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Abstract

Internet advertisers (buyers) repeatedly procure
ad impressions from ad platforms (sellers) with
the aim to maximize total conversion (i.e. ad
value) while respecting both budget and return-on-
investment (ROI) constraints for efficient utiliza-
tion of limited monetary resources. Facing such a
constrained buyer who aims to learn her optimal
strategy to acquire impressions, we study from
a seller’s perspective how to learn and price ad
impressions through repeated posted price mech-
anisms to maximize revenue. For this two-sided
learning setup, we propose a learning algorithm
for the seller that utilizes an episodic binary-
search procedure to identify a revenue-optimal
selling price. We show that such a simple learn-
ing algorithm enjoys low seller regret when within
each episode, the budget and ROI constrained
buyer approximately best responds to the posted
price. We present simple yet natural buyer’s bid-
ding algorithms under which the buyer approxi-
mately best responds while satisfying budget and
ROI constraints, leading to a low regret for our
proposed seller pricing algorithm. The design of
our seller algorithm is motivated by the fact that
the seller’s revenue function admits a bell-shaped
structure when the buyer best responds to prices
under budget and ROI constraints, enabling our
seller algorithm to identify revenue-optimal sell-
ing prices efficiently.

1 INTRODUCTION

In online advertising markets, advertisers (i.e. buyers) run
ad campaigns by procuring ad impressions in selling mech-
anisms held by the platform (i.e. seller). To efficiently
utilize limited monetary resources that are allocated to a
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certain campaign, advertisers’ strategies in the procurement
process are typically subject to financial constraints, which
generally include budget and return-on-investment (ROI)
constraints. Budget constraints primarily reflect advertisers’
monetary limits due to organizational planning, whereas
ROI constraints enforces the desired performance/return on
the amount of capital spent Kireyev et al. (2016); Golrezaei
et al. (2018); Balseiro et al. (2019b). The presence of such
financial constraints, along with the increasing availability
of real time data, motivates buyers’ deployment of complex
algorithms to procure impressions. Such financial constraint
and algorithm driven buyer behavior introduces significant
challenges to sellers’ design of selling mechanisms, primar-
ily due to the fact that buyer algorithms adapt quickly and
constantly to data generated by buyer-seller interactions,
and also sellers’ lack of information on buyers’ model prim-
itives such as target ROI, budget, buyer algorithm, etc. In
this work, we address the following question:

From the perspective of a seller (e.g. ad platform), what
is an optimal selling strategy against a buyer who adopts
value-maximizing algorithms under both budget and ROI
constraints?

We study the setting where a seller repeatedly sells items
to a single budget and ROI constrained buyer through a
posted price mechanism. This single-buyer setup is pri-
marily motivated by ad platforms’ targeting practices that
enable advertisers to target users who may be more inter-
ested in their ads, as such practices along with advertisers’
heterogeneous targeting criteria lead to a very small num-
ber of advertisers/buyers per ad impression, justifying our
single-buyer setup. Throughout the repeated mechanism,
the seller posts a price for an impression during each pe-
riod, and the buyer decides on whether to accept and pay
the posted price for the sold impression. Our key focus
lies in the practical two-sided learning setup where buyers
adopt learning algorithms under both budget and ROI con-
straints, and the seller sets prices algorithmically based on
past transactions. The key challenge for the seller’s problem
of interest is two-fold: the seller does not know the buyer pa-
rameters such as target ROI, budget or algorithm, and buyer
actions constantly adapt to the past buyer-seller algorithmic
interactions. The goal of this work is to design a revenue-
maximizing seller pricing strategy against algorthmic and
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financially constrained buyers in such a limited information
setting.

The main contribution of this work is that we propose a
simple seller algorithm that does not require explicitly learn-
ing buyer’s parameters nor reverse engineering the buyer’s
learning algorithms. We show that our algorithm is feasi-
ble in achieving high revenue under limited information by
exploiting a salient property of the seller revenue function
against financially-constrained buyers. In particular, we
summarize our contributions as followed:

Main contributions. We first characterize the seller rev-
enue function against a clairvoyant budget and ROI con-
strained buyer who always best responds to posted prices.
To begin with, we show that the buyer’s best response to a
posted price is a “threshold strategy”, i.e. the buyer accepts
the sold item if her valuation exceeds a certain threshold
that depends on the posted price. With this characterization
of buyer best response, we show that the seller revenue func-
tion against a best-responding clairvoyant buyer admits a
salient “bell-shaped” structure: as the seller increases prices,
the corresponding per-period seller revenue first monotoni-
cally increases and decreases. We argue that such a structure
is exploitable by the seller to extract revenue even without
knowing buyer model primitives such as value distribution,
budget rate, and target ROI.

We exploit this bell-shaped structure and design an episodic
binary search seller pricing algorithm. In each episode, the
algorithm sets a single price, and then moves on to the next
episode with an updated price based on a binary search
procedure w.r.t. the realized revenue of previous prices.
We also characterize general buyer-algorithm adaptiveness
properties that allow buyers to adapt quickly to prices in
seller episodes, and present regret analyses against buyer
algorithms that are adaptive to seller prices in the sense of
our defined adaptiveness properties. Moreover, we argue
that seller regret of our proposed algorithm is driven by the
agent (i.e. seller or buyer) who incurs a larger loss in terms
of learning error.

Finally, we analyze example buyer algorithms which satisfy
the aforementioned adaptiveness properties and aim to max-
imize total value under both budget and ROI constraints. In
particular, we consider clairvoyant buyers who best respond
in each period, as well as buyers who make decisions based
on machine-learned advice that take the form of value dis-
tribution estimates. For each of these buyers, we show that
both buyer and seller regret are sublinear.

1.1 Literature review

Mechanism design for budget and ROI constrained buy-
ers. One relevant line of research addresses the mecha-
nism design problem for budget or ROI constrained buyers.
As one of the pioneering works regarding mechanism for

financially constrained buyers, Laffont and Robert (1996)
derives the optimal mechanism for symmetric buyers and
public budget information. On the contrary, a more recent
paper Pai and Vohra (2014) studies the general multidimen-
sional mechanism design setting against buyers with private
budgets. Regarding ROI constrained buyers, Golrezaei et al.
(2018) shows that the optimal mechanism for symmetric
ROI-constrained buyers is either second-price auctions with
reduced reserve prices or subsidized second-price auctions.
The work also derives an optimal mechanism for asymmet-
ric ROI buyers. There is also a wide range of work that
study dynamic mechanism design for budget constrained
buyers, and we refer the reader to the survey Bergemann
and Said (2010) and references therein. There have also
been recent developments for designing auctions in a setup
called autobidding, where advertisers simultaneously par-
ticipate in parallel auction to maximize total value while
subject to a coupled ROI constraint across all auctions (see
e.g. Aggarwal et al. (2019); Deng et al. (2021); Balseiro
et al. (2021); Deng et al. (2022)). All aforementioned works
focus on the static mechanism design problem, whereas in
this paper we address the topic of designing repeated posted
price mechanisms to sell to both budget and ROI constrained
buyers.

Selling to strategic or learning buyers. Kleinberg and
Leighton (2003) studies the scenario where the seller sells
items through a repeated posted price mechanism to a sin-
gle truthful buyer who accepts the price if her valuation
is greater than the offered price. The work presents opti-
mal algorithms in the settings where the buyer’s valuations
are fixed, stochastic and adversarial, respectively. Amin
et al. (2013) also concerns selling through a posted price
mechanism, but to a strategic buyer who may choose not to
accept a price bellow her valuation (or accept a price above
her valuation). The work presents learning algorithms in
both the fixed valuation and stochastic valuation settings
under the assumption that discount their utilities over time.
Other related works include Golrezaei et al. (2020) which
studies the dynamic pricing problem for repeated contextual
second price auctions facing multiple strategic buyers. The
work proposes learning algorithms that are robust to buyers’
strategic behavior under various seller information struc-
tures and provides corresponding performance guarantees.
Golrezaei et al. (2019) relaxes several assumptions for one
of the settings in Golrezaei et al. (2020), and presents an
algorithm with improved performance guarantees. Finally,
Balseiro et al. (2019c) considers the dynamic mechanism
design problem against strategic buyers, and further identi-
fies a class of problems in which the optimal mechanism is
to simply repeat some static mechanism over time. The clos-
est previous work to this paper is Braverman et al. (2018),
where it studies the pricing problem against a single uncon-
strained quasi-linear buyer who adopts a certain class of
learning algorithms, which they refer to as “mean-based”
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algorithms (e.g. Follow the Perturbed Leader algorithm and
EXP3), the seller can extract the buyer’s entire surplus; see
Deng et al. (2019) for an extension of this work. We remark
that all works discussed here do not consider constrained
buyers, and therefore this paper distinguishes itself by study-
ing the pricing problem against buyers with both budget and
ROI constraints, which further allows us to characterize
special structures of seller revenue (see Section 3).

We refer readers to Appendix A for an extended literature
review.

2 PRELIMINARIES

Notation. Let R+ be all non-negative real numbers,
and R++ be all strictly positive real numbers. For inte-
ger N ∈ N, denote [N ] = {1, 2, . . . , N} and ∆N ={
p ∈ [0, 1]N :

∑
n∈[N ] pn = 1

}
be the N -dimensional

probability simplex. Finally, denote ∥·∥ as the Euclidean
norm.

Model setup: Consider a seller repeatedly selling items to
a buyer over T periods through a posted price mechanism:
in each period t, the seller posts a price dt for the item to
be sold, and the buyer makes a take it or leave it decision
zt ∈ {0, 1} based on her value vt of the item, where zt = 1
when the buyer takes the item at price dt, and 0 otherwise.

We assume the seller commits to a finite price set D =
{Dm}m∈[M ] where 1 ≥ D1 > · · · > DM > 0 from which
she chooses the posted prices {dt}t∈[T ], and we assume the
the buyer’s valuations are drawn independently each period
from a distribution over g = (g1 . . . gN ) ∈ ∆N (gn ∈ R++

for all n ∈ [N ]) over a finite support V = {Vn}n∈[N ] where
1 ≥ V1 > · · · > VN > 0 such that P(vt = Vn) = gn for
any period t ∈ [T ].

ROI and budget constrained buyers: The buyer aims to
maximize total acquired value over T periods, while subject
to an ROI constraint with the target ROI of γ ≥ 1 and a bud-
get constraint with budget rate ρ ∈ (0, 1).1 Mathematically,
using the shorthand notation d1:T for the sequence of prices
{dt}t∈[T ], the buyer’s hindsight optimization problem can
be written as followed

B-OPT(d1:T ) = maxz∈[0,1]T E
[∑

t∈[T ] vtzt

]
s.t. E

[∑
t∈[T ] (vt − γdt) zt

]
≥ 0

E
[∑

t∈[T ] dtzt

]
≤ ρT .

(1)

We remark that both budget and ROI constraints are studied
in expectation. Such “soft” constraints are useful in practice

1Note that in the literature another common buyer objective is
to optimize linear utility that takes the form

∑
t∈[T ](vt − αdt)zt

for some parameter α ≥ 0. We point out that all results in this
paper can be extended easily to such linear objectives.

due to the fact that real-world advertisers typically engage
in many different online advertising campaigns, so it is rea-
sonable to maintain these financial constraints in an average
sense. We note that such soft financial constraints are also
studied in mechanism design and online learning literature
such as Vaze (2018); Golrezaei et al. (2018).

We denote the optimal hindsight buyer decision sequence to
Equation (1) as {z∗t (d1:T )}t∈[T ]. When all prices are equal,
i.e. dt = d for all t, we use the shorthand notation B-OPT(d)
and {z∗t (d)}t∈[T ]. Note that optimal hindsight decisions
{z∗t (d1:T )}t∈[T ] may possibly be fractional, which can be
implemented by randomization.

The buyer’s target ROI γ and budget rate ρ are private to the
buyer and unknown to the seller. Also, both the seller and
the buyer do not know the valuation distribution g.

Seller’s benchmark revenue and regret.

