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1 Introduction

In their celebrated paper [4], Black and Scholes derived explicit pricing for-
mulas for Furopean call and put options on stocks which do not pay divi-
dends. The absence of closed form expressions for the pricing of American
options caused an extensive literature on numerical methods, with, in gen-
eral, little mathematical support.

Actually, the rigorous theory of American options is rather recent (see
(2], [22], [23], [24]). In [2], [22], Bensoussan and Karatzas derive pricing
formulas involving Snell envelopes. The aim of the present paper is to study
and exploit these formulas in the framework of diffusion models, including
the classical Black-Scholes [4] and Garman-Kohlagen [17] models. In this
setting, we can rely on the connection between optimal stopping and vari-
ational inequalities as established by Bensoussan and Lions (see [3], [14],
chapter 16) in order to investigate regularity properties of pricing functions
and discuss the accuracy of numerical methods. In particular, we will ex-
amine an algorithm due to Brennan and Schwartz [5].

In section 2, we set the basic assumptions of our model and show how
the price of an American option can be obtained as a function of the current
stock prices. Note that in order to deal with non-degenerate operators,
we choose the logarithms of stock prices as state variables. Section 3.1
contains general results on variational inequalities which are for the most
part included in [3]. We have tried to weaken some regularity assumptions,
so that the results can be applied to put and call options. In section 3.2,
we concentrate on one-dimensional models. We show, among other things,
that the American put price, in the Black-Scholes model, is a continuously
differentiable function of the stock price, before maturity (note that this
property can also be derived from [32]).

In section 4, we localize the inequalities and review some results of [18] on
the approximation of variational inequalities. Section 5 contains a detailed
discussion of an algorithm which, except for the logarithmic change of vari-
able, is the Brennan-Schwartz method of valuation of American put options
(cf.[5]). It turns out that, although the formulation of the boundary prob-
lem in [5] was mathematically incorrect, this algorithm can be completely
justified. However, it must be emphasized that this justification relies on
special properties of put and call options and that the method fails for the
pricing of other types of options (see remark 5.14 below). Therefore, we
have included some remarks on alternate methods in the last section.

In order to complete this introduction, we wish to mention van Moer-



beke’s paper [32], on optimal stopping and free boundary problems, whose
results on warrant pricing extend readily to American options. The main
advantage of our approach is that the techniques of variational inequalities
provide the adequate framework for the study of numerical methods. For
regularity results on European options, we refer the reader to [16].

This paper is a detailed version of [20].

2 Assumptions and notations

Let (2, F,P) be a probability space and (W;);>0 a standard brownian mo-
tion with values in R™. We denote by (ft)tzo the P-completion of the
natural filtration of (Wy)¢>o.

Consider a financial market with n risky assets, with prices S},..., S
at time ¢, and let X; be the n-dimensional vector with components : X/ =
log S}, for j = 1,...,n. We will assume that (X;) satisfies the following
stochastic differential equation :

dX, = B(t, X,)dt + o(t, Xy).dW, (2.1)

on a finite interval [0, 7], where 7" is the horizon (namely the date of maturity
of the option).
We impose the following conditions on § and o, and on the interest rate :

(H1) B(t,z) is a bounded C' function from [0,7] x R™ into R", with
bounded derivatives.

(H2) o(t,z) is a bounded C! function from [0,7] x R™ into the space of
n X n matrices, with bounded derivatives. Also ¢ admits bounded
continuous second partial derivatives with respect to z, %0, j/0z;0z;,
satisfying a Holder condition in z, uniformly with respect to (¢,z) in

[0,7] x R”

(H3) The entries a;; of o(t,z).0%(t,2)/2 (where * denotes transposition)
satisfy the following coercivity property :

dn >0 V(t,x) €0, 7] x R*"¥¢ € R” Z aid'(t,:b)&fj > nzn:ff

1<i,j<n i=1

(H4) The instantaneous interest rate r(¢) is a C'' function from [0, 7] into
[0, 00).



Remark 2.1 Note that condition (H3) can be interpreted in terms of com-
pleteness of the market (cf.[19], [2], [23], [24])

An American contingent claim is defined by an adapted process
(h(t))o<t<T, where h(t) is the payoff of the claim if exercized at time
t. The t_ypical examples are put and call American options : for a put
(resp. call) option on one unit of asset 1, with exercise price K, one has :
h(t) = (K — S})4 (resp. h(t) = (S} — K)4). Note that, for simplicity, we
do not consider contingent claims allowing a payoff rate per unit of time as
in [22]. Throughout the paper, we will assume that h(t) depends only on
the prices of risky assets at time ¢, so that : A(f) = ¥(Xy), where ¥ is a
continuous function from R" into R. Note that in the case of a put (resp.
a call) on asset 1, one has : ¥(21) = (K — €”')4 (resp. (e" — K)4).

We will denote by (X!”);>+ a continuous version of the flow of the
stochastic differential equation (2.1). Therefore, (s,¢,2) — X*(w) is con-
tinuous for almost all w, X{* = z, and X** satisfies (2.1) on [t,T].

Proposition 2.2 Assume 1 is continuous and satisfies :|ip(z)| < MeMI!
for some M > 0, and define a function u* on [0,T] x R™, by :

u*(t,z) = sup E (e_ ftrr(s)dsd)(Xi’x)) (2.2)
T€Ty T

where Ty 7 is the set of all stopping times with values in [t,T]. Then u* is
continuous and, for any solution (Xy) of (2.1) :

u*(t, X;) = ess sup, ez  E <e_ I T(S)dszb(XTﬂft) (2.3)

Note that if, under probability P, the discounted vector price is a martingale,

equation (2.3) means that «*(¢, X¢) is the “fair price” of the American option
defined by v, at time ¢ (cf.[2], [22], [23], [24]).

