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Abstract
Value-at-risk (VAR) is an established measure
to assess risks in critical real-world applications
with random environmental factors. This paper
presents a novel VAR upper confidence bound
(V-UCB) algorithm for maximizing the VAR of
a black-box objective function with the first no-
regret guarantee. To realize this, we first derive
a confidence bound of VAR and then prove the
existence of values of the environmental random
variable (to be selected to achieve no regret) such
that the confidence bound of VAR lies within that
of the objective function evaluated at such values.
Our V-UCB algorithm empirically demonstrates
state-of-the-art performance in optimizing syn-
thetic benchmark functions, a portfolio optimiza-
tion problem, and a simulated robot task.

1. Introduction
Consider the problem of maximizing an expensive-to-
compute black-box objective function f that depends on
an optimization variable x and an environmental random
variable Z. Due to the randomness in Z, the function evalua-
tion f(x,Z) of f at x is a random variable. Though for such
an objective function f , Bayesian optimization (BO) can be
naturally applied to maximize its expectation EZ[f(x,Z)]
over Z (Toscano-Palmerin & Frazier, 2018), this maximiza-
tion objective overlooks the risks of potentially undesirable
function evaluations. These risks can arise from either (a)
the realization of an unknown distribution of Z or (b) the
realization of the random Z given that the distribution of
f(x,Z) can be estimated well or that of Z is known. The
issue (a) has been tackled by distributionally robust BO
(Kirschner et al., 2020; Nguyen et al., 2020) which maxi-
mizes EZ[f(x,Z)] under the worst-case realization of the
distribution of Z. To resolve the issue (b), the risk from the
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uncertainty in Z can be controlled via the mean-variance
optimization framework (Iwazaki et al., 2020), value-at-risk
(VAR), or conditional value-at-risk (CVAR) (Cakmak et al.,
2020; Torossian et al., 2020). The work of Bogunovic et al.
(2018) has considered adversarially robust BO, where z is
controlled by an adversary deterministically.1 In this case,
the objective is to find x that maximizes the function under
the worst-case realization of z, i.e., argmaxx minz f(x, z).

In this paper, we focus on case (b) where the distribution of
Z is known (or well-estimated). For example, in agriculture,
although farmers cannot control the temperature of an out-
door farm, its distribution can be estimated from historical
data and controlled in an indoor environment for optimizing
the plant yield. Given the distribution of Z, the objective is
to control the risk that the function evaluation f(x, z), for a
z sampled from Z, is small. One popular framework is to
control the trade-off between the mean (viewed as reward)
and the variance (viewed as risk) of the function evaluation
with respect to Z (Iwazaki et al., 2020). However, quanti-
fying the risk using variance implies indifference between
positive and negative deviations from the mean, while peo-
ple often have asymmetric risk attitudes (Goh et al., 2012).
In our problem of maximizing the objective function, it is
reasonable to assume that people are risk-averse towards
only the negative deviations from the mean, i.e., the risk of
getting low function evaluations. Thus, it is more appropri-
ate to adopt risk measures with this asymmetric property,
such as value-at-risk (VAR) which is a widely adopted risk
measure in real-world applications (e.g., in banking (Basel
Committee on Banking Supervision, 2006)). Intuitively,
the risk that the random f(x,Z) is less than VAR at level
α ∈ (0, 1) does not exceed α. Hence, by specifying a small
value of α as 0.1, this risk is controlled to be at most 10%.
Therefore, to maximize f while controlling the risk of un-
desirable function evaluations, we aim to maximize VAR of
the random function f(x,Z) over x.

The recent work of Cakmak et al. (2020) has used BO to
maximize VAR and has achieved state-of-the-art empirical
performances. They have assumed that we are able to select
both x and z to query during BO, which is motivated by

1We use upper-case letter Z to denote the environmental ran-
dom variable and lower-case letter z to denote its realization or a
(non-random) variable.
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fact that physical experiments can be studied by simulation
(Williams et al., 2000). In the above agriculture example,
we can control the temperature, lighting, and water (z) in
an indoor environment to search for the optimal amount of
fertilizer (x), which can then be used in an outdoor environ-
ment with random weather factors. The work of Cakmak
et al. (2020) has exploited the ability to select z to model
the function f(x, z) as a GP, which allows them to retain
the appealing closed-form posterior belief of the objective
function. To select the queries x and z, they have designed
a one-step lookahead approach based on the well-known
knowledge gradient (KG) acquisition function (Scott et al.,
2011). However, the one-step lookahead incurs an expensive
nested optimization procedure, which is computationally
expensive and hence requires approximations. Besides, the
acquisition function can only be approximated using sam-
ples of the objective function f from the GP posterior and
the environmental random variable Z. While they have anal-
ysed the asymptotically unbiased and consistent estimator
of the gradients, it is challenging to obtain a guarantee for
the convergence of their algorithm. Another recent work
(Torossian et al., 2020) has also applied BO to maximize
VAR using an asymmetric Laplace likelihood function and
variational approximation of the posterior belief. However,
in contrast to Cakmak et al. (2020) and our work, they have
focused on a different setting where the realizations of Z
are not observed.

In this paper, we adopt the setting of Cakmak et al. (2020)
which allows us to choose both x and z to query, and assume
that the distribution of Z is known or well-estimated. Our
contributions include:

Firstly, we propose a novel BO algorithm named Value-at-
risk Upper Confidence Bound (V-UCB) in Section 3. Unlike
the work of Cakmak et al. (2020), V-UCB is equipped with
a no-regret convergence guarantee and is more computa-