The seller does not know the buyer’s model primitives,
namely the buyer’s valuation distribution g, target ROI γ
and budget rate ρ. Furthermore, the seller only observes the
buyer’s decision zt ∈ {0, 1}, and does not observe buyer
values. Under such information structure, we focus on non-
anticipative seller pricing strategies that post prices based
on historical data, i.e. in each period t, the decision zt can
only depend on {(dτ , zτ )}τ∈[t−1]. We evaluate the perfor-
mance of any sequence of pricing decision {dt}t∈[T ] ∈ DT

by benchmarking its realized revenue, namely
∑

t∈[T ] dtzt,
to the maximum revenue that could have been obtained if (i)
the seller had set a fixed price over all T periods and (ii) the
buyer makes optimal hindsight decisions given her ROI and
budget constraints. Mathematically, assume the seller fixes
price d ∈ D over all T periods, and the buyer’s optimal
decisions are {z∗t (d)}t∈[T ]. Then, the seller’s benchmark
revenue is maxd∈D E[d

∑
t∈[T ] z

∗
t (d)] and her regret can be

defined as follows

Regsell = max
d∈D

E

d ∑
t∈[T ]

z∗t (d)

−
∑
t∈[T ]

E [dtzt] , (2)

where the expectation is taken w.r.t. {vt}t∈[T ] and ran-
domness in the buyer’s strategy (and thus randomness in
{z∗t (d)}t∈[T ]).
Remark 1. The seller’s regret resembles that of an M -
arm multi-arm bandit (MAB) problem (see Lattimore and
Szepesvári (2020) for a detailed introduction), where we
can view each price d ∈ D as an arm and d · zt as the
reward by pulling arm m. Nevertheless, we point out that
our setting is more complex than the vanilla MAB setting as
the seller’s reward d · zt for setting price d during period t
not only depends on the seller algorithm which determines
prices based on historical observations , but also the buyer’s
algorithm to optimize Equation (1).

We point out that the benchmark revenue in the seller’s re-
gret of Equation (2) is strong, as it represents the maximum
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seller revenue when both the buyer and seller have complete
information and act optimally, i.e. if the seller knows every-
thing about the buyer, in each period she myopically posts a
revenue-maximizing price under best buyer response.

Our goal is to develop a seller pricing algorithm to minimize
regret when facing a buyer who optimizes Equation (1) via
running some online learning algorithm (to be discussed in
later sections).

3 SELLER’S REVENUE AND REGRET

In this section, we present a reformulation for the seller’s
benchmark revenue in the seller’s regret (Equation (2)), and
then further characterize special structures of this reformu-
lation which will later motivate the design of our pricing
algorithm.

3.1 Reformulating the seller’s benchmark revenue

Recall the seller’s benchmark revenue in Equation (2) which
depends on the buyer’s best response decision sequence over
the entire horizon T under a fixed price. To present our re-
formulation of this benchmark, we first show that for any
price d, although the buyer’s hindsight optimal decisions
{z∗t (d)}t∈[T ] may seemingly be interdependent across pe-
riods due to the coupling of budget and ROI constraints
over the entire horizon, the optimal buyer decision in each
period t simply requires the buyer to myopically make a
decision zt that maximizes single-period expected value
under “single-period budget and ROI constraints”, namely
E [(vt − γd) zt] ≥ 0 and E [dzt] ≤ ρ.

Formally, consider the following myopic buyer optimization
problem: for a given posted price d, let x ∈ [0, 1]N be
some vector whose nth entry xn denotes the probability
of accepting the price when the buyer’s realized value is
Vn. Then, the myopic buyer optimization problem can be
written as Equation (3) whose optimal solution is shown in
the following Lemma 1 (see proof in Appendix C.1).

U(d) = max
x∈[0,1]N

∑
n∈[N ]

gnVnxn

s.t.
∑

n∈[N ]

gn (Vn − γd)xn ≥ 0

d
∑

n∈[N ]

gnxn ≤ ρ .

(3)

Lemma 1. For any price d, the optimal solution to
Equation (3) is unique, and takes the form xd =
(1, 1, . . . q, 0, 0 . . . 0) ∈ [0, 1]N for some q ∈ (0, 1].

The special form of the optimal solution of Equation (3)
suggests a buyer strategy that accepts all items when buyer
value is beyond a certain threshold. We formalize such a
strategy in the following definition.

Definition 1 (Threshold strategy). For a given vector x
that takes the form x = (1, 1, . . . q, 0, 0 . . . 0) ∈ [0, 1]N

where q ∈ (0, 1] is the nth entry, we say a buyer adopts a
threshold strategy w.r.t. x if, regardless of the posted price,
she accepts the item when her value is V1 . . . Vn−1; accepts
w.p. q when her value is Vn; and rejects the item otherwise.

As an example, for N = 4 and some vector x =
(1, 1, 0.3, 0), the buyer adopts a threshold strategy w.r.t. x
if she accepts the item when her value is V1 or V2; accepts
w.p. 0.3 when her value is V3, and rejects when her value is
V4.

With Lemma 1 and the notion of threshold strategies in Def-
inition 1, we can formally define the buyer’s best response
to a given price d:

Definition 2 (Buyer best response). We say a buyer best re-
sponds to a posted price d if she adopts a threshold strategy
w.r.t. xd ∈ [0, 1]N which is the optimal solution to U(d)
(see Lemma 1).

Note that in order for to best respond to a posted price, the
buyer would need to know the value distribution g.

Our main result for this subsection is illustrated in the fol-
lowing theorem, which states that buyer’s hindsight optimal
decision sequence {z∗t (d)}t∈[T ] for B-OPT(d) in Equation
(1) simply requires the buyer to independently best respond
to the posted price in each period.

Proposition 2. Given a single price d posted across all
periods, the optimal buyer decision in each period t is to
best respond according to a threshold strategy w.r.t. xd

(Definition 2), where xd ∈ [0, 1]N is the unique optimal
threshold solution to U(d) (Equation (3)). Further, the
best response buyer decision induces a per-period expected
revenue

π(d) := d
∑

n∈[N ]

gnxd,n . (4)

Then, maxd∈D E
[
d
∑

t∈[T ] z
∗
t (d)

]
= T maxd∈D π(d) and

thus Regsell = T maxd∈D π(d)−
∑

t∈[T ] E [dtzt].

We refer readers to the proof in Appendix C.2.

3.2 Structure of Benchmark Seller Revenue

Here, we present a special underlying structure of the
seller revenue π(d) defined in Equation (4) which will mo-
tivate our pricing algorithm in the next Section 4. The
goal of this section is to develop efficient ways to identify
argmaxd∈D π(d) by avoiding exploring each possible price
in D. In the rest of the paper, we make the following assump-
tion to rule out trivial problem instances (e.g. cases when
the optimal solution xd corresponding to some d ∈ D has
all 0 entries or when one of the constraints are redundant):
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Assumption 1. For any d ∈ D, assume VN − γd < 0 <
V1 − γd and

∑
n∈[N ](Vn − γd)gn ̸= 0. Furthermore, as-

sume DM < ρ < D1.

To begin with, we categorize all prices d ∈ D based on
whether constraints are binding under the corresponding
optimal solution xd.

Definition 3. For price d let xd be the optimal threshold-
based solution to U(d) in Equation (3). Then we call d

• Non-binding, if under xd, both constraints are
non binding, i.e., d

∑
n∈[N ] gnxd,n < ρ and∑

n∈[N ] (Vn − γd) gnxd,n > 0;

• Budget binding if under xd, the budget constraints is
binding, i.e. d

∑
n∈[N ] gnxd,n = ρ and

∑
n∈[N ](Vn −

γd)gnxd,n > 0;

• ROI binding if under xd, the ROI constraint is
binding, i.e.

∑
n∈[N ](Vk − γd)gnxd,n = 0 and

d
∑

n∈[N ] gnxd,n ≤ ρ.

It is apparent that any price d ∈ D must belong to at least
one of these categories. Also, if a price is non-binding, it
cannot be budget binding or ROI binding.

Our main result of this subsection is the following Theorem
3, which states that as we traverse D in increasing price
order, prices are first non-binding and the revenue π(d)
increases in d; then prices become budget binding, where
revenue remains constant at π(d) = ρ; finally prices become
ROI binding, where π(d) decreases in d. The proof can be
found in Appendix C.3.

Theorem 3 (Bell-shaped Structure of the Revenue Function).
Suppose that Assumption 1 holds. Then, the following hold

1. For any non-binding prices d, d̃, if d < d̃ then π(d) <
π(d̃).

2. If d is budget binding, any price d̃ > d cannot be
non-binding, which means d̃ is budget binding or ROI
binding.

3. If d is ROI binding, then any d̃ > d must also be ROI
binding. Furthermore, π(d) > π(d̃).

We provide an illustration of Theorem 3 in Figure 1 that
depicts the “non-binding → budget binding → ROI binding”
transition phenomenon, as well as a corresponding revenue
“increase → plateau → decrease”, as we traverse prices in
increasing order. We note that for specific model primi-
tives g, γ, ρ, there may exist no budget binding prices (as
shown in right subfigure in Figure 1), meaning that there
are scenarios in which it is impossible for the buyer to ex-
tract the entire buyer budget. Nevertheless, this transition
phenomena suggests that we can efficiently identify the

maximizing revenue argmaxd∈D π(d) by utilizing a sim-
ple binary search approach. Hence, we utilize this structure
of π(d) to motivate our pricing algorithm.

4 PRICING ALGORITHM AGAINST AN
ROI AND BUDGET CONSTRAINED
BUYER

The main challenge the seller faces is her lack of knowl-
edge on the buyer’s model primitives, namely the buyer’s
valuation distribution g, target ROI γ and budget rate ρ.
Furthermore, the seller has limited information feedback as
she only observes whether the buyer accepted the price or
not, i.e., the seller only observes the outcome zt ∈ {0, 1}.
This lack of information makes it very difficult for the seller
to estimate the buyer’s model primitives. Nevertheless, we
propose a simple pricing algorithm that bypasses this lack of
knowledge via exploiting the price transition phenomenon
as characterized in Theorem 3 and Figure 1. We demon-
strate later in subsection 4.1 that this algorithm achieves
good performance when facing a general class of algorithms
that is adaptive to nonstationary environments.

Our proposed pricing algorithm consists of an exploration
phase and an exploitation phase. During the exploration
phase, the algorithm searches for a revenue maximizing
price argmaxd∈D π(d) through an episodic structure: the
seller initiates the first episode E1, and fixes the price chosen
in this episode D1 for E consecutive periods. At the end
of the episode (i.e. after E periods since the beginning of
the episode), the seller records the average per-period rev-
enue π̂(D1) =

D1

E

∑
t∈E1

zt, where zt ∈ {0, 1} indicates
whether the buyer takes the price at time t ∈ E1. The pro-
cess then repeats as the seller moves on to episodes E2, . . .
This exploration phase eventually terminates when the seller
has explored enough prices. The seller’s pricing decision
in each episode is governed by a binary search procedure
over the price set D, such that every price is chosen at most
once across all episodes, and the exploration phase will have
O(log(M)) episodes. Our pricing algorithm is detailed in
Algorithm 1.

We note that our proposed algorithm does not try to learn
the buyer’s model primitives. We further point out that
such a binary-search approach is a natural choice to identify
revenue-optimal prices in the simplest monopolistic pric-
ing setting under a typical unimodal assumption, 2 and one
may wonder whether this approach can have good perfor-
mances against a much more complex setting where the
buyer is ROI and budget constrained and aims to learn her
optimal bidding strategy. Surprisingly, in the next section
we are in fact able to show this simple approach achieves

2In monopolistic pricing, the revenue-optimal price p∗ is
charachterized by d∗ = argmaxd dF (d), where F is the cdf
of buyer valuations. A typical assumption is such that the function
dF (d) is unimodal.
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Figure 1: Seller revenue function bell-shape structure. Model primitives: number of unique buyer valuations N = 6,
valuation set V = (0.6, 0.5, 0.4, 0.3, 0.2, 0.1), valuation distribution g = (0.1, 0.1, 0.2, 0.1, 0.2, 0.3), seller price set
D = (0.5, 0.48 . . . 0.1), buyer budget rate ρ = 0.2. The left and right subfigures correspond to target ROI γ = 1.3 and 1.7
respectively. In both cases, prices transition from non-binding to budget binding, and finally to ROI binnding. Revenue π(d)
increases as in d when prices are non-binding, decreases in d when prices are ROI binding, and remains at ρ when prices are
budget binding. Note that when γ = 1.7, there are no budget binding prices.

good performances against buyers who are adaptive to price
changes.