Proof of Proposition 2.2 : Using the equality

X" = g 4 / B(v, X1)dv + / o (v, X17)dW, (2.4)
¢ ¢
it is easy to prove that :
E ( sup (6M|X£7I|)) < CeMlel (2.5)
t<s<T
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where ' depends only on 7', M, and on the bounds on j, o.
Now, observe that if (t1,z1),(t2,22) € [0,7] x R", with #; < t5, then :

’u*(tg, $2) — u*(tl, $1) =

sup E <e_ ft2 T(S)ds%b(X;z,zz)) — sup E <e— ftl T(S)ds‘Lﬁ(X;hzl))

T€Ti, T €Ty, T
— [T (s)ds |, oys — [ r(s)d ,
+ sup E (e ftl r(s) 'S,lp()(ilyl?l )) — sup E <e ftl r(s) 5,¢(X1t_17x1 ))
€Ty, T €Ty, T
Therefore :

[u™(t2, 22) — u™(t1, 21) <

’ ( sup.[e”ha Ty xtaeny - o “”%(X;h“ﬂ)

tg SSST

— [ r(v)dv — [ r(v)dv 1
_|_E< sup |€ ftl (v) ,¢(X§1,1‘1)_€ ft1 (v) %b(XZ;’ )l)

tl SSStQ

and the continuity of «* follows from the continuity of % and of the
flow and from (2.5) (which, applied with 2M instead of M, ensures uniform
integrability).

Equality (2.3) is essentially the expression of the Snell envelope in terms
of the “reduite” (see [12]). It can be proved directly, by arguing that the
sup in (2.2) and the essential sup in (2.3) are the same when 7; 1 is replaced
by the set of stopping times with respect to the filtration (G;)s>; of the
increments Wy — Wy, s > t (see [21] for details). o

3 Variational inequalities

3.1 Existence, uniqueness and regularity results

Before stating the variational inequalities related to the computation of u*,
we introduce some function spaces. Let m be a nonnegative integer and
let 1 <p<oo,0<p < oo WoPHR?) will denote the space of all
functions u in LP(R™,e~#*ldz), whose weak derivatives of all orders < m
exist and belong to LP(R™, e~#*ldz). We will write H,, (tesp.V,,) instead of
WOZE(R™) (resp. W2#(R™)) and the inner product on H, (resp.V,) will

be denoted by (.,.), (resp. ((.,.)),).



We define a bilinear form on V), for each ¢t € [0,77], in the following way :

Vu,v €V,
8u ov

“(tyu,v) Z/ a; i( (9 o, e~ Hlzl ga
_Z/ ( t,x) ‘|':“an t, ac)| |> ﬂve‘“'”'dm

=1

+ r(t)uv el de
R”

where : a;(t,z) = p;(t,z) — Y iy 88(1;’: (t,z),forj=1,...,n

Theorem 3.1 Under hypotheses (H1)-(H4), if p € V,, there is one and
only one function u, defined on [0,T] x R" such that :

we LA[0, T} V,), 5t € L*([0,T]; H,)
(IS u>1ae. m[OT]XR”u() Y and
VoeV,v> 9= —(2v—u), +a*(tu,v—u) >0

For this theorem, we refer the reader to [3], chapter 3, section 2 (see [21] for
a detailed exposition of the Bensoussan-Lions methods in this setting). Note
that the solution of system (I) is also the solution of the system obtained by
changing p into any number v > p.

Theorem 3.2 Let v € WUPH(R™), with p > n, and let u*(t,z) =
Sup,e7, - E (e_ J; T(S)dsw(Xﬁ’x)). Then u* is the solution of system (I).

Note that if ¥ € WIPH(R™), exp(—(u/p)|z])(z) is in WHPO(R™), there-
fore exp(—(p/p)|z|)1(x) has a bounded continuous version by the Sobolev
imbedding theorem (see e.g. [1]) and proposition 2.2 can be applied.

The proof of Theorem 3.2 when ¢ € W2P#(R"), with p > n/2 + 1
follows from the Bensoussan-Lions methods (see [3], chapterlll,n®4 or [21]
for details).For ¢ € W1P#(R™), with p > n, we need the following lemma :

Lemma 3.3 Let 0 < p < v. If v € WEPH(R™), with p > n, there exists a
sequence (), with ¥, € W2PY(R™) for all m, such that (1,,) converges
uniformly to .

Before proving this lemma, we complete the proof of Theorem 3.2. Let 1
and () be as in Lemma 3.3. Denote by u the solution of system (I) and



Uy, the solution of system (I) when % is replaced by %,,. With obvious
notations, we have : w), = u,, and u), — u* uniformly as m — oco. On the
other hand, it follows from [3] (chapter 3, paragraphs 1.8 and 2.13) that u,,
converges uniformly to u as m goes to infinity. Therefore, u = u*.

Proof of Lemma 3.3 : We can assume that ¢) vanishes in a neighborhood

of the origin. Let :

5 (loslzl 2\
b(x) = { gb( S |$|) if || > 1
0 if |2] <1

where 7 is a positive number to be chosen later. Note that ¢ vanishes in a
neighborhood of the unit ball and that :

V()| < % (%ﬂgm) ‘W <1Og7|ml|§_|>‘

where C' depends only on n.

By an easy computation, it follows that if v(p — n) > u, then
Jgn IVo(2)Pdz < oo, which implies that ¢ is uniformly continuous on R™.
From now on, we assume y(p —n) > p.

Now, let p be a nonnegative, C'"*° function, with compact support on R",
satisfying [pn. p(z)dz = 1. For any integer m, let :

pm(z) = m”p(mm)
¢m = *¢

and ¥, (z) = ¢om <6’Y|z | |)
T
Clearly, v, vanishes in a neighborhood of the origin for m large enough and
is C°°. Moreover, (1,,) converges uniformly to 1 as m goes to infinity, since

¢ is uniformly continuous. On the other hand, if a is a multiindex of length
la] < 2, we have :

ay (. ||l e o) £
| D%y ()] < Ce D% pyy % @) (e" |$|)

where C' depends only on v and n.
Therefore, for all positive v :

1/p
(L epin@)) <
R”
C’/ dy| D po(y </ dze=l=l(v=lalvp)

Vs

¢<e'vlrll| y)




By the substitution z = e"l*l(z/|z|), we get :

b <6’Y|I||z_| — )

-~ 4z LBV el gz — )
|z|>1

|Z|n—1

p

dze=lol(v=labp)
RTL

- i/ da (log |z + yln) |z + y|~W/I=lalen)| gz P
joy[>1 [z + 9l

Now, assume v > 2py and |y| < 1/3. Then :

I
/|z+y|>1 da Bl U ylo(a)l”

|m_|_y|n+ (1/v)(v—=|alp)

_ (log(1+ [z )" .
< oo T R )

Observe that :

||+ (1/7)(v=|alpy)

R”
Therefore, if v > 2py + p and m is large enough (so that suppp,, C {y €
R"| |y| < 1/3}), the right-hand side in (3.1) is finite for || < 2, and,
consequently, ¥, is in W2P*(R"), which completes the proof. o

Remark 3.4 One can construct a function in WH%#(R) which cannot be
approximated uniformly by functions in W?22#(R). Therefore, the number
v in Lemma 3.3 has to be greater than p.

