance

analysis methods to prediction data of SVR and provide

results.

VII. RESULTS AND DISCUSSION

Let us start with the spatial performance patterns. We

apply k-means clustering to find road segments with similar



TABLE II: Distribution of links in temporal clusters

Temporal Cluster Center Spatial Cluster (ω) Total

Cluster (τ) fd fh cluster 1 (ω1) cluster 2 (ω2) cluster 3 (ω4) cluster 4 (ω4) links

Cluster 1 (τ1) 5 6 735 610 125 30 1500

Cluster 2 (τ2) 13 12 66 2054 1176 228 3524

TABLE III: Performance for different spatial clusters

Cluster
Prediction Horizon

5 min 10 min 15 min 20 min 25 min 30 min 45 min 60 min

Cluster 1 (ω1) 2.69% 3.24% 3.66% 3.86% 4.05% 4.20% 4.61% 4.89%

Cluster 2 (ω2) 6.79% 9.16% 10.38% 10.54% 10.64% 10.72% 10.95% 11.14%

Cluster 3 (ω3) 11.06% 14.60% 15.90% 16.01% 16.05% 16.08% 16.18% 16.28%

Cluster 4 (ω4) 17.18% 23.04% 24.58% 24.81% 24.98% 25.10% 25.41% 25.62%

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

P
ro

p
o
rt

io
n
 o

f 
ro

a
d
 s

e
g
m

e
n
ts

MAPE (%age)

 

 

5 min prediction horizon

30 min prediction horizon

60 min prediction horizon

(a) Error distribution for cluster 1.
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(b) Error distribution for cluster 2.
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(c) Error distribution for cluster 3.
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(d) Error distribution for cluster 4.

Fig. 5: Error distribution for different clusters.
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Fig. 6: Properties of spatial clusters. In Fig. 6d, blue links (sb,sd ,sg) and red links (sa,sc,se,s f ,sh) correspond to spatial

clusters ω2 and ω3 respectively.

Fig. 7: Road segments belonging to different spatial clusters.

performance across the prediction horizons. We consider three

different validation indices to obtain the optimal number of

clusters for the test network. All three validation methods

yield 4 clusters as the optimal structure. Spatial distribution

of different clusters is shown in Fig. 7. Error distributions for

each cluster across different prediction horizons are shown in

Fig. 5.

The first cluster (ω1) consists of roads with high prediction

accuracy (see Table III). We refer to this group of links as

best performing cluster (cluster 1, ω1). Most of the roads in

the network (around 75%, see Fig. 6b) belong to clusters 2

(ω2) and 3 (ω3). These two clusters represent the performance

trends of majority of roads in the network. It is interesting

to note that combined prediction performance of these two

clusters (see Table III) is worse than mean prediction accuracy

of the whole network (see Fig. 1a). In this case, network wise

MAPE (see Fig. 1a) provides a slightly inflated depiction of

overall prediction accuracy. This is due to the high prediction



accuracy of best performing cluster. Finally, roads belonging to

cluster 4 (ω4) have the highest prediction error from each road

category (see Table III). The proposed prediction algorithm

performs poorly for this set of road segments. We refer to this

cluster as the worst performing cluster.

The spatial clusters also have some intuitive sense. For

instance, most of the expressways belong to best performing

cluster (around 80%, see Fig. 6c). However, a small group

of roads from other categories also belong to this cluster.

Interestingly, a small percentage of expressways also appear

in other clusters (see Fig. 6c). Some expressway sections even

appear in cluster 4 (ω4). The expressway sections belonging to

ω4 are mostly situated at busy exits. Naturally, it is relatively

hard to predict traffic on such sections. Moreover, a higher

ratio of CATC roads belong to cluster ω3, as compared to

roads in CATB (see Fig. 6c). Likewise, majority of CATD

and CATE roads (referred as others in Fig. 6c) also belong to

spatial cluster 3.

Overall, roads within each spatial cluster show similar

performance (see Fig. 5). Consequently, we find small SD of

error within each cluster across the prediction horizons (see

Fig. 6a). Behavior of worst performing cluster is an exception

in this case.

Spatial clusters can also provide useful information about

the relative predictability of different road segments. Consider

the intersection shown in Fig. 6d. It shows that roads carrying

inbound traffic may have different prediction performance as

compared to roads carrying outbound traffic. In this case, links

carrying traffic towards downtown area (sa,sc,s f ,sh) tend to

show degraded prediction performance (cluster ω3).

We apply PCA and k-means clustering to find temporal

performance patterns. We create two clusters for the roads

segments in this regard. We refer to these clusters as consistent

cluster (τ1) and inconsistent cluster (τ2). Table II summarizes

the properties of these two clusters. Prediction performance

of road segments in consistent cluster remains uniform across

days and during different hours. Links in the inconsistent

cluster have variable prediction performance during different

time periods.