Algorithm 1 Episodic Binary Search
Input: Exploration episode length E.
1: Initialize iteration index iter = 1.

Exploration episodes:
2: Set D1 for E consecutive periods, and record per-period rev-

enue π̂ (D1). Then set DM for E consecutive periods, and
record average per-period revenue π̂ (DM ).

3: Set m∗ ← argmaxm∈{1,M} π̂ (Dm) L = 1, R = M ,
med = ⌊ L+R

2
⌋.

4: while L < R do
5: iter← iter + 1.
6: if per-period revenue π̂ (Dk) is not recorded for k =

med,med + 1 then
7: Set price Dk for E consecutive periods and record

per-period revenue π̂ (Dk) for k = med,med + 1
8: end if
9: if π̂ (Dmed) < π̂ (Dmed+1) then

10: Set m∗ ← argmaxm∈{m∗,med+1} π̂ (Dm), L ←
med + 1, med← ⌊ L+R

2
⌋

11: else
12: Set m∗ ← argmaxm∈{m∗,med} π̂ (Dm), R ←

med− 1, med← ⌊ L+R
2
⌋

13: end if
14: end while

Exploitation episode:
15: Set price Dm∗ for the remaining periods.

For notation convenience, we denote Eh as the collection of
periods in episode h. Finally, we remark that the exploration
episode length E is deterministic and depends on the total
number of periods T .

4.1 Regret Analysis of Pricing Algorithm

In this section, we provide theoretical guarantees for our
proposed pricing algorithm against buyer algorithms whose

induced decisions approximate single-round best responses
(see Definition 2) in the average sense. We formally define
algorithms with such properties as follows:

Definition 4 (ξ-Adaptive Buyer Algorithms). We say a
buyer algorithm is ξ-adaptive to seller algorithm 1 for some
ξ ∈ (0, 1) if the induced decisions {zt}t∈[T ] in any explo-
ration or exploitation episode Eh satisfies

∣∣∣∣∣Dh

|Eh|
∑
t∈Eh

zt − π(Dh)

∣∣∣∣∣ ≤ ϕ(|Eh|)
|Eh|

(5)

with probability (w.p.) at least 1 − 1/T for some increas-
ing error function ϕ : R+ → R+ and ϕ(x) = O(x1−ξ).
Here Dh is the price set in episode h, and π(·) is the per-
period revenue function under buyer best response defined
in Equation (4).

The term
∣∣∣ Dh

|Eh|
∑

t∈Eh
zt − π(Dh)

∣∣∣ is the seller’s average
revenue loss, relative to the revenue from optimal buyers,
over a certain period with a fixed price Dh. Alternatively,
the term can be viewed as the buyer’s deviation from best
responding since π(Dh)

Dh
=
∑

n∈[N ] gnxDh,n is the optimal
probability with which the buyer should take price Dh.

The main result of this subsection is presented in Theorem
4, which characterizes the performance of our pricing algo-
rithm against any ξ-adaptive buyer algorithm. The proof of
Theorem 4 can be found in Appendix D.1.

Theorem 4 (Pricing against ξ-adaptive buyers). Consider
the seller runs Algorithm 1 against an ξ-adaptive buyer
algorithm (Definition 4). Fix ϵ ∈ (0, ξ) independent of T .
Then by setting exploration episode length E = T 1−ξ+ϵ in
seller algorithm 1, for large enough T under Assumption 1
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the seller’s regret is bounded as

Regsell ≤2 (⌊log2(M)⌋+ 1) · T 1−ξ+ϵ + ϕ (T )

+ (⌊log2(M)⌋+ 1)
2
/2 ,

(6)

where ϕ is the error function defined Equation (5).

The first term T 1−ξ+ϵ in the seller’s regret (see Equation (2))
characterizes the number of periods required for the buyer’s
algorithm to approximate the best-responding decisions in
each episode facing a fixed price; the second term ϕ (T )
represents the buyer’s deviation from the best response. Fi-
nally, we point out that although in Theorem 6 we set the
exploration episode length to be E = T 1−ξ+ϵ, the seller
does not need to know the exact value of ξ as a lower bound
would be sufficient: if the seller knows some lower bound
for ξ, say ξ′ < ξ, she can set E = T 1−ξ′ , and the final
seller regret would become Regsell ≤ 2 (⌊log2(M)⌋+ 1) ·
T 1−ξ′ + ϕ (T ) + (⌊log2(M)⌋+ 1)

2
/2 for large enough T .

Another interesting observation for the seller regret is that
its dependence on the price set dimension M is logarithmic,
meaning that our Algorithm 1 is robust w.r.t. the size of
the seller’s decision set. In fact, later in Section 6, we
discuss that this nice logarithmic dependence on M allows
us to easily handle continuous price sets without causing
decay in seller performance by using a simple discretization
approach.

5 EXAMPLE OF ADAPTIVE AND
BUYER-REGRET MINIMIZING
ALGORITHMS

In this section, we present simple examples of buyer algo-
rithms that are adaptive in the sense of Definition 4, and
also aim to satisfy budget and ROI constraints (Equation
(1)) while attaining low buyer regret, where the regret of the
buyer is defined as

Regbuy = B-OPT(d1:T )−
∑
t∈[T ]

E [vtzt] . (7)

Here {zt}t∈[T ] is the sequence of buyer binary decisions
produced by the buyer algorithm. Also recall B-OPT is the
buyer’s optimal hindsight total value described in Equation
(1). In the following subsections, we consider a clairvoyant
buyer who best responds in each period as well as a buyer
who possess machine-learned (ML) advice with which she
uses to make decisions. We then further characterize seller
regret of our proposed Algorithm 1 against such buyers.

5.1 Best-responding buyer

As a warm-up buyer example, we first consider a clairvoyant
buyer who knows her value distribution g, which means the
buyer has nothing to learn from the data and thus can best

respond in the sense of Definition 2 during each period
to maximize value under both budget and ROI constraints
(Equation (1). We show in the following lemma that best
responding is adaptive (see proof in Appendix E.1).
Lemma 5 (Best-responding is 1/2-adaptive). There exists
some T0 ∈ N such that for all T > T0, best responding is
1
2 -adaptive (Definition 4).

Combining Lemma 5 and Theorem 4, we present the re-
gret of Algorithm 1 against a best responding buyer in the
following theorem whose proof can be found in Appendix
E.2
Theorem 6 (Seller’s regret against best responding buyer).
Assume the buyer always best responds, then for a fixed ϵ ∈
(0, 12 ) independent of T , if the seller sets prices with episode
length E = T

1
2+ϵ using Algorithm 1, then for large enough

T , the seller’s regret is bounded as Regsell ≤ O(T
1
2+ϵ). On

the other hand, the buyer also incurs O(T
1
2+ϵ) regret, and

both budget and ROI constraints are satisfied.

In this clairvoyant buyer setting, since the buyer is not learn-
ing and always best responds, the T

1
2 constituent in the

seller regret is due to learning error from the seller. In the
next section, we introduce a buyer who is non-clairvoyant
and also constantly learns how to respond, and further dis-
cuss how buyer and seller learning errors simultaneously
impact seller regret.

5.2 Buyer with machine-learned (ML) advice

In a real world scenario, buyers typically do not know their
value distribution; e.g. buyers may be unaware of the likeli-
hood of conversion of their ad impressions. However, the
emergence of data-driven tools for online advertising plat-
forms have provided buyers with additional analytics, or
so-called ML advice, to help buyers estimate ad conver-
sion. In this subsection, we consider a buyer who possesses
ML advice in the form of distribution estimates of g with
which she uses to approximate best responses against posted
prices. Formally, we characterize such ML-advice-driven
buyer responses as followed:
Definition 5 (Approximate best response with ML advice.).
Assume in each period t, the buyer obtains ML advice
ĝt ∈ ∆N that only depends on historical data {vτ}τ∈[t]

s.t. ∥ĝt − g∥ < ℓt where ℓt is some estimation error. Then,
the buyer solves for the optimal solution x̂t in Equation
(3) via replacing the true distribution g with ĝt, and then
adopts a threshold strategy w.r.t. x̂t (see Definition 1).

We remark that ML advice in the form of distributional esti-
mates is very common. For model-based approaches, ML
algorithms assume distributions take a certain parametric
form and then uses data to estimate unknown distribution pa-
rameters; see e.g. Eliason (1993) for an intro on maximum
likelihood estimation. For more general non-parametric ap-
proaches, ML advice concerns using empirical estimates (or
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so-called histogram estimates), which we will later discuss
in Theorem 8.

The following lemma relates ML advice driven approximate
responses to our notion of buyer adaptivity in Definition 4,
with which we are able to quantify seller regret in light of
Theorem 4. The detailed proof can be found in Appendix
E.3
Theorem 7 (Seller regret against approximate best respond-
ing buyer with ML advice). Assume the buyer approximate
best responds with ML advice (Definition 5) and there exists
some L ∈ (0, 1) s.t. in each exploration or exploitation
episode h of Algorithm 1 the estimation errors, denoted
by ℓt’s, satisfy limt→∞ ℓt = 0 and

∑
t∈Eh

ℓt ≤ ϕ̃(|Eh|)
for some increasing function ϕ̃ : R+ → R+ and ϕ̃(x) ≤
O(x1−L). Then this buyer algorithm is ξ-adaptive for
ξ = min{ 1

2 , L}. Further, by setting exploration episode
length E = T 1−ξ+ϵ for some ϵ ∈ (0, ξ) independent
of T , the seller regret is exactly that in Equation (6) of
Theorem 4 for large enough T . On the buyer side, we
have Regbuy ≤ O(T 1−ξ) and the induced buyer decisions
{zt}t∈[T ] satisfy

1

T
E

∑
t∈[T ]

(vt − γdt) zt

 ≥ −Θ(T−L)

and

1

T
E

∑
t∈[T ]

dtzt

 ≤ ρ+Θ(T−L) .

We remark that best responding buyers considered in Section
5.1 can be viewed as a special case of buyers with ML
advice where the advice is perfect, i.e. ℓt = 0 for all t
so ϕ̃(x) ≡ 0 and consequently L = 1. This recovers our
results in Theorem 6.

Here, we also quickly discuss the aggregate impact of buyer
and seller learning error on the seller regret of our pro-
posed Algorithm 1. In particular, the constituent T 1−ξ =
T 1−min{ 1

2 ,L} in the seller regret arises from learning errors
of both the buyer and the seller. We can view the seller’s
learning rate to be in the order of t−

1
2 , and the buyer learn-

ing rate to be of order t−L, and thus we see that the seller
regret is governed by the agent that learns at a slower rate:
if the buyer is learning more slowly, i.e. L < 1

2 , then the
seller regret is driven by the buyer learning loss; a similar
argument applies for the case when the buyer learns more
quickly.

To conclude this section, we present a concrete example for
buyers with ML advice: consider the simple ML advice that
is an empirical estimate of the buyer’s value distribution:

ĝt =
1

t
· (
∑
τ∈[t]

I{vτ = V 1}, . . . ,
∑
τ∈[t]

I{vτ = V N}) . (8)

Then, both the buyer and seller regret are characterized in
the following theorem (see proof in Appendix E.4).

Theorem 8 (Seller regret against approximate best respond-
ing buyer with empirical distribution estimates). When the
buyer approximate best responds with ML advice in the form
of empirical estimates as defined in Equation (8), Theorem
7 holds for L = ξ = 1

2 w.p. at least 1− 1/T .