3.2 One-dimensional models

In this section, we assume that » = 1 and that the drift term  and the
diffusion term o do not depend on X¢, so that (2.1) becomes :

dX; = B(1)dt + o(t)dW, (3.2)

where $ and o are C' functions on [0, 7], and inf,cpq ry0*(t) > n > 0.

Recall that in the classical Black-Scholes and Garman-Kohlhagen mod-
els, o, 3, v are constants, with 3 + 0%2/2 = r in the Black-Scholes case and
B+ 02/2 equals the differential interest rate in the Garman-Kohlhagen case.
We will also assume that 1 satisfies the following assumptions :



(H5) There exists g > 0 such that ¥(z)exp (—p|z|) is a bounded, continu-
ous function and admits a bounded (weak) derivative on R.

(H6) The function z — % (log(z)) is convex over (0, c0)

Note that (H5) and (H6) are satisfied by the put and call functions :¢,(z) =

(K —€")4, Y= (" — K)4.
We first observe that the flow of S.D.E. (3.2) is given by :

Xb = 4 /: B(v)dv + /ts o(v)dW, (3.3)

Therefore, assuming (H5) and using the results and notations of paragraph
3.1, we have :

u(t,z) = u*(t,z) = sup E (e_ ) T(S)dslﬁ(Xi’z))

T€T T

And, by (3.3) :

u(t,z) = sup E (e_ I r(s)dsy, <x + /: B(v)dv + /tT U(’U)dVVU)) (3.4)

T€T T

With this equality the following proposition is easy to prove.

Proposition 3.5 1. If 1 is nonincreasing (resp. nondecreasing) and sat-
isfies (H5), then u(t,.) is nonincreasing (resp. nondecreasing), for all
tel0,7].

2. If ¢ satisfies (H5) and (H6), then for all t € [0,T], u(t,log(.)) is a

convez function on (0,00).
We now state the main result of this section :

Theorem 3.6 Let ¢ satisfy (H5) and (H6), then u admits partial deriva-
tives Ou/ot, du/dz, 0%u/dx?, which are locally bounded on [0,T) x R. Fur-
thermore, with the notation A(t)u = (0%(t)/2)0*u/dz*+ B(t)0u/0z — r(t)u,
we have :
du/ot + A(t)u <0
{ (Ou/ot+ A(t)u)(¢p —u) =0

almost everywhere in [0,7) X R



Corollary 3.7 If ¢ satisfies (H5) and (H6), then du/0x is continuous on
[0, 7)x R

Note that, since % is not assumed to be continuously differentiable, we can-
not expect continuity of du/dz over [0, T]xR. Corollary 3.7 is an immediate
consequence of Theorem 3.6 and the following classical lemma (cf.[26], chap-
ter II, lemma 3.1).

Lemma 3.8 Let v(t,z) be a function mapping R? into R. Assume v admits
partial derivatives dv/0t, dv/dx, 0?v/dz?, which are uniformly bounded
on R%. Then, 0v/0z satisfies a Hélder condition in t with exponent 1/2,
uniformly with respect to x.

In order to prove Theorem 3.6, we will need the following lemma :
Lemma 3.9 If v satisfies (H5) then :

a(t.7) = sup B (6— 3 rtvayia (,r + / "Bt ayda + / 6U(t,a)dVVa))

0€To,1 0 0

with :

o 7(t,a)= (T —t)r(t+ (T — 1)),

o Blt,a) = (T = O)B(1 +a(T - 1)),

e d(t,a) =T —to(t+a(T —1)).

Proof : From equality (3.4), derive :
u(t,z) =
T—t d T—1 T—1
sup E (e_ Jo o r(t+a) “ (:U + / B(t + a)da + / o(t+ a)dWHa))
0 0

T€T T

As was recalled at the end of Section 2, we can replace 7; 7 by the subset
of stopping times with respect to the filtration (G;,)s>¢ of the increments
(Ws — Wy), s > t. Therefore, since the law of (W4, —_Wt)azo is the same
as that of (W, ).>0, we can state :

u(t,z) =
) TES?EIT)% . (e_ forr(t+a)da¢ <$ 4 /OT B(t + a)da + /OT o(t+ a)dWa))
(3.5)
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Now, observe that 7 € 7y 7_; if and only if 7 can be expressed in the form :
T = 0(1 —t), where 6 is a stopping time with values in [0, 1], with respect to
the filtration (H,), where H is the o-field generated by all random variables
War—y, @ < s. Since (Wyr_g)ano and (VT —tW,).>0 are identically

distributed, we obtain the following :
u(t,z) =

o(T—t)
sup E e_fo r(t+a)da %
0€70 1

X1 (x + /Oa(T_t) B(t + a)da + VT = t/oe ot + a(T — t))dl%))
(3.6)

and Lemma 3.9 follows from (3.6) by a change of variables in the integrals
with respect to da. o

Proof of Theorem 3.6 : 1) Choose p > 0 so that ¢ € V,,. From Theorem
3.1, we know that u € L*([0,7T];V,) and du/dt € L*([0,T]; H,) and that for
all v € V,, such that v > 9 :

- <@,v—u) + a*(t;u,v—u) >0 (3.7)
ot L

Let : v(z) = u(t, ) + ¢(x)e"*|, where ¢ is a nonnegative C*° function, with
compact support. From (3.7), we derive that —(0u/0t + A(t)u) defines a
nonnegative measure on (0,7") x R. On the other hand, since by proposition
3.4, u(t,log(.)) is convex for all t € [0,T], 0?u/dz? — du/Oz must be a
nonnegative measure on (0,7") X R. Therefore, the following inequalities
hold (in the sense of measures on (0,7) x R) :

ou 9 0*u ou

o w22+ % <o
0%u ou >0
022 Oz

Hence :
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Therefore 8%u/dz? € L?([0,T]; H,) and in order to prove Theorem 3.6, it
suffices to show that du/0t and du/dz are locally bounded on [0,7) X R
(derive (Qu/0t + A(t)u)(¢ — u) = 0 by setting v = ¢ in (3.7)).