We observe that roads with similar mean prediction

performance (see Fig. 6a) can still have different temporal

performance patterns (see Table II). All these spatial clusters

(1,2,3) have small intra-cluster SD (see Fig. 6a). Majority of

roads in spatial cluster 1 (best performing cluster) are part

of consistent cluster. However, a small proportion of roads

from best performing cluster are also part of inconsistent

cluster. We observe this trend in other spatial clusters as well.

Although majority of the links in spatial clusters 2 and 3

are part of inconsistent cluster. Still they both have a sizable

proportion of consistent links (see Table II). Even in the case

of worst performing cluster, a small subset of roads are part of

consistent cluster. These road segments report high prediction

error consistently during most of the time periods.

Temporal performance analysis shows that links with similar

overall prediction behavior can still have variable temporal

performance. To analyze such trends in details, we focus

on two specific links s1 and s2 in the network which have

the following properties. They both belong to the same road

category (CATA). Furthermore, both of them are from the

best performing cluster. However, road segment s1 is part of

consistent cluster and s2 is from inconsistent cluster. We apply

SOM to analyze variations in daily performance patterns of

these two links.

Fig. 8a and 8b show different properties of daily

performance patterns for the consistent link s1. In Fig. 8a,

we present the composition of each cluster for s1. The entry

within each hexagon denotes the number of days belonging to

that cluster. Fig. 8b shows relative similarity of each cluster

and its neighbors. For the consistent link, we find that most

of the days fall into four clusters (see Fig. 8a). SOM helps

us to conserve the topological relations of these clusters. The

four main clusters are positioned adjacent to each other (see

Fig. 8a). This implies that these clusters represent days with

similar daily performance patterns (see Fig. 8b). For this road

segment, we observe similar performance patterns for most of

the days (see Fig. 8b).

Now let us consider the behavior of inconsistent link s2. Fig.

8c and 8d show the prediction patterns for the road segment.

In this case, we find three major clusters. The rest of the

days are scattered into other small clusters (see Fig. 8c). Even

these three clusters represent quite different daily performance

patterns (see Fig. 8d).

Both of these links belong to same road category and spatial

cluster. However, their daily performance patterns are quite

different from each other. In case of consistent link, we observe

that prediction error patterns do not vary significantly on

daily basis. For inconsistent link, performance patterns vary

significantly, from one day to another.

ITS applications such as route guidance, which rely on

prediction data, are vulnerable to variations in prediction

error. Spatial and temporal performance patterns provide

insight into prediction behavior of different road segments.

Consider the example of a route guidance application. The

route guidance algorithm can assign large penalties to links

belonging to clusters with large prediction errors (e.g. clusters

ω3, ω4). For instance, with spatial clustering, we can see that

planning routes by incorporating expressway sections from

cluster ω4 (worst performing links) may not be a good idea.

The spatial clusters also serve another important purpose.

They provide information about the relative predictability of

different road segments in a particular network. Furthermore,

temporal clusters can help the algorithm to avoid inconsistent

links. These links might have low average prediction error.

However, their prediction performance may vary widely from

one time instance to another. Again, consider the example of

a route guidance algorithm. It would be better to plan a route

by incorporating roads with known performance patterns, even

if they have slightly larger prediction error than inconsistent

roads. The application can utilize these spatial and temporal

markers to provide routes which are more robust to variations

in prediction performance.

VIII. CONCLUSION

In this paper, we proposed unsupervised learning methods

to analyze spatial and temporal performance trends in SVR



(a) Distribution of different
clusters (road segment s1).

(b) Similarity between different
clusters (road segment s1).

(c) Distribution of different
clusters (road segment s2).

(d) Similarity between different
clusters (road segment s2).

Fig. 8: Daily performance patterns for road segments s1 (consistent link) and s2 (inconsistent link). Hexagons represent the

clusters and the entry within each hexagon denotes the number of days in that cluster. Color bar represents cluster similarity

in terms of Euclidean distance.

based large-scale prediction. We performed large-scale traffic

prediction for multiple prediction horizons with SVR. Our

analysis focused on a large and heterogeneous road network.

SVR produced better prediction accuracy in comparison

with other forecasting algorithms. We also observed that

traditional performance evaluation indices such as MAPE

fail to provide any insight about performance patterns. For

instance, traffic speeds on some roads were found to be

more predictable than others, and their performances remained

uniform across different time periods. For some other roads,

such patterns varied significantly across time. We proposed

unsupervised learning methods to infer these patterns in large

scale prediction. We used prediction data from SVR to assess

the efficiency of these unsupervised learning algorithms. These

methods provide a systematic approach for evaluating the

predictability and performance consistency of different road

segments. Such insights may be useful for ITS applications

that use prediction data to achieve time-sensitive objectives.

For future work, we propose to incorporate these

performance patterns into predictive route guidance

algorithms. This can lead to the development of route

recommendation algorithms which are more robust to

variations in the future state of road networks.
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