6 ADDITIONAL DISCUSSIONS

Continuous price set. We remark that our main results
in this paper, specifically the analyses of Algorithm 1 and
the corresponding seller regret, can be easily extended to
handle continuous seller price sets, as the seller regret in
Theorem 4 only depends logarithmically on M which we
recall to be the size of a discrete price set. Assuming the
price decision set is [0, 1], the approach that the seller can
take is to discretize the decision set into D = { 1

T ,
2
T . . . 1}

with size |D| = T . Recall π(d) defined in Equation (4)
is the expected per-period seller revenue under buyer best
response, and define d∗ = argmaxd∈[0,1] π(d) to be the
optimal price w.r.t. the continuous set, such that the seller
regret is now Regsell = T · π(d∗) −

∑
t∈[T ] E [dtzt] (see

Proposition 2). Then, for a price d̃ ∈ D in the discretized
set D that is close to d∗ such that |d̃ − d∗| < 1

T , similar
to our proof in Theorem 7 we can show that the optimal
solutions xd and xd̃ to the per-period buyer optimization
problem U(d) and U(d̃) (see Equation (1)), respectively,
are also close to one another. Further, we can show that
π(d∗)− π(d̃) ≤ O( 1

T ). Therefore, via running Algorithm
1 w.r.t. the discretized price set D, our seller regret when
facing a ξ-adaptive buyer (Definition 4) can be bounded as

Regsell = T max
d∈[0,1]

π(d)−
∑
t∈[T ]

E [dtzt]

= T (π(d∗)−max
d∈D

π(d))︸ ︷︷ ︸
discretization error

+T max
d∈D

π(d)−
∑
t∈[T ]

E [dtzt]

≤ T (π(d∗)− π(d̃)) + T max
d∈D

π(d)−
∑
t∈[T ]

E [dtzt]

≤ O(1) + T max
d∈D

π(d)−
∑
t∈[T ]

E [dtzt]

≤ O(1) +O(log(T )T 1−ξ+ϵ + ϕ(T )) ,

where the final inequality follows from the seller regret
(Equation (6)) in Theorem 4 by setting the price set size
M = T . That being said, the discretization error introduced
to the seller regret is only in the order of O(1), and this is
due to the the fact that the bell-shape structure of seller’s
revenue (Theorem 3) along with our seller algorithm yields
a seller regret that is logarthmic in the discrete price set size.

Ethics of buyer-seller interactions. As modern online ad
platforms run selling mechanisms to sell ad impressions,
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they also offer services for buyers to help procure ad impres-
sions on their behalf. This raises potential ethical concerns
regarding the issue of platforms controlling both the buyer
algorithms and auction/pricing protocol. For example, the
platform can sets high prices and simultaneously run buyer
algorithms that would accept such prices, leading to large
platform revenue margins while enforcing high costs to
buyers. Nevertheless, in reality, procurement (on behalf of
buyers) and pricing are either conducted by different and in-
dependent entities, or two non-collusive parties of the same
entity where collaboration and any type of information flow
that encourages collusion is prohibited. Our main goal of
this paper is to shed light on the possible behavior and dy-
namics for online advertising markets under real financial
considerations, and we believe that preventing such collu-
sive behavior between buyer-seller interactions is a future
research direction of practical and ethical importance.

Other future directions. One natural future research direc-
tion that is of both theoretical and practical interest involves
designing pricing algorithms when facing multiple finan-
cially constrained buyers. The multi-buyer analogue to our
single-buyer posted price setup in this work is to set a single
reserve price in each period over time where constrained
buyers compete in a second-price auction (see e.g. setup in
Golrezaei et al. (2019) for non-constrained buyers). The key
challenge lies in the fact that in this multi-buyer setup we
no longer have the salient bell-shape structure in the seller
revenue function, and more importantly buyer algorithmic
interactions introduce significant difficulties to the analyses
of seller regret. Similar challenges that arise from selling to
multiple learning buyers have also been discussed (but not
resolved) in related works such as Braverman et al. (2018);
Deng et al. (2019).
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Appendices for

Pricing against a Budget and ROI Constrained Buyer

A EXTENDED LITERATURE REVIEW

As the most closely related works have been discussed in the introduction section, here we only further discuss broader
related works.

Other related work in online resource allocation There has been extensive research on online resource allocation
with budget/capacity constraints (see e.g. Kleinberg (2005); Devanur and Hayes (2009); Agrawal et al. (2016)) and here
we briefly discuss those that are the most relevant.3 Zhou et al. (2008) studies the budget-constrained bidding problem
for sponsored search in an adversarial setting and present an algorithm with competitive ratio that depends on upper and
lower bounds on the value-to-cost ratios; Babaioff et al. (2007); Arlotto and Gurvich (2019) study variants of the knapsack
and secretary problems under the random order arrival model and stochastic arrival model, respectively, both presenting
near optimal algorithms in their respective settings. Our work differs from this line of research as we incorporate an ROI
constraint while also considering the problem of how to price against budget and ROI constrained buyers. Finally, Agrawal
et al. (2014) utilizes a primal-dual framework to study online linear programming (LP) with packing constraints, where
the positive-valued constraint matrix is revealed column by column (each column corresponds to a highest competing bid
dt) along with the corresponding objective coefficient (corresponding to utility vt − αdt). Their algorithm determines the
decision variable corresponding to the arriving column based on the dual variables of past revealed columns.

Online bidding in repeated auctions under feedback constraints Other than budget capacities and ROI targets,
buyers are also typically constrained in terms of the amount information available as they participate in auctions. For
example, Balseiro et al. (2019a) studies bidding problem in first price auctions under different feedback structures where
an unconstrained quasi-linear buyer only observes whether or not she wins the auction, and Han et al. (2020b,a) study a
similar problem where the buyer also gets to observe the highest competing bid if she did not win the auction. As another
related work, Weed et al. (2016) studies the bidding problem where the buyer does not know her valuation before submitting
her bid, and only observes her valuation if she wins the auction. The work considers the stochastic and adversarial highest
competing bid settings, and presents algorithms that build on the UCB and EXP3 algorithms, respectively.

Online optimization with covering constraints The buyer’s ROI constraint takes the form of a long-term covering
constraint. The related problem of optimization under online covering constraints have been studied in Alon et al. (2003);
Azar et al. (2013, 2014). However, the setting in these works differ from ours: Instead of making irrevocable online decisions,
these works focus on updating a decision vector upon the arrival of a covering constraint each period such that this constraint
is satisfied. In other words, they consider the decision problem where covering constraints are satisfied in each period, while
our buyers of interest only need to satisfy the covering (ROI) constraint in the long run. Another key difference is that in
these works the covering constraints are all positive, which means these constraints can be easily satisfied (per period) by
increasing each entry of the decision vector. On the contrary, in our problem the ROI balance per period (vt − γdt)zt may
be negative, and hence makes constraint satisfaction more difficult.

Autobidding. This paper is also related to a recent line of work that studies so-called “autobidders” who simultaneously
participate in parallel auctions with the aim to maximize total value subject to a global ROI and budget constraint, which
says that total value accrued across auctions is no less than total spend times some multiple (i.e. the target ROI), and the
total spend is less than a global budget. Aggarwal et al. (2019) has first formulated the optimization problem for autobidders,
and presented optimal bidding strategies for such bidders when all parallel auctions are truthful. Deng et al. (2021); Balseiro
et al. (2021) study the price of anarchy when multiple autobidders bid in parallel auctions of classic formats such as VCG,
GSP and GFP. Deng et al. (2022) show auctioneers can set personalized reserve prices using predictions on bidder values
(i.e. machine-learned advice) to improve welfare guarantees for individual bidders.

3The buyer’s online bidding problem can be viewed as an online resource allocation problem. However, a key difference is that in
bidding, the buyer does not observe the highest competing bid dt (equivalently the amount of resource depleted) before making a decision;
as in the resource allocation problem, both the reward and resource depletion are revealed before decision making. Therefore, to apply a
resource allocation algorithm in the bidding problem, one must additionally impose some bidding mechanic that indirectly achieves the
desired allocation through constructing appropriate bid values.
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B ADDITIONAL DEFINITIONS

In this section, we introduce some additional definitions that will be used throughout the appendices.

Definition 6 (Threshold vectors). We say that an N -dimensional vector x ∈ RN is a threshold vector if it takes the
form of x = (1 . . . 1, q, 0 . . . 0), where the first J ∈ {0, . . . N} entries are 1’s, followed by some number q ∈ [0, 1), and
trailing with (N − J − 1)+ 0’s.4 Any threshold vector is uniquely characterized by its dimension N , as well as, a tuple
(J, q) ∈ {0, . . . N} × [0, 1), so we denote the vector as ψ(J, q). In the special case when J = N , take q = 0.

For any two vectors a, b ∈ Rn, let min{a, b} = (min{ai, bi})i∈[n] be the element-wise minimum. We write a ⪯ b if and
only if ai ≤ bi and a ⪰ b if and only if ai ≥ bi for all i ∈ [n].

C PROOFS FOR SECTION 3

C.1 Proof of Lemma 1

Here, we show a more detailed version of the lemma stated as followed:

Theorem 9 (Detailed version of Lemma 1). For a fixed price d, define

R = max
{
n ∈ [N ] :

∑
ℓ∈[n]

gℓ (Vℓ − γd) ≥ 0
}
, qR =

∑
k∈[R] gn (Vn − γd)

gR+1 · |VR+1 − γd|
,

B = max
{
n ∈ [N ] : d

∑
ℓ∈[n]

gℓ ≤ ρ
}
, and qB =

ρ− d
∑

k∈[B] gn

gB+1 · d
,

(9)

If we let xR = ψ(R, qR) and xB = ψ(B, qB) be two threshold vectors (see Definition 6), then xd = min {xR,xB} is the
unique optimal solution to U(d) in Equation (3). Furthermore, xd is also a threshold vector characterized by tuple (J, q)
where

J = min{R,B}, q = xd,J+1 = min {xB,J+1, xR,J+1} . (10)

Proof.

Our proof for Theorem 9 consists of 3 steps:

• Step 1. We show that xB is the unique optimal solution to the “budget constraint only” problem:

P-Budget = max
x∈[0,1]N

∑
n∈[N ]

gnVnxn s.t. d
∑

n∈[N ]

gnxn ≤ ρ , (11)

• Step 2. We show that xR is the unique optimal solution the “ROI constraint only” problem:

P-ROI = max
x∈[0,1]N

∑
n∈[N ]

gnVnxn s.t.
∑

n∈[N ]

gn (Vn − γd)xn ≥ 0 , (12)

• Step 3. We show that xd = min{xB,xR} is feasible to U(d). In other words, we show xd is feasible to both
P-Budget and P-ROI.

Step 1. We recognize that P-Budget is the linear program (LP) relaxation of a 0-1 knapsack problem, in which the
items’ “value-to-cost ratio”, namely gnVn

dgn
= Vn

d are ordered: V1

d > . . . VN

d since V1 > . . . VN > 0. Therefore, it is a well
known result that the unique optimal solution to P-Budget is exactly xB (a threshold vector) defined in the statement of
Theorem 9; see e.g. Dantzig (1957) for the optimal solution to the 0-1 knapsack LP relaxation.