2)In order to prove local boundedness of du/dz, fix z, y, € R? and note
that, for all 7 € 7; 1

‘w (:C + /tT B(a)da + /tT U(a)dWa> - (y + /tT B(a)da + /tT U(a)dWa>
< |z —y| sup

T T
e P (Z—I—/t ﬁ(a)da—}—/t U(Q)dVVa>‘

< Cla = ylexp (u(lal + lo) +u [ 18(@lda+ sl [ o(@yitv,))

<

where C' is some positive constant. Here we have used (H5). Since the
stochastic process (exp(p| f; 0(a)dW,]|))s>¢ is a submartingale and 7 < T,

E (exp n /tT U(a)dWa|)

o (m I a?(a)da)

we have :

IN

E <exp n /tT U(a)dWa|)

IN

2
Therefore, using (3.4), we have :
lu(t,z) — u(t,y)| < Clz — y|erlzlHIyD)

where C' is some positive constant. It then follows that u is locally Lipschitz
in z, uniformly with respect to t.Therefore, du/dz is locally bounded on
[0,7] x R.

3)It remains to prove local boundedness for du/d¢. For that purpose, we
will use lemma 3.9. Fix ¢, s in R? and 6 in 7o,1. Then :

0 _ 0 _ [
o I3 rltaia, (w + / B(t, a)da + / U(t,a)dWa)
0 0

e foe f(s,a)da¢ (m + /06 5(57 a)da + /00 o(s, a)dWa) ‘ <

” (,r + /Oeﬂ(t,a)da—l— /Oea(t,a)dWa)‘

12
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< e fo 7(t,a)da e~ fo 7(s,a)da




e foe 7(s,a)da

" (3; N /0 "Bt ayda + /0 "ot a)dVVa)

— (a@ + /06 B(s,a)da + /00 U(s,a)dWa) ‘
<Ot = s|exp (H(|=’f| + /00 16(t, a)lda + | /06 U(tya)dWal))

o - 9
+C /0 (ﬁ(t,a)—ﬁ(s,a))da—}—/o (5(t,a) — 6(s,a))dW,

[ [
Xexpul2|$|—|—|/0 5(t,a)dWa|—|—|/0 a(s,a)dWa|]

where (' is some positive constant. Here, we have used the boundedness and
regularity of » and (H5). Now, taking expectations of both sides and using
the regularity of 3, we obtain :

lu(t,z) — u(s,z)| <

0 4
Clt — s|e*"| sup E (expu (|/ o(t,a)dW,| + |/ U(S,a)dWa|))
0 0

0€70,1

To estimate the second term of the righthand side, we use the Cauchy-
Schwarz inequality and the following equality :

X

0
+Ce2Hl gup E(/ (a(t,a) — a(s,a))dW,
0

0€70,1

4 [
/ &(t, a)dW,| + / 5 (s, a)dW,
0 0

Xexpu(

2
E

/Og(a(t, a) — 6(s, a))dW,

E/j(a(t,a) _ 5(s,0))%da
T

E (/0 (o(t,a) - U(s,a))Qda)

Using the definition of ¢ and the fact that ¢ — /T — ¢ is continuously
differentiable on [0,7"), we obtain that du/dt is locally bounded on [0,7) xR,
which completes the proof. o

IN

Remark 3.10 Regularity results similar to corollary 3.6 can be obtained
without using variational inequalities (see [32], [13], remark 5.7).
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We conclude this section with some remarks concerning the American
put price in the Black-Scholes model. Therefore, we assume o, 3, r constant
and 8 =71 — 0?/2, with r > 0 and we set : ¥(z) = (K — €”)4.

Remark 3.11 Let P(t,z) be the American put price at time ¢ when the
current stock price is z : P(t,z) = u(t,log(z)). It follows from proposition
3.5 that for all ¢ € [0,7], P(¢,z) is a convex, nonincreasing function of z.
From equality (3.4), we derive :

P(t,x) = sup E (I(B_T(T_t) _ xeg(WT—Wt)—(02/2)(T_t))

T€T T +

It follows that lim,_o P(¢,z) = K and that P(t,z) > Py(t,z), where

Py(t,z) = E (Ke_T(T—f) _ xea(WT—Wt)—(a2/2><T—t))+

is the price of the European put option. Therefore, P(t,z) > 0if (t,z) €
[0,7) x [0,00). The above properties yield that, for each ¢ € [0,7), there
exists a real number s(¢) > 0 such that :

<s(t) = P(ta)=(K - 2);
>s(t) = P(t,z)> (K —2)4
In the financial literature, s(t) is refered to as the “critical stock price” since
the option should be exercized as soon as the stock price becomes smaller
than s(t). A study of the function ¢ — s(¢) (for the case of a warrant or a call
option rather than a put option) can be found in [32] (see also [15]). Using

equality (3.5), it is easy to show that P(¢,z) is a non increasing function of
t. Therefore, s(t) must be a nondecreasing function of t.

Remark 3.12 We now observe that for a put option, there is only one stop-
ping time 7 maximizing E(Ke™"(7=1) — ze7Wr=Wi)=(0*/2)(7=1))__ Indeed, we
know (see e.g. [11]) that the smallest optimal stopping time is given by :

7 =inf{f € [t, T]| X;” < log(s(6))}
It follows from well-known properties of brownian motion that
inf{f > r|X;" < X1} =1

almost surely. Therefore, on the set {7 < T}, there exists a sequence (6,,)
decreasing to 7, which satisfies : Vn > 0 Xy, < X,. Therefore Xy, <
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log(s(7)) < log(s(8,)). But, on the open set O = {(#,z)|z < logs(0)} we
have :u(t,z) = K — €”. Therefore :

ou o? . o?
o + A(t)u = ——€" — (r — 7)6 —ru(t,z) <0

Hence :

? du
0 > 7 / (S5 + Atyu)(s, X,)ds < 0

since (X1"),>¢+ spends some time in O on any interval [r,6]. It follows that
T coincides with the largest optimal stopping time (cf.[11] or [28]).

4 Localization and discretization of variational in-
equalities

This section deals with numerical computation of solutions for variational
inequalities involved in the pricing of American options.

We assume that (H1),(H2),(H3),(H4),(H5) are satisfied and more-
over we suppose that the differential operator involved in the variational
inequality does not depend on time a”(%,.,.) = a”(.,.). Under these as-
sumptions, we have shown in previous sections that the price of an American
option is the unique solution u(t, z) of the following system of inequalities :

Find v € L2([0,T]; V,) such that :
ou
—- € L*([0,T],H
815 € ([7 ]7 M)

u(T) =1 »
w>1 pop.in [0,T] x R" (4.9)
Vo € V, if v > 9 then

ou
B w —u) >
(at,v u)ﬂ—}—a(u,v u) >0

In order to compute u we proceed in two steps :
e we localize the variational inequality in an open bounded set of R".

¢ we compute the solution to the localized problem using finite difference
methods.

The second part is well known. The reader is refered to [18] for background
and proofs. We will only show how to use these results in our framework.
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4.1 Localization
Let (X5")s>¢ be the solution of the stochastic differential equation :

dXs = p(Xs)ds+ o(Xs)dW, if s>t
Xt = XT.

We want to compute :

u*(t,z) = sup E <e_ ftTT(S)d5,¢ (th—,z))

T€Ty T

Let T3 = inf{s > ¢, |X}*| > K} and :

AT .
itz = sup Bdexp (= [ rtpds) v (X0 )
TE Ly T N

Let Br = {z € R", |z| < R}. The following proposition compares u* with
Uy

Proposition 4.1 Under assumptions (H1),(H2),(H3),(H4),(H5), u}
converges to u (uniformly on compact sets) as K goes to infinity. For all
R>0:

lim  sup [u(te) - (fa)] = 0

K—=00 (t.2)€[0,T]xBr

Proof : Clearly :

lu” (t, ) — uj (t,z)| < 2E (Fou% ‘lﬁ (X”) ‘ 1{T;ﬁ<T})

So using assumption (H5) we obtain :

w (t,2) — wl (t,2)| < 2My/E (M= n| XY Jp (1717 < 7
K K

where M is a positive constant. Using inequality (2.5) we have :

t,x
sup E (eQMsup[th”Xs |) <(C <+
(t.0)€[0,T]x Bx

where (' is a constant depending only on T, R and the bounds on  and o.
In order to complete the proof, we need to prove that :

lim  sup PY{TH"<T}=0
K—4c [0,T]xBr { K }
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Now since :

> K}

By using the stochastic differential equation defining X** and bounds £ and

&g on 8 and o we get :
{sup ‘);” > K} c U { sup </ a(Xs)dVVS)
(t,T1] 1<i<n s€ft,T] t :

Therefore :

{ric <7} = {palt

>%(K—R—6T)}.

> K} < nP{ sip |8 > ~ (K - R—BT)}
€ ] n

P sup‘Xﬁ’z
[th] S [0,5’2T

and the desired result follows easily. o

Remark 4.2 We can obtain the same kind of results if u}- is replaced by :
Uy (t,z) = sup Eqe” ftTT(S)dszb xbhe 1 to
Kb = R ) Ho<Tiy

or by :
hom= s B (e (1))

T€T T

where X is the solution of the stochastic differential equation reflected in
point K and — K in the sense of Skorohod.

We will suppose now that a number K is given such that «* and u7 are
close enough for practical purposes.

4.2 Discretization

Let us denote :

Ok = {zeR” [z|< K}

00k = {reR" a = K)

HK = L2 (QK) 9

Vi = {f € Hg, a_f € HK}
z

17



Let :

ag(u,v) = - Auvdz
QI\
= Z / a;j(x @((nd / a;(x )8—vdm + ruvdx
1<Sigan I 8:6 Ox Qe Ox Qx
where :

aj(e) = fia) — 3 2

1<i<n 0z

Under assumptions (H1), (H2), (H3), (H4), (H5), u} (¢, z) is the unique
solution of the following variational inequality :

(z)

u e L2([0,T]; Vi)

90 € 12(10,7; A
u > ae. in [0,T] x Qx

Vv € Vo if v > 1 then — (%, v — u) +ag (u,v—u) >0
K

w=pif o € 00k ’

uT) =19

This result can be obtained by using theorems of [3] (chapter 3, section 4)
and the method of paragraph 3.

Let us rewrite the previous inequality as an homogeneous mequahty Let
¥ be a smooth function (C?(R™,R) for instance) such that ¥ = % on an
open neighbourhood of dQx. Such a function will be easy to find in all
practical cases of option pricing. Let u’ be u — ¥, then u' is solution of :

u' E L%(Vk)
J
8—1; € L2([0,7); Hx)
w' > 1 — 1 p.p. in [0,T] X Qx
!

Vo € Vo if v > 9 — 1) then — <(9_u

ot
u=0if z € 8}2]{
W)= p

,v—u’) + ax (u’,v—u’) >0
K

(4.10)

Discretization of inequation 4.10 can be obtained using results of [18].

Let h be (hy,ha,-- -, hy), with h; > 0. h is supposed to be small. Let Q, be
the approximation of Qx obtained by :
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o R ={M e R", M = (mihy,---,muh,), m; € Z}

o if M € Ry then let :

wg(N[) = ﬁ](mZ — 1/2) hi,(mi + 1/2) hz[

th:{MGRh,Wzl, n wh<Mi )CQB}

Then let Hp = Vect (HhM)MeQ , where, 6M = 1w2(IV[). We approximate the
h

partial derivative by a finite difference operator :

T

(0;0) () = h% [¢ (96‘ + %ei) - (:C — %Q)] .

If up, vy € Vi, we define :

o aj (up,vy) by

Z / a;j(z)b;upd; vhdm—/ a;(z)vpbupdr + rupvpde,
1<7,5<n Qx O Qx

o (- )n by (un,vn), = [q, unvnde,
o Ay by ah(uh,vh) = —(Ahuh,vh)h for all up, vy € Hp.