4For the edge case of (1, . . . 1) ∈ RN , J = N and hence the number of trailing 0’s is (N − J − 1)+ = 0.
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Step 2. Let x̃ ∈ [0, 1]N be any optimal solution to P-ROI. Define κ = max{n ∈ [N ] : Vn ≥ γd} so that Vn ≥ γd for all
n ≤ κ. Then it is easy to see for any n = 1 . . . κ, we have x̃n = 1. This is because if there exists some j ≤ κ such that
x̃j < 1, then the solution x = (x̃1 . . . x̃j−1, 1, x̃j+1, . . . x̃N ) is feasible and yields a strictly larger objective than x̃:∑

n∈[N ]

gnVnxn −
∑

n∈[N ]

gnVnx̃n = Vj(1− x̃j) > 0 . (13)

Hence, the optimal solution to P-ROI takes the form of x̃ = (1 . . . 1︸ ︷︷ ︸
κ 1’s

, yκ+1, . . . yN ) ∈ [0, 1]N . Hence, we know that

ỹ := (yκ, . . . yN ) must satisfy

ỹ ∈ arg max
x∈[0,1]N−κ

N∑
k=κ+1

gnVnxn s.t.
N∑

k=κ+1

gn (γd− Vn)xn ≤ c̃ , (14)

where we defined c̃ =
∑

n∈[κ] gn (Vn − γd) > 0. Note that we have γd− Vn > 0 for all k = κ+ 1 . . . N , and hence the
optimization problem in Equation (14) is again an LP relaxation of the 0-1 knapsack problem. Thus similar to Step 1, we
again consider the “value-to-cost-ratios”: for any i, j ∈ {κ+ 1 . . . N}, we have

Vi > Vj ⇐⇒ giVi
gi (γd− Vi)

>
gjVj

gj (γd− Vj)
.

Hence the “value-to-cost-ratios” gnVn

gn(γd−Vn)
decreases in n for n ∈ {κ+ 1 . . . N}. Therefore, the optimal solution ỹ to the

0-1 knapsack LP relaxation in Equation (14) is again unique, and is a threshold vector (again see Dantzig (1957)). Hence,
the unique optimal solution to P-ROIis a threshold vector, and following Step 1., it is easy to see this unique optimal
solution is xR defined in the statement of Theorem 9.

Step 3. Since gnd > 0 for all n ∈ [N ] and xd = min{xB,xR} ⪯ xB, we can apply Lemma 10 (i) with an = gnd,
Z = xB and Y = xd, which yields

d
∑

n∈[N ]

gnxd,n ≤ d
∑

n∈[N ]

gnxB,n ≤ ρ ,

where the last inequality is due to the fact that xB is feasible to P-Budget. This implies xd is also feasible to P-Budget.

On the other hand, again define κ = max{n ∈ [N ] : Vn ≥ γd} so that Vn ≥ γd for all n ≤ κ. Then since xd =
min{xB,xR} ⪯ xR, and since gn (Vn − γd) > 0 for n = 1 . . . κ and gn (Vn − γd) < 0 for n = κ+ 1 . . . N , we can apply
Lemma 10 (ii) with bn = gn (Vn − γd), Z = xR and Y = xd, which shows

∑
n∈[N ]

gn (Vn − γd)xR,n
(i)

≥ 0
(ii)
=⇒

∑
n∈[N ]

gn (Vn − γd)xd,k ≥ 0 ,

where (i) follows from the fact that xR is feasible to P-ROI and (ii) follows from the first half of Lemma 10 (ii). Hence xd

is also feasible to P-ROI.

The rest of the proof is straightforward: P-Budget, P-ROI and U(d) have the same objectives, while each of P-Budget
and P-ROI has one less constraint than U(d), respectively. So P-Budget ≥ U(d) and P-ROI ≥ U(d). If xd = xB,
because from Step 3. we know xd is feasible to U(d), then P-Budget = U(d) and xd is the optimal solution to both
P-Budget and U(d). Similarly, when xd = xR, xd is the optimal solution to both P-ROI and U(d).

Finally, we argue xd is the unique optimal solution to U(d). Assume by contradiction there exists some other vector
x ∈ [0, 1]N that is an optimal solution to U(d) and xd ̸= x. Then, again if xd = xB, we know that P-Budget = U(d),
and because both xd,x achieve total value U(d), then both xd,x are optimal solutions to P-Budget, which contradicts
uniqueness of the optimal solution to P-Budget as argued in Step 1. Similarly, we can again arrive at a contradiction for
the case when xd = xR. Hence, the optimal solution to U(d) is unique.
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C.2 Proof of Proposition 2

The proof for this proposition consists of two steps. First, we show that the buyer’s optimal hindsight problem w.r.t. a single
price d, namely B-OPT(d) in Equation (1) is upper bounded by T · U(d), which is the single-period myopic optimization
problem denoted in Equation (3). Next, we show playing the threshold strategy w.r.t. xd ∈ [0, 1]N (i.e. the optimal solution
to U(d)) every period, gives the buyer a total value exactly T · U(d) while simultaneously satisfying both budget and ROI
constraints. Therefore playing the threshold strategy w.r.t. xd is the optimal value maximizing strategy to the buyer under a
fixed price across all periods.

Step 1. Recall the linear program (LP) in Equation (3) that denotes the buyer’s single-period myopic optimization problem.
It is easy to see the optimal value is bounded and the LP is feasible (consider the solution with all entries set to be 0). Then,
strong duality holds, and therefore for any d, there exists corresponding optimal dual variables (λ, µ) ∈ R2

+ s.t.

U(d) = max
x∈[0,1]N

∑
n∈[N ]

(gn(1 + λ)Vn − (γλ+ µ)d)xn + ρµ

=
∑

n∈[N ]

(gn(1 + λ)Vn − (γλ+ µ)d)+ + ρµ
(15)

On the other hand, when the sequence of posted prices stays constant at d, we have

B-OPT(d) ≤ max
z∈[0,1]T

∑
t∈[T ]

E [((1 + λ)vt − (γλ+ µ)d) zt] + Tρµ

≤
∑
t∈[T ]

E
[
((1 + λ)vt − (γλ+ µ)d)+

]
+ Tρµ

= T

 ∑
n∈[N ]

gn ((1 + λ)Vn − (γλ+ µ)d)+ + ρµ


= T · U(d)

(16)

Step 2. Let xd ∈ [0, 1]N be the optimal solution to U(d) in Equation (3). Then, the threshold strategy w.r.t xd (see
Definition 1) can be represented as

z∗t =
∑

n∈[N ]

xd,nI{vt = Vn} (17)

It is easy to see {z∗t }t∈[T ] is feasible to the buyer’s optimal hindsight problem B-OPT(d) because:

E

∑
t∈[T ]

(vt − γd) z∗t

 =
∑
t∈[T ]

E

(vt − γd)
∑

n∈[N ]

xd,nI{vt = Vn}


=

∑
t∈[T ]

∑
n∈[N ]

gn(Vn − γd)xd,n
(i)

≥ 0

(18)

and

E

∑
t∈[T ]

dz∗t

 = d
∑
t∈[T ]

E

 ∑
n∈[N ]

xd,nI{vt = Vn}


= T · d

∑
t∈[T ]

∑
n∈[N ]

gnxd,n

(ii)

≤ ρT

(19)
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where both (i) and (ii) hold because xd is feasible to U(d). Finally, the threshold strategy yields a total value exactly TU(d)
because

∑
t∈[T ]

E [vtz
∗
t ] =

∑
t∈[T ]

E

vt ∑
n∈[N ]

xd,nI{vt = Vn}

 = T ·
∑

n∈[N ]

gnVnxd,n = T · U(d) , (20)

where the final equality follows from the fact that xd is optimal to U(d).

Therefore, in light of the upper bound shown in Equation (16), the threshold strategy in Equation (17) is optimal to the
buyer’s hindsight problem B-OPT(d).

Finally, the seller’s revenue under the buyer’s optimal threshold strategy is d
∑

t∈[T ] z
∗
t = T ·

∑
n∈[N ] gnxd,n = T · π(d)

where π(d) is the per-period revenue defined in Equation (4).

C.3 Proof of Theorem 3

Our proof relies on the following fact

Fact 1. If price d is nonbinding, then the corresponding optimal solution xd to U(d) is xd = (1 . . . 1) ∈ Rn
+.

Proof. We prove the claim via contradiction. Assume there is some index k ∈ [N ] such that xd,k < 1. Then consider the
solution x = (xd,1 . . . xd,k−1, y, xd,k+1, . . . xd,n) where we replaced the k’th entry of xd with

y = xd,k + ϵ, where ϵ := min

{
1− xd,k,

ρ−
∑

n∈[N ] gnxd,n

dgk
,

∑
n∈[N ] (Vn − γd) gnxd,n

|Vk − γd| gk

}
(i)
> 0 ,

where (i) follows from the fact that xd is nonbinding, i.e. ρ >
∑

n∈[N ] gnxd,n and
∑

n∈[N ] (Vn − γd) gnxd,n > 0. Then

d
∑

n∈[N ]

gnxn = d
∑

n∈[N ]

gnxd,n + dgkϵ ≤ d
∑

n∈[N ]

gnxd,n +

ρ− ∑
n∈[N ]

gnxd,n

 = ρ .

On the other hand, if Vk − γd > 0, then∑
n∈[N ]

(Vn − γd) gnxd,n =
∑

n∈[N ]

(Vn − γd) gnxd,n + (Vk − γd) gkϵ >
∑

n∈[N ]

(Vn − γd) gnxd,n > 0 .

If Vk − γd < 0, then∑
n∈[N ]

(Vn − γd) gnxd,n =
∑

n∈[N ]

(Vn − γd) gnxd,n + (Vk − γd) gkϵ

≥
∑

n∈[N ]

(Vn − γd) gnxd,n + (Vk − γd) ·
∑

n∈[N ] (Vn − γd) gnxd,n

|Vk − γd|
= 0

where in the last equality we used |Vn − γd| = − (Vn − γd) since Vn − γd < 0.

The above shows x is feasible to U(d). On the other hand,
∑

n∈[N ] Vngnxd,n <
∑

n∈[N ] Vngnxn, so x yields a strictly
larger objective than xd, contradicting the optimality of xd.

We now return to our proof for Theorem 3.

(1). When both d, d̃ are non-binding, Fact 1 implies xd = xd̃ = (1 . . . 1).

π(d) = d
∑

n∈[N ]

gnxd,n = d
∑

n∈[N ]

gn < d̃
∑

n∈[N ]

gn = d̃
∑

n∈[N ]

gnxd̃,n = π(d̃) .
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(2). We prove this claim by contradiction. Assume d̃ is non-binding and d̃ > d where d is budget binding. Fact 1 states that
xd̃ = (1 . . . 1). Hence

ρ = π(d) = d
∑

n∈[N ]

gnxd,n ≤ d
∑

n∈[N ]

gnxd̃,n < d̃
∑

n∈[N ]

gnxd̃,n
(i)
< ρ ,

where (i) follows from the definition that d̃ is non-binding. Hence we obtain a contradiction, and d̃ cannot be non-binding.
This means d̃ must be budget or ROI binding.

(3). Here we show that if some price d ∈ D is ROI binding so that
∑

n∈[N ](Vn − γd)gnxd,n = 0, any price d̃ > d must
also be ROI binding. We first claim that xd̃ ⪯ xd. To show this, we use a contradiction argument by assuming xd̃ ⪰ xd.

Let the threshold vector xd be characterized by xd = ψ(J, q) (see definition of threshold vectors in Definition 6). Under
Assumption 1, we note that xd cannot have all 0 entries and hence xd,1 > 0. However, since

∑
n∈[N ](Vn − γd)gnxd,n = 0,

it must be the case that VJ+1 − γd < 0. Now, applying the ordering property for threshold vectors in the second half of
Lemma 10 (ii) by taking Z = xd̃, Y = xd, and bi = Vi − γd we have

0 =
∑

n∈[N ]

(Vn − γd)gnxd,n ≥
∑

n∈[N ]

(Vn − γd)gnxd̃,n >
∑

n∈[N ]

(Vn − γd̃)gnxd̃,n .

In the last inequality we used the fact that d̃ > d. Hence, this contradicts the feasibility of xd̃, so we conclude that xd̃ ⪯ xd.
This further implies

ρ ≥ d
∑

n∈[N ]

gnxd,n︸ ︷︷ ︸
=π(d)

(i)
=

1

γ

∑
n∈[N ]

Vngnxd,n
(ii)
>

1

γ

∑
n∈[N ]

Vngnxd̃,n

(iii)

≥ d̃
∑

n∈[N ]

gnxd̃,n︸ ︷︷ ︸
=π(d̃)

,

where (i) follows from d being ROI binding, i.e.
∑

n∈[N ](Vn − γd)gnxd,n = 0; (ii) follows from xd̃ ⪯ xd; (iii) follows

from feasibility of d̃ so that
∑

n∈[N ](Vn − γd̃)gnxd̃,n ≥ 0. Therefore, ρ ≥ π(d) > π(d̃).