Application :

Let n =1 and :
A_1 82+ 0
0z2 oz

then :

1 U— . . - i
(Anun); = 573 (u‘;fl —2u) + ul” ) + 57 ( AR 1) — .

Let ¥ be ¢ — 1, K be {ve Vg, u> 1} and :

lbh(ﬂ/[) = o=
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f = — A4 is approximated by fi = —Aptn, K by K where :
Kn = {(un)meq,, v > on(M)},
and the initial value by :
urp(M) = Pr(M)

The derivative of v, with respect to time is approximated by,

dvpp(t) = %(vh,k(t) — vnk(t = k)),

where £ is the time step. Let N be an integer and k£ = T'/N, the discretized
inequality can be stated as :

find (uz)lﬁiSN such that :

up (M) = (M) ,

if1<i< N, uZh is obtained from u}fl by solving :

(D) ‘ui’ e Ky,

Yo, € Ky, (uﬁfl — u}L + kAhu’g"e — kffl, v, — 'uz)h <0

it il i il
u,' =y +0(uh—uh)

The approximating solution is now :

upk(t,z) = Y U2($)11(¢—1)k,¢k](t)

1<i<N

It can be proved using theorem 3.1 of [18] that uj  converges to u*. More
precisely :

Theorem 4.3 Assume that 0 € [0,1] and that h and k go to 0, and if < 1
that k/h* goes to 0, then :

o limupy = u* in L? ([0,T], L*(Qk))

© i 12 ([0, T), LX)

k3

o foralll <i<n,liméupy =

Remark 4.4
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o Let u} — ui 4y, we can restate (D) as :

up (M) = pu(M),
Find uj > 1y, such that :
Yo > ¥y (uﬁl — u}L + kAhuﬁ&,vh — u}L) L <0
uit? = it 40 (u — i)
Clearly regularity assumptions on 1 prove that the convergence results
for up 1 + 1 are consequences of the ones for uy, .

e It seems that unconditional stablity has been proved only if 8 = 1,
that is to say for the fully implicit scheme. Recall that in the case of
equations the schemes obtained by letting # = 1/2 (Crank-Nicholson
scheme) or § > 1/2 are unconditionaly stable.

e The same kind of convergence results can be obtained in the case of
Neumann boundary conditions on Q.

5 The Brennan-Schwartz algorithm

5.1 Variational inequalities in finite dimensional spaces

This subsection is meant to prepare the way for a discussion of the Brennan-
Schwartz algorithm. The inner product of two vectors u, » € R™ will be
denoted by (u,v) and we will write u > v if :

Vie{l,---,n} w; >
and |u|? for (u,u).

Proposition 5.1 Let A be an nxn matriz and u, 8, ¢ € R™. The following
two systems are equivalent :

Au > 0

(1) u>¢
(Au—6,¢—u) =0

/ w> ¢
() {V'vqu, (Au—6,v—u) >0

21



This proposition, which expresses the linear complementarity problem as a
variational inequality is well known (see e.g. [25] chapter 1 for a proof).
The following result is due to Samuelson, Thrall and Weisler [30].

Theorem 5.2 The linear complementary problem (I') has a unique solution
for all vectors 8, ¢ if and only if A has positive principal minors.

Note that this property is satisfied if A is coercive in the following sense :
IC >0Vz € R" (Az,z) > Clz|%

For a direct proof of Theorem 5.2 in the coercive case we refer the reader
to [18] chapter 1, paragraph 3.1 or [25] chapter 1, paragraph 4.

The following characterization of the solution, which can be found in
[10], has some connection with the notion of “reduite” in potential theory :

Proposition 5.3 Assume the nondiagonal coefficients of a coercive matriz
are non positive. Then the solution of (I) is the smallest vector u satisfying :

Au>60 u>¢

In the next two propositions, we assume that A is a tridiagonal matrix,
which we denote in the following way :

b1 (4] 0 0
a9 bg C9 0
(1) A= 0 0

This type of matrix appears in finite difference schemes of approximations
in one dimension.

Proposition 5.4 If A is a matriz of type (T) with ¢; = 0 for all i €
{1,---,n — 1}, and b; > 0 for all i € {1,---,n}, then, for all 8, ¢ in R",
the unique solution of system (I) can be computed by solving the following
recursive relations :

u1=%V¢1
uj = %(@—aju]-_l)\/gbj for2<j<n
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This proposition is an immediate consequence of the following equalities :

(Au)l = blul
(Au); = bju; + ajuj_q for j € {2,---,n}

Note that, here, A need not be coercive.
Now, given any coercive matrix of type (71") consider the matrix A defined

by :

by 0 0 0
a9 bg 0 0
A=1 0 0
: . . .0
o -~ 0 a, b,

where b, = b, and b;_1 = b;_1 — (ci_l/l;i)ai, forall i € {2,---,n}.

Lemma 5.5 If A is coercive b; > 0 for all i € {1,---,n}.

Proof : Note that, for 1 <i <mn, [}, (NJ]‘ is the determinant of the matrix
derived from A by erasing its (¢ — 1) first lines and columns. This matrix,
being a submatrix of A is coercive and therefore, its determinant is positive.
Hence, b; > 0 for all i € {1,---,n}. o

If # € R™, denote @ the vector with coordinates satisfying 6, = 6, and
b4 = 0;_1 — ci_léi/l;i, whenever ¢ € {1,---,n}. Clearly the two systems
Az = 8 and Az = 6 are equivalent. The following proposition generalizes
this property to some variational inequalities.

Proposition 5.6 Assume A is a coercive matriz of type (T') with ¢; < 0
forall j € {1,---,n — 1}. If the solution u of system (1) satisfies u; = ¢;
whenever 1 < i1 < k, and u; > ¢; whenever k < i, for some k € {1,---,n},
then u is also a solution to system (I) :

Proof : Since ¢;_1 <0 &ni 0 (by lemma 5.5), we have —ci_l/i)i >0
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for all i € {2,---,n}. It follows that, for all 7 € {1,---,n — 1}, there exist
non negative numbers A; ;11, -, A;, such that :

0; = 0; + Niip1Oip1 + -+ Ny
and (Au) = (Au) + A1 (Au); 4o+ Xin (Au),,. Therefore if u solves
system (/), we have (%Iu) > 6. Moreover, under the assumptions of Propo-

sition 5.6, equality holds whenever 7 > k, since (Au)]- is then equal to 6; for

all 7 > 7. Hence u solves (f) o

Remark 5.7 From Propositions 5.4 and 5.6, a very simple algorithm can
be derived for solving (/). The difficulty in practice will come from the
verification of the assumption on u in Proposition 5.6. This assumption is
essential as the following example proves. Let n = 3,

1 -1 0
A=| —¢ 1 0
0 0 1
with 0 < e < 1,
0 1
=10 ¢ =
1 0

The unique solution of system (f ) is given by :

and satisfies @y = ¢1, 4y = ¢2 and @3 > ¢3 but does not solve system (I).