Finally, ρ > π(d̃) implies that d̃ is either non-binding or ROI binding. We note that it is not possible for d̃ to be non-
binding, because d̃ non-binding implies xd̃ = (1 . . . 1) according Fact 1, contradicting xd̃ ⪯ xd which we showed
earlier. Here we used the fact that xd ̸= (1 . . . 1) because xd is ROI binding and Assumption 1 states for any d ∈ D,∑

n∈[N ](Vn − γd)gn ̸= 0.

C.4 Additional lemmas for Section 3

Lemma 10 (Ordering property for threshold vectors). Consider {ai}i∈[N ] ⊆ RN
+ and {bi}i∈[N ] ⊆ RN where there exists

some j ∈ [N ] such that bi > 0 for all i = 1 . . . j and bi < 0 for all i = j + 1, . . .m. Let Z,Y ∈ [0, 1]N be two threshold
vectors (see Definition 6) such that Y = ψ(JY , qY ), Z = ψ(JZ , qZ), and Z ⪰ Y . Then the following hold:

(i)
∑

i∈[N ] aiZi ≥
∑

i∈[N ] aiYi.

(ii) If
∑

i∈[N ] biZi ≥ 0 then
∑

i∈[N ] biYi ≥ 0. Furthermore, if bJY +1 < 0, then
∑

i∈[N ] biYi ≥
∑

i∈[N ] biZi ≥ 0.

(iii) If
∑

i∈[N ] biYi < 0 then
∑

i∈[N ] biZi < 0.

Proof.

(i) Since ai > 0 for all i ∈ [N ], and Z ⪰ Y (i.e. Zi ≥ Yi for all i ∈ [N ]), it is easy to see
∑

i∈[N ] aiZi ≥
∑

i∈[N ] aiYi.

(ii) By the definition of threshold vectors, we have YJY +1 = qY while Yi = 0 for all i > JY + 1. We prove the claim by
contradiction by assuming

∑
i∈[N ] biYi < 0.

First, it is easy to see bJY +1 < 0. This is because if bJY +1 > 0, then bi > 0 for all i = 1 . . . JY + 1 by the definition of
{bi}i∈[N ], and hence

∑
i∈[N ] biYi =

∑
i∈[JY +1] biYi ≥ 0 contradicting our assumption that

∑
i∈[N ] biYi < 0 .
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Next, since
∑

i∈[N ] biYi < 0 ≤
∑

i∈[N ] biZi, we have
∑

i∈[N ] bi(Zi − Yi) ≥ 0. On the other hand,

∑
i∈[N ]

bi(Zi − Yi)
(i)
=

N∑
i=JY +1

bi(Zi − Yi)
(ii)
< 0 .

Here, (i) follows from the definition of a threshold vector so that Yi = 1 for all i = 1 . . . JY and also Zi = 1 for all
i = 1 . . . JY due to Z ⪰ Y . (ii) follows from the fact that bJY +1 < 0 so bi < 0 for all i ≥ JY + 1 due to the definition of
{bi}i∈[N ]. Hence, we arrive at a contradiction, which allows us to conclude the first half of the claim, i.e.

∑
i∈[N ] biZi ≥ 0

implies
∑

i∈[N ] biYi ≥ 0.

We now show the second half of the claim i.e. bJY +1 < 0 implies
∑

i∈[N ] biYi ≥
∑

i∈[N ] biZi ≥ 0. If bJY +1 < 0, then
bi < 0 for all i = JY + 1 + . . . JZ + 1, and hence

∑
i∈[N ]

bi(Zi − Yi) = bJY +1(ZJY +1 − YJY +1) +

JZ+1∑
i=JY +2

biZi

(i)
< 0 .

Note that in the above inequality the summand
∑JZ+1

i=JY +2 biZi does not exist if JY = JZ , and in (i) we also used the fact
that Yi = 0 for all i > JY + 1 using the definition of a threshold veector.

(iii) We again use a contradiction argument by assuming
∑

i∈[N ] biZi ≥ 0, and the rest of the proof is almost identical to
that of (ii) so we will omit it here.

D PROOFS FOR SECTION 4

D.1 Proof of Theorem 4

Define G := mind,d̃∈D:π(d)̸=π(d̃)

∣∣∣π(d)− π(d̃)
∣∣∣ to be the minimum revenue gap for all price pairs that do not yield the same

revenue, where π(d) := d
∑

n∈[N ] gnxd,n for any d ∈ D is the per-period average seller revenue defined in Equation (4).
Recall π̂(Dh) =

Dh

|Eh|
∑

t∈Eh
zt is the estimate of π(Dh) for episode h with fixed price Dh (see Algorithm 1).

For any exploration episode Eh whose length is |Eh| = T 1−ξ+ϵ, we have w.p. at least 1− 1/T∣∣∣∣ π̂(Dh)

Dh
− π(Dh)

Dh

∣∣∣∣ =
∣∣∣∣∣ 1

|Eh|
∑
t∈Eh

zt −
π(Dh)

Dh

∣∣∣∣∣ (i)≤ ϕ(|Eh|)
|Eh|

(ii)

≤ ϕ(T )

T 1−ξ+ϵ

(iii)⇒ |π̂(Dh)− π(Dh)| ≤
ϕ(T )

T 1−ξ+ϵ

(21)

where (i) is due to the definition of ξ-adaptive buyers in Definition 4; (ii) is due to the fact that ϕ is an increasing function
and the exploration episode lengths are |Eh| = T 1−ξ+ϵ; (iii) is due to the fact that all prices are less than 1.

Since ϕ(T ) = O(T 1−ξ), there exists some Tϵ ∈ N such that when T > Tϵ we have

ϕ(T )

T 1−ξ+ϵ
<
G

2
(22)

The rest of the proof relies on the following lemma:

Lemma 11. Assume T > Tϵ s.t. Equation (22) holds. If π̂(Di) ≥ π̂(Dj) for some exploration episodes i, j s.t. i ̸= j, then
w.p. at least 1− 1

T , π(Di) ≥ π(Dj). Furthermore, the following event G

G = {π̂(Di) ≥ π̂(Dj) =⇒ π(Di) ≥ π(Dj) for all exploration episodes i ̸= j} (23)

holds with probability at least 1− H(H−1)
2T , where H = ⌊log2(M)⌋+ 1 is the maximum number of binary search iterations

(i.e. number of episodes in the exploration phase).
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Proof of Lemma 11. Because π̂(Di) ≥ π̂(Dj), applying Equation (21) for episodes i, j yields

π(Di) +
ϕ(T )

T 1−ξ+ϵ
≥ π̂(Di) ≥ π̂(Dj) ≥ π(Dj)−

ϕ(T )

T 1−ξ+ϵ
=⇒ 2ϕ(T )

T 1−ξ+ϵ
≥ π(Dj)− π(Di) ,

Now, contrary to our claim, suppose that π(Di) < π(Dj). We then have

2ϕ(T )

T 1−ξ+ϵ
≥ π(Dj)− π(Di) ≥ min

d,d̃∈D:π(d)̸=π(d̃)

∣∣∣π(d)− π(d̃)
∣∣∣ := G ,

which contradicts Equation (22) for T > Tϵ. As there are H(H − 1)/2 pairs (i, j) such that i ̸= j, a simple union bound
shows event G holds with probability at least 1− H(H−1)

2T .

We now return to our proof of Theorem 4. We first show that under event G (see Equation (23)),the final price in the
exploitation phase Dm∗ is revenue-optimal, i.e. maxd∈D π(d) = π (Dm∗)

We use an induction argument that shows after each iteration of the binary search procedure in the exploration phase of
Algorithm 1, π(Dm) ≤ π(Dm∗) for all m ≤ L and m ≥ R. The base case is the first iteration, where we have L = 1,
R =M . If m∗ = L = 1, then under event G we get

π̂(D1) ≥ π̂(DM )
(i)
=⇒ π(D1) ≥ π(DM ) .

Hence after the first iteration π(Dm) ≤ π(Dm∗) for any m ≤ L and m ≥ R. The case for m∗ = R follows from the same
argument.

Now assume that the induction hypothesis holds, i.e. at the beginning of some iteration with the tuple (L,R,m∗), we have
π(Dm) ≤ π(Dm∗)m ≤ L and m ≥ R. According to Algorithm 1, we only need to show two cases in order to validate the
induction procedure.

• Case 1. If π̂(Dmed) < π̂(Dmed+1), then we show π(Dm) ≤ π(Dmed+1) for all m = 1 . . .med + 1

• Case 2. If π̂(Dmed) ≥ π̂(Dmed+1), then we show π(Dm) ≥ π(Dmed) for all m = med + 1 . . .M

Note that under Case 1., med + 1 will be the new value of m∗ in the next iteration (i.e. the next induction step). So by
showing π(Dm) ≤ π(Dmed+1) for all m = 1 . . .med + 1, we validate the induction hypothesis for the next induction step.
A similar argument holds for Case 2.

Case 1. When π̂(Dmed) < π̂(Dmed+1), under event G (see Equation (23)) we have π(Dmed) ≤ π(Dmed+1). We claim that
Dmed cannot be an ROI binding price. Assume the contrary that Dmed is ROI binding. Then, part (3) of Theorem 3 states
π(Dmed+1) < π(Dmed), leading to a contradiction. Hence Dmed must be either a nonbinding price or a budget binding price.
Applying part (1) of Theorem 3, we can then conclude that for any m ≤ med, π(Dm) ≤ π(Dmed), so

π(Dm) ≤ π(Dmed) ≤ π(Dmed+1) ∀m = 1 . . .med .

At the end of the iteration, as we update m∗+ = med + 1 (here we denote m∗+ as the updated value to distinguish from its
initial value at the start of the iteration), we have π(Dm∗+) ≥ π(Dmed+1) ≥ π(Dmed) . . . π(D1). On the other hand, since
π̂(Dm∗+) = maxm∈{m∗,med+1} π̂(Dm) ≥ π̂(Dm∗), event G implies

π(Dm∗+) ≥ π(Dm∗)
(i)

≥ π(Dm) ∀m = R . . .M ,

where (i) follows from the induction hypothesis. Therefore, we have

π(Dm∗+) ≥ π(Dm) ∀m = R . . .M and m = 1 . . .med + 1 ,

and by realizing the tuple (med + 1,R,m∗+) is the initial tuple for the next iteration concludes the induction step.

Case 2. The case when π̂(Dmed) ≥ π̂(Dmed+1) follows from an identical argument, and we will omit the details. This
concludes the induction proof.
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The above implies that when the event G = {π̂(Di) ≥ π̂(Dj) =⇒ π(Di) ≥ π(Dj) for all i, j ∈ [H]} holds throughout
the exploration phase, the above induction argument implies we have π(Dm∗) ≥ π(Dm)for all m ∈ [M ]. Hence
π(Dm∗) = maxd∈D π(d) w.p. at least 1− H(H−1)

2T according to Lemma 11 where H = ⌊log2(M)⌋+ 1.

Furthermore, we point out that in each iteration of the binary search procedure the seller explores at most two prices. Hence
the entire exploration phase, which consists of all periods in exploration episodes and we denote as E , has length at most
2E (⌊log2(M)⌋+ 1) = 2T 1−ξ+ϵ (⌊log2(M)⌋+ 1) periods. Therefore, the seller’s regret can be upper bounded as

Regsell = T max
d∈D

π(d)−
∑
t∈[T ]

E [dtzt]

≤ |E|+
T∑

t=|E|+1

max
d∈D

π(d)− E [dtzt]

(i)

≤ |E|+
∑

t∈[T ]/E

E [(π(Dm∗)−Dm∗zt) I {G}] + (T − |E|)P (Gc)

≤ |E|+Dm∗(T − |E|) · E

π(Dm∗)

Dm∗
− 1

T − |E|
∑

t∈[T ]/E

zt

+ (T − |E|)P (Gc)

(ii)

≤ |E|+ ϕ (T − |E|) + (T − |E|) · P

∣∣∣∣∣∣π(Dm∗)

Dm∗
− 1

T − |E|
∑

t∈[T ]/E

zt >
ϕ(T − |E|)
T − |E|

∣∣∣∣∣∣
+ TP (Gc)

(iii)

≤ |E|+ ϕ (T − |E|) + 1 + TP (Gc)

(iv)

≤ 2 (⌊log2(M)⌋+ 1) · T 1−ξ+ϵ + ϕ (T ) + (⌊log2(M)⌋+ 1)
2
/2 .