Remark 5.8 Similarly, a very simple algorithm can be derived if A is coer-
cive of type (T'), with a; < 0 and if the solution u satisfies u; > ¢; whenever
1 <1<k and u; = ¢; whenever 7 > k. Indeed we only need to renumber
the indices in decreasing order and apply the above results.
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5.2 The validity of the Brennan-Schwartz algorithm

Recall that for classical models, the calculation of the price of an American
option reduces to solving the following system, in which we have made the
change of variable t — (T —t).

u > P
Jou o d%u Ju
Y >
31(59 5 9%22 ﬁag—l—ru_()
u o 0%u U
ot 7@‘%3*"“)”‘“*0
u(0) =9

with ¥(z) = (K —e”), for a put option and ¥ (z) = (e* — K), for a call
option. For simplicity we assume ¢(z) = (K — e”)_ (see remark 5.13 below
about call options). The implicit discretization scheme leads to approximate
the vector :

(u (1AL JAT))oci N, ny<ij<na

by the vector :

(uf)ogigN,nl <j<ny
obtained by solving the following set of equations :
ﬂ? =¥(jAz) Forng +1<j<nyg+1.
forl§i§1Va11dn1+1§j§n2+1:
iy + b 4 ety > u
PR R
(aﬂ;_l +but + ety — ﬂ;‘l) (a} - ¢(ij)) =0
u,, =P (nmAxzx) ty,, =0

where : Auo? A
_ t t
a = _Q(A;)Q * P24z
2
b = 1+ (AAf;T)Q + rAt
c = _ Ato? g At
2(A'L‘)2 2Azx

and NAt = T, [n1Az,nyAz] beeing a sufficiently large interval about
log(K).

Note that the last line of system (D) corresponds to Dirichlet boundary
conditions, whereas Brennan and Schwartz use mixed conditions, Dirichlet
in nyAz and Neumann in nyAz (see remark 5.12 below). The Brennan-
Schwartz algorithm method [5], applied to system (D) goes as follows :
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1. From the first line of (D) get (a?)n,<j<n, -

v (7 il : )
2. Derive (u])nlSan2 from (u] )n1§j§n2 through the following equa
tions :
ﬂ;l = P (nmAz)
o= (E(E e vean mr1<i<m -
u, = P(nAz)=0

in which the following notations are used :

~ ~ c
bp,—1=5b and b;_1 =b;_1 — ia
fi
and : .
~1—1 _ —1—1 ~1—1 _ —1—1 ~7—1
Upooq = Upy gy Uj_y = Uy — iuj .
fi

forall j € {ny +2,---,n9 — 1}

We will give a justification of this procedure, using the results of paragraph
5.1 and special properties of 1. We first restate system (D) as a set of
variational inequalities.

Let n = ny — n; — 1 and ' be the vector in R”, with components
u; = 'ﬁ§+n1 for 1 < j < n. Given any vector v € R", denote ¥ the vector
with components 91 = v1 —a%) (n1Az) and v; = v; whenever 2 < j < n, and
let A be the following n X n matrix :

b ¢ 0 0
a b 0
A=10 0
N . ‘. . C
0 --- 0 a b

System (D) is equivalent to the following set of inequalities :

i, =9 (mAz)  ay,

ud = o)

And for1 << N :
Aut > 41 u' >
(Au' — = u' — @) = 0

=9 (ngAz) 0<i<N

(D)
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where ¢ is the vector with components :
¢j=v¢((n1+j)Az), 1 <i<n.

It is now easy to see that in order to justify the Brennan-Schwartz al-
gorithm, it suffices to prove that the assumptions of Proposition 5.6 are
satisfied for each of the N variational inequalities in (D’). To this end we
will assume that the following condition is satisfied :

02

Note that 5.1 is satisfied when Az is small enough and that it implies a < 0.

Lemma 5.9 If (5.1) is satisfied, A is a coercive matriz and satisfies the
folowing property :

Az >0andz #0 = Vie{l,---,n}z;>0

Proof : Using the fact that a and ¢ are negative, we get :

n n n—1
(Az,z) = Z ar;_1z; + be? + Z CT;T 41

n n n—1
a c
> 53 (s tad) 40t 45 X (e 4 k)
=2 =1 i=1
> (a+ b—l—c)Zac? =(1+ rAt)Zm?
=1 =1
This proves coercivity. o

Now suppose Az > 0. Then, with the notations of paragraph 5.1, Az >
0. Indeed the numbers A;; introduced in the proof of Proposition 5.6 are
positive since ¢ < 0 and ¢ < 0. If, in addition, 2 # 0, it follows that

(%Iac)l > 0 and using the negativity of @ again, we conclude that z; > 0 for
all y € {1,---,n}.

Lemma 5.10 Let :
I'(¢y) = {j€Z v(jAz)>0 and
app((j — 1)Az) + b¢(jAz) + cip((j + 1)Az) > P(jAz)},
The set I'(y)) has the following property :

Joel(¥) = Vji<ijo jeTl(v).
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Proof : Let ¢(z) = K — €”. Using ¢ < 0, it is easy to prove I'(¢) C ().
On the other hand, we have :

{7 €2, (G +1)Az) # 0} C I (¥).
Now, for any integer j :

ap((j — DAZ) + b(jAZ) + ct((j + 1)Az) — Pp(jAz) =
(a+b4ec—1)K — 87 (ae_Ax + b+ e — 1)

In the latter equation, the righthand side is a monotonous function of 7,
whose limit as j goes to —oco is : K(a+b+c—1) = Krh > 0. It follows
that : B B
Joel(®W) = Vji<ijo jeTl(¥).
And Lemma 5.10 follows from the inclusion relations between I'(¢)) and
r(). o
The following proposition together with the results of paragraph 5.1

completes the justification of the Brennan-Schwartz algorithm for solving
system (D).

Proposition 5.11 Let u®,u',---,u" be the solution of (D). The following
properties are satisfied :

1. Yie{l,---,N} wu>u"!
2. For each 1, there exists an index k; such that :

o u; = ¢; whenever 1 < j <k,

o and u; > ¢; whenever j > k;.

Proof : The first property is proved by induction. Clearly u' > u® = ¢.
If ' > w'~" then Auw't' > 4'~! and u't! > ¢, therefore, by Proposition 5.3
witl >yt

For the second assertion we first assume that ¢ = 1. Since ¢ # 0, it
follows from Lemma 5.9 that u} > 0 forall j € {1,---,n}. Now we assume
that there exists an interval of integers [l1,l5] with 1 < [; < I3 < n such
that :

ull2 = ¢y, and u} > ¢; whenever j € [ly,13]
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By diminishing /; if necessary, we can assume that either [; = 1 or u;,_; =
¢1,—1. From (Au1)12 > ¢, and ull2 = ¢1,, we derive :

1 1
aulg—l —I_ b¢12 —I_ Cul2+1 Z (blg

and, since ¢ and ¢ are negative :

agr,—1 + boy, + chr, 41 > @y,

Therefore n; + I3 € 1I'(¢) and by Lemma 5.10, [nq + 1,n1 + 3] C I'(¢),
therefore (Ap); > ¢; for j € [1,1y]. Since for all j in [l 1], (Aul)j = ¢s,
it follows that u' satisfies (Aul)j < (A@); for j in [li,l[. Therefore, the
vector v = ¢ — u! satisfies (A’U)j >0 for jin [l1,le[, v, = 0 and, if [y > 1
v,—1 = 0. Applying Lemma 5.9 to a submatrix of A, we infer that »; > 0
for j in [ly,[3]. Hence u} < ¢; for j € [lh, 3], which leads to a contradiction.
Therefore the second assertion must be satisfied for + = 1.

It is now easy to complete the proof by induction. Assume the second
assertion is true for i and that [l1, /5] is an interval such that u}jl = ¢y, and
u;'H > ¢; for j in [l,l[. Then using the first property we have u'}? = ¢y,
therefore u’: = ¢; for j < I, and the same reasoning as above leads to a

J
contradiction. o

Remark 5.12 The above results can be extended to the solution of a dis-
cretized system involving a Neumann condition at nyAwz : u;,, = u;, ;. The

matrix A is then slightly different since its last diagonal entry must be b+ c.
Note that A is coercive if the following condition is satisfied :

At
1+TAt_/3EZO

Remark 5.13 In the case of a call option, a similar algorithm can be jus-
tified along the same lines, using remark 5.8 (whereas a direct application
of the Brennan-Schwartz algorithm would lead to a false solution). Instead
of Lemma 5.10, the property to be used in that case is the following :

Joel(¥) = Vi>jo, jeET(¥)

Remark 5.14 For some functions 1, there seems to be no justification of
the Brennan-Schwartz techniques. Consider, for instance, ¥(z) = |e* — K|.
The application of the Brennan-Schwartz algorithm to % in the Garman-
Kohlhagen model does not solve the finite dimensional variational inequality.
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The owner of the American option defined by this function would have the
right to buy or sell one unit of foreign currency at price K, before the date
of maturity (note that this is not equivalent to holding one American call

and one American put simultaneously).

6 Pivoting methods

6.1 Generalities

In this section, we survey general methods for solving the following linear

complementarity problem:

([ Au>0

I) u> ¢
(Au—6,0—u)=0

If welet A= Au—0, s=u— ¢,and § = Ap — 6, problem (I) is equivalent
to:

A=06+ As
(I1) { X>0,5>0
(A,s)=0

Several direct methods have been proposed to solve problems of type (/7).
The algorithm of Lemke (see [27]) is a general-purpose method for these
problems. For the class of all matrices with positive principal minors, a
principal pivoting method has been developed (see Cottle and Dantzig [8])
based on the fact that this class is invariant under principal pivoting (see
Tucker [31]). These algorithms are in the worst case exponential which is
not surprising in view of the NP-hardness of problem (I7) (see [7]).

In our specific problem, however, the matrix A has other interesting
properties besides the fact of being coercive: it belongs to the class of ma-
trices with nonpositive off-diagonal entries, and it is also tridiagonal. We
will see next how to take advantage of this fact.

6.2 Algorithm for matrices with nonpositive off-diagonal en-
tries

As applied to problem (I7), pivoting methods consist of successively ex-
changing the roles of dependent (initially the A’s) and independent (initially
the s’s) variables in order to obtain an equivalent system in which the trans-
form of ¢ is nonnegative. Having done this, one would set the independent
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variables to zero and obtain the values of the corresponding dependent vari-
ables. Specifically, suppose that §; is initially negative and a;; positive, an
exchange of A; and s; (i.e., a principal pivot on a;;) would cause s; to be
dependent (or ‘basic’) and é; to be transformed to —6;/a;;.

An important fact about a matrix with nonpositive off-diagonal entries
is that once a s-variable s; becomes dependent, it never decreases as a result
of future principal pivot operations and thus stays dependent. This fact can
be illustrated by considering a line (say, the i) of the system (I7) in which
a pivot is called for:

Ai =0 +ansy+ -+ agsi+ o+ aips;+ o+ ainsy (6.1)

If ; < 0 and a;; > 0, a pivot on a;; can be interpreted as augmenting the
value of s; (while keeping the value of the other independent variables to 0)
until A; (= é; + a;;s;) becomes zero, in which case \; becomes independent
and is thus exchanged with s;. This being done, any future pivot, say on
a;;, would result in an increase of s; and, since a;; < 0 in equation 6.1, in a
non-decrease of s;.

This fact has been exploited by Saigal (see [29]) who proposed the fol-
lowing direct method for solving (II) when A is a matrix with nonpositive
off-diagonal entries:

Algorithm(Saigal)

1. Let I = {i:6; <0}

2. If I is empty, stop: s = 0 and A = ¢ is a solution.
Else choose 7 in I.
If a;; <0, stop: no solution.
Else pivot on a;;.
Rename the transform system as A = ¢ + As.
Drop column ¢ from matrix A and go to Step 1.

This algorithm gives a solution (if any) in at most n pivots. The overall
complexity is thus O(n?).
6.3 The tridiagonal case

In the case the matrix A is also tridiagonal, one can adapt the previous
algorithm (see Cottle and Sacher [9]) so that the number of nonzero entries
in each rows of the system is, at any time, bounded by 4. The running
time of the method is then O(n?). In [9] the practical implementation of
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this algorithm seemed very efficient for solving problems quite similar to the
one discussed here. It is an open problem to know if this algorithm could
possibly have a linear running time on average. It would also be interesting
to investigate thoroughly the iterative method developed by Chandrasekaran
([6]) for these special matrices.

The authors are grateful to O. Chateau and D. Gabay for fruitful con-
versations about this work.
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