In (i) we used the fact that maxd∈D π(d) = π(Dm∗) under event G and dt = Dm∗ for all exploitation periods t ∈
[T ]/E ; in (ii) and (iii) we used the definition of ξ-adaptive buyer algorithm (see Definition 4) so that for the exploitation
phase [T ]/E , the event

∣∣∣π(Dm∗ )
Dm∗ − 1

T−|E|
∑

t∈[T ]/E zt

∣∣∣ ≤ ϕ(T−|E|)
T−|E| holds with probability at least 1 − 1/T , and also

ϕ is an increasing function; In (iv), we used the fact that all periods in exploration episodes E , has length at most
2E (⌊log2(M)⌋+ 1) = 2T 1−ξ+ϵ (⌊log2(M)⌋+ 1) periods, and the fact that P (Gc) ≤ (⌊log2(M)⌋+1)·⌊log2(M)⌋

2T according
to Lemma 11, so 1 + TP (Gc) ≤ (⌊log2(M)⌋+ 1)

2
/2 given M ≥ 2.

E PROOFS FOR SECTION 5

E.1 Proof of Lemma 5

Recall that when the buyer best responds, she adopts the threshold strategy w.r.t xd where xd ∈ [0, 1]N is the optimal
solution to U(d) in Equation (3); see Definition 2 for best response. Further, the threshold strategy can be represented as
decision

z∗t =
∑

n∈[N ]

xd,nI{vt = Vn} .

Then, for any exploration or exploitation episode E (whose posted price we denote as d), for the best response decisions
{zt}t∈E defined above, we have for any t ∈ E

E[dz∗t ] = d
∑

n∈[N ]

gnxd,n = π(d)

where π(d) is the per-period expected revenue defined in Equation (4). Hence, by defining

Yt = dz∗t − π(d)
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we know that the sequence {Yt}t∈E is a martingale difference sequence such that that |Yt| ≤ d ≤ 1 for all t ∈ E . By Azuma
Hoeffding’s inequality (see Lemma 13) we have for any δ ∈ (0, 1)

P

(∣∣∣∣∣d∑
t∈E

z∗t − |E| · π(d)

∣∣∣∣∣ >√2|E| log (2/δ)

)
≤ δ .

Hence, by taking δ = 1/T and considering the increasing function ϕ(x) =
√
2x log (2T ) = O(x1/2), for any explo-

ration/exploitation episode E (whose price we denote as d) we have∣∣∣∣∣ d|E|∑
t∈E

z∗t − π(d)

∣∣∣∣∣ ≤ ϕ(|E|)
|E|

with probability (w.p.) at least 1− 1/T . Therefore best responding is 1
2 -adaptive.

E.2 Proof of Theorem 6

For the seller, the regret upper bound is a direct result of Lemma 5 and Theorem 4.

On the other hand for the buyer, following the exact proof Step 2. in the proof of Proposition 2 (see Appendix C.2), in
particular Equations (17), (18) and (19), we know that by best responding, the buyer’s budget and ROI constraints are
satisfied. Finally, we bound the buyer’s regret (see Definition in (7)) as followed:

Let d be the posted price in the final exploitation episode (see Algorithm 1). Using an argument similar to Step 1. in the
proof of Proposition 2, for the linear program (LP) U(d) in Equation (3) that denotes the buyer’s single-period myopic
optimization problem, it is easy to see the optimal value is bounded and the LP is feasible (consider the solution with all
entries set to be 0). Then, strong duality holds, and there exists corresponding optimal dual variables (λ, µ) ∈ R2

+ w.r.t. the
exploitation price d s.t.

U(d) = max
x∈[0,1]N

∑
n∈[N ]

gn ((1 + λ)Vn − (γλ+ µ)d)xn + ρµ

=
∑

n∈[N ]

gn ((1 + λ)Vn − (γλ+ µ)d)+ + ρµ
(24)

Similar to Equation (16), by denoting E to be all periods within exploration episodes, the buyer’s hindsight objective can be
bounded as

B-OPT(d1:T ) ≤ max
z∈[0,1]T

∑
t∈[T ]

E [((1 + λ)vt − (γλ+ µ)d) zt] + Tρµ

≤
∑
t∈[T ]

E
[
((1 + λ)vt − (γλ+ µ)d)+

]
+ Tρµ

=
∑
t∈[T ]

 ∑
n∈[N ]

gn ((1 + λ)Vn − (γλ+ µ)d)+ + ρµ


≤ (1 + λ+ ρµ) · |E|+

∑
t∈[T ]/E

 ∑
n∈[N ]

gn ((1 + λ)Vn − (γλ+ µ)d)+ + ρµ


(i)
= Θ(T

1
2+ϵ) + (T − |E|)U(d) .

(25)

Here (i) follows from Equation (24) and the fact that there are at most 2 (⌊log2(M)⌋+ 1) exploration episodes, which
implies in E there are at most 2T 1−ξ+ϵ (⌊log2(M)⌋+ 1) = Θ(T

1
2+ϵ) periods. The buyer’s regret can be thus bounded as

followed

Regbuy = B-OPT(d1:T )−
∑
t∈[T ]

E [vtzt] ≤ Θ(T
1
2+ϵ) + (T − |E|)U(d)−

∑
t∈[T ]/E

E [vtzt] = Θ(T
1
2+ϵ)

where in the final equality, we used the fact that the buyer’s expected utility is exactly U(d) for each exploitation period
when best responding as shown in Equation (20).
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E.3 Proof of Theorem 7

This proof consists of two parts, namely bounding seller’s regret, and bounding buyer’s regret as well the “balance” of
buyer’s budget and ROI constraints.

Part 1. Bounding seller’s regret. Here, we only need to show that the buyer’s strategy is ξ-adaptive (see Definition in 4),
and the rest of the proof follows from Theorem 4.

For notation convenience, fix some exploration or exploitation episode E , and denote the corresponding price in the episode
as d. In light of Lemma 1, we let xd ∈ [0, 1]N be the unique optimal threshold vector (see Definition 6) solution to U(d).
According to the definition of the per-period seller expected revenue π(d) under buyer best response in Equation (4), we can
further write the seller’s per-period expected revenue for episode h as

π(d) = d
∑

n∈[N ]

xd,ngn . (26)

Let Ft be the sigma algebra generated by {(vτ , dτ , zτ )}τ∈[t], which characterizes all randomness in the buyer and seller’s
behavior up to period t. Recall x̂t is the optimal solution to U(dt) of Equation (3) via replacing the true distribution g ∈ ∆N

with the estimate ĝt ∈ ∆N . The buyer adopting a threshold strategy w.r.t. x̂t implies the buyer’s decision to be

zt =
∑

n∈[N ]

x̂t,nI{vt = Vn} (27)

Since x̂t is Ft−1-measurable, for t ∈ E we have

E
[
zt

∣∣∣Ft−1

]
=

∑
n∈[N ]

gnx̂t,n

Thus, the by defining

Yt =
∑

n∈[N ]

gnx̂t,n − zt , (28)

we know that the sequence {Yt}t∈E is a martingale difference sequence such that that |Yt| ≤ 1 for all t. By Azuma
Hoeffding’s inequality (see Lemma 13) we have for any δ ∈ (0, 1)

P
(
G̃
)
≥ 1− δ where G̃ :=


∣∣∣∣∣∣
∑
t∈E

 ∑
n∈[N ]

gnx̂t,n − zt

∣∣∣∣∣∣ ≤√2|E| log (2/δ)

 . (29)

The remaining proof relies on the following lemma whose proof can be found in Appendix E.5

Lemma 12. Fix some price d and define the following problem which is solved by the approximate best response buyer with
ML advice to obtain x̂t (see Definition 5):

Ût(d) = max
x∈[0,1]N

∑
n∈[N ]

ĝt,nVnxn s.t.
∑

n∈[N ]

ĝt,n (Vn − γd)xn ≥ 0 and d
∑

n∈[N ]

ĝt,nxn ≤ ρ . (30)

Here, recall ĝt ∈ ∆N is the ML advice obtained in period t which is an estimate for the true value distribution g ∈ ∆N .
Further, define the following values

(A) =

U(d)−
∑

n∈[N ]

gnVnx̂t,n


+

, (B) =

−
∑

n∈[N ]

gn (Vn − γd) x̂t,n


+

, (C) =

d ∑
n∈[N ]

gnx̂t,n − ρ


+

,

(31)

where we recall U(d) is defined in Equation (3). Then, the values (B), (C) are upper bounded by
√
N∥g − ĝt∥ for all t.

Further, because the estimation error limt→∞ ℓt = 0 there exists some T0 ∈ N s.t. ∥g − ĝt∥ ≤ ℓt <
g1
2 for all t > T0.

Then, there exists an absolute constant C that only depends on buyer model primitives (g,V , ρ, γ) s.t. the values (A) and
∥xd − x̂t∥ are upper bounded by C

√
N∥g − ĝt∥ for t > T0, where xd is the optimal solution to U(d).
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We now show a high probability bound for π(d)
d −

∑
t∈E zt. Assume event G̃ (Equation (29)) holds, then

∣∣∣∣∣∑
t∈E

(
π(d)

d
− zt

)∣∣∣∣∣ =

∣∣∣∣∣∣
∑
t∈E

 ∑
n∈[N ]

xd,ngn − zt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
t∈E

 ∑
n∈[N ]

x̂t,ngn − zt

∣∣∣∣∣∣+
∑
t∈E

∣∣∣∣∣∣
∑

n∈[N ]

x̂t,ngn −
∑

n∈[N ]

xd,ngn

∣∣∣∣∣∣
(i)

≤
√
2|E| log (2T ) +

∑
t∈E

∥xd − x̂t∥ · ∥g∥

(ii)

≤
√
2|E| log (2T ) + T0 + C

√
N

∑
t∈E:t>T0

ℓt

≤
√
2|E| log (2T ) + T0 + C

√
N
∑
t∈E

ℓt

(iii)

≤
√

2|E| log (2T ) + T0 + C
√
Nϕ̃(|E|)

:= ϕ(|E|)

where in (i) we plugged in the Azuma-Hoeffding inequality result showed in Equation (29) with δ = 1
T ; in (ii) we applied

Lemma 12 and some constant absolute constant C for t > T0 (defined in statement of Lemma 12), and the fact that
∥g∥ ≤ 1 since g is a probability simplex; in (iii) we used the assumption that there exists some increasing function ϕ̃ s.t.∑

t∈E ℓt ≤ ϕ̃(|E|). Therefore w.p. at least 1− 1/T (since G̃ holds w.p. at least 1− 1/T when δ = 1/T ), we have

∣∣∣∣∣ d|E|∑
t∈E

zt − π(d)

∣∣∣∣∣ ≤ ϕ(|E|)
|E|

Since ϕ̃(x) ≤ O(x1−L), we know that ϕ(x) = O(x1−ξ) for ξ = min{ 1
2 , L}. Hence, for large enough T s.t. the exploration

episode length E = T 1−ξ+ϵ > T0, the buyer’s approximate best responding with ML advice is 1 − ξ-adaptive for
ξ = min{ 1

2 , L}.

Part 2. Bounds for the buyer. We first follow a similar approach as the proof of Theorem 6 to upper bound the buyer
regret.

Let d be the posted price in the final exploitation episode (see Algorithm 1), and denote E = Θ(T 1−ξ+ϵ) as all periods within
exploration episodes. Then using the same arguments as in Equations (24) and (25), we can show the buyer’s hindsight
objective can be bounded as

B-OPT(d1:T ) ≤ Θ(T ξ+ϵ) + (T − |E|)U(d) .

Since the buyer approximately best responds w.r.t. x̂t which is the optimal solution to the problem Ût(d) Equation (30),
recall the buyer’s decision zt can be written as in Equation (27):

zt =
∑

n∈[N ]

x̂t,nI{vt = Vn}

Hence, E[vtzt|Ft−1] =
∑

n∈[N ] gnVnx̂t,n. Let C and T0 be defined as in Lemma 12, and thus the buyer’s regret can be
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thus bounded as followed

Regbuy = B-OPT(d1:T )−
∑
t∈[T ]

E [vtzt]

≤ Θ(T ξ+ϵ) +
∑

t∈[T ]/E

E [(U(d)− gnx̂t,n)]

≤ Θ(T ξ+ϵ) + T0 +
∑

t∈[T ]/E:t>T0

E [(U(d)− gnx̂t,n)]

(i)

≤ Θ(T ξ+ϵ) + T0 + C
√
N

∑
t∈[T ]/E:t>T0

∥g − ĝt∥

(ii)

≤ Θ(T ξ+ϵ) + T0 + C
√
N

∑
t∈[T ]/E

ℓt

(iii)

≤ Θ(T ξ+ϵ) + T0 + C
√
Nϕ̃(T − |E|)

(iv)
= Θ(T ξ+ϵ) .

In (i), we applied Lemma 12 for the value (A) defined in Equation (31); (ii) follows from the definition of the estimation errors
ℓt ≥ ∥g−ĝt∥; (iii) follows from the assumption that for any exploration or exploitation episode Eh, the total error

∑
t∈Eh

ℓt is
upper bounded by ϕ̃(T −|E| where ϕ̃ is an increasing function; (iv) follows from the fact that ϕ̃(x) ≤ O(T 1−L) ≤ O(T 1−ξ).

Now we show the buyer constraint violation is small, namely

1

T
E

∑
t∈[T ]

(vt − γdt) zt

 ≥ −Θ(T−L) and
1

T
E

∑
t∈[T ]

dtzt

 ≤ ρ+Θ(T−L) .

The proofs for both inequalities are very similar, so here we just show 1
T E
[∑

t∈[T ] (vt − γdt) zt

]
≥ −Θ(T−L). Similar to

the above where we bounded buyer’s regret, we have E[(vt − γdt) zt|Ft−1] =
∑

n∈[N ] gn (Vn − γd) x̂t,n, and thus for all
exploration and exploitation episodes E1 . . . EH (assuming there are H episodes), we have

−E

∑
t∈[T ]

(vt − γdt) zt

 =
∑
t∈[T ]

E

−
 ∑

n∈[N ]

gn (Vn − γd) x̂t,n


≤

∑
t∈[T ]

E

−
∑

n∈[N ]

gn (Vn − γd) x̂t,n


+


(i)

≤
√
N
∑
t∈[T ]

ℓt

=
√
N
∑

h∈[H]

∑
t∈Eh

ℓt

(ii)

≤
√
N
∑

h∈[H]

O(|Eh|1−L)

= Θ(T 1−L)

where (i) follows from the upper bound of (B) (Equation (31)) in Lemma 12; (ii) follows from the assumption that for
any exploration and exploitation episode Eh the errors {ℓt}t satisfy

∑
t∈Eh

ℓt ≤ ϕ̃(|Eh|) for some increasing function
ϕ̃ : R+ → R+ and ϕ̃(x) ≤ O(x1−L).

Finally, dividing both sides by T yields the desired bound 1
T E
[∑

t∈[T ] (vt − γdt) zt

]
≥ −Θ(T−L).
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E.4 Proof of Theorem 8

We know that the empirical estimates ĝt ∈ ∆N for the buyer’s value distribution g ∈ ∆N defined in Equation (8) follow a
multinomial distribution, i.e. ĝt ∼ 1

t Multinomial(t, g). Therefore, applying Lemma 15 by taking δ = 1/T 2 , we have w.p.
at least 1− 1/T 2 the following event holds

Gt :=

{
∥ĝt − g∥ ≤ ℓt :=

√
2N log(2T 2)

t

}
(32)

Here we used the fact that ∥x∥ ≤ ∥x∥1 for any vector x. Hence, using a simple union bound, the event ∪t∈[T ]Gt holds w.p.
at least 1− 1/T . Further, for any exploration or exploitation episode E , we have

∑
t∈E

ℓt ≤
∑

τ∈[|E|]

√
2N log(2T 2)

τ
≤ ϕ̃(|E|) (33)

for some increasing function ϕ̃ s.t. ϕ̃(x) ≤ O(x
1
2 ). Hence, w.p. at least 1− 1/T , the estimation errors {ℓt}t defined above

satisfy the conditions in Theorem 7 for large enough T , i.e. limt→∞ ℓt = 0 and
∑

t∈E ℓt ≤ ϕ̃(|E|) for any any exploration
or exploitation episode E where increasing function ϕ̃ : R+ → R+ and ϕ̃(x) ≤ O(x1−L). The rest of the proof directly
follows from Theorem 7.

E.5 Proof of Lemma 12

Consider the region

C =

x ∈ [0, 1]N : −
∑

n∈[N ]

gnVnxn ≤ −U(d),−
∑

n∈[N ]

gn (Vn − γd)xn ≤ 0, d
∑

n∈[N ]

gnxn ≤ ρ

 (34)

By Lemma 1, we know that xd is the unique optimal solution to U(d), and hence C consists of the single point xd, namely
C = {xd}. Now consider the optimal solution x̂t ∈ [0, 1]N to Ût(d) in Equation (30), by the Hoffman bound (Lemma 14),
there exists some constant H > 0 that only depends on (g,V ) s.t.

∥x̂t − xd∥ ≤ H


U(d)−

∑
n∈[N ]

gnVnx̂t,n


+︸ ︷︷ ︸

(A)

+

−
∑

n∈[N ]

gn (Vn − γd) x̂t,n


+︸ ︷︷ ︸

(B)

+

d ∑
n∈[N ]

gnx̂t,n − ρ


+︸ ︷︷ ︸

C

 (35)

where we used the inequality ∥(y)+∥ ≤
∑

n∈[N ](yn)+ for any vector y ∈ RN . We now bound (A), (B) and (C) respectively.

Bounding (A). Similar to the proof of Theorem 6, strong duality holds for the LP Ût(d), and hence there exists optimal
dual variables λ̂, µ̂ ∈ R+ s.t.

Ût(d) =
∑

n∈[N ]

gnVnx̂t,n = max
x∈[0,1]N

∑
n∈[N ]

ĝt,n

(
(1 + λ̂)Vn − (γλ̂+ µ̂)d

)
xn + ρµ̂ (36)

Since Ût(d) ≤ 1, it is easy to see µ̂ ∈ [0, 1/ρ], and further by considering x = (1, 0 . . . 0) ∈ RN , we have

1 ≥ Ût(d) ≥ ĝt,1

(
(1 + λ̂)V1 − (γλ̂+ µ̂)d

) (i)

≥ ĝt,1λ̂(V1 − γd)− µ̂d
(ii)

≥ g1
2

· λ̂(V1 − γd)− 1

ρ

(iii)⇒ λ̂ ≤ 2

(
1 +

1

ρ

)
V1 − γD1

g1
,

(37)
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where in (i) we used the fact that ĝt,1 ∈ [0, 1]; in (ii) we used the fact that |ĝt,1 − g1| ≤ ∥ĝt − g∥ ≤ ℓt <
g1
2 for all t > T0,

and also d ∈ [0, 1] as well as µ̂ ∈ [0, 1/ρ]; in (iii), we used Assumption 1 s.t. V1 − γd > 0 for all d ∈ D, and g1 > 0.

On the other hand, we have

U(d) ≤ max
x∈[0,1]N

∑
n∈[N ]

gn

(
(1 + λ̂)Vn − (γλ̂+ µ̂)d

)
xn + ρµ̂

(i)

≤ max
x∈[0,1]N

∑
n∈[N ]

ĝt,n

(
(1 + λ̂)Vn − (γλ̂+ µ̂)d

)
xn + (1 + λ̂)

∑
n∈[N ]

|ĝt,n − gn|+ ρµ̂

(ii)

≤ max
x∈[0,1]N

∑
n∈[N ]

ĝt,n

(
(1 + λ̂)Vn − (γλ̂+ µ̂)d

)
xn + ρµ̂+ (1 + λ̂)

√
N∥ĝt − g∥

(iii)
= Ût(d) + 2

(
1 +

1

ρ

)
V1 − γD1

g1
·
√
N∥ĝt − g∥

(38)

In (i), we used the fact that for all n ∈ [N ], xn ∈ [0, 1] and (1 + λ̂)Vn − (γλ̂+ µ̂)d ≤ (1 + λ̂)Vn ≤ 1+ λ̂ since all possible
values Vn ∈ [0, 1]; (ii) applies Cauchy–Schwarz inequality; (iii) plugs in Equation (36) and (37).

Therefore, if Ût(d) =
∑

n∈[N ] gnVnx̂t,n ≥ U(d), then (A) = 0, whereas if Ût(d) =
∑

n∈[N ] gnVnx̂t,n < U(d), Equation
(38) implies

(A) ≤ 2

(
1 +

1

ρ

)
V1 − γD1

g1

√
N∥ĝt − g∥ (39)

Bounding (B) and (C). The bounds for (B) and (C) are similar, and therefore we only show that for (B).

(B) =

−
∑

n∈[N ]

gn (Vn − γd) x̂t,n


+

(i)

≤

−
∑

n∈[N ]

ĝt,n (Vn − γd) x̂t,n


+

+

∣∣∣∣∣∣
∑

n∈[N ]

(ĝt,n − gn) (Vn − γd) x̂t,n

∣∣∣∣∣∣
(ii)

≤
∑

n∈[N ]

|ĝt,n − gn|

(iii)

≤
√
N∥ĝt − g∥

(40)

Here, (i) follows from the basic inequality sequence (a+ b)+ ≤ (a)+ +(b)+ ≤ (a)+ + |b|; (ii) follows from the fact that x̂t

is feasible to Ût(d) so that
∑

n∈[N ] ĝt,n (Vn − γd) x̂t,n ≥ 0, and also |Vn − γd| ≤ Vn ≤ 1 and x̂t,n ∈ [0, 1]; (iii) follows
from the Cauchy–Schwarz inequality.

We can similarly show

(C) ≤
√
N∥ĝt − g∥ (41)

Finally, combining Equations (35), (39), (40), and (41) yields the desired result.

F SUPPLEMENTARY LEMMAS

Lemma 13 (Azuma–Hoeffding inequality). beLet Y1 . . . Yn be a martingale difference sequence with a uniform bound
|Yj | ≤ 1 for all j ∈ [n]. Then for any δ ∈ (0, 1/e),

P

∣∣∣∣∣∣
∑
j∈[n]

Yj

∣∣∣∣∣∣ >√2n log(2/δ)

 ≤ δ .

Lemma 14 (Hoffman bound Hoffman (2003)). Consider a non-empty linear region C = {x ∈ Rn : Ax ≤ b} for some
b ∈ Rn and A ∈ Rm×n. Then, there exists some constant H > 0 that only depends on A s.t. for any y ∈ Rn we
have infz∈C∥z − y∥ ≤ H∥(Ay − b)+∥. Here (y)+ is the vector that takes the positive parts for each entry in y, i.e.
(y)+ = ((y1)+ . . . (yn)+).
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Lemma 15 (Empirical distribution concentration inequality Weissman et al. (2003)). Let g ∈ ∆N be a N -dimensional
probability simplex (N ≥ 2), and ĝt ∼ 1

t Multinomial(t, g). Then for any δ ∈ (0, 1), we have

P

(
∥ĝt − g∥1 >

√
2N log(2/δ)

t

)
≤ δ

See also Qian et al. (2020) Proposition 2. for a similar statement to that of Lemma 15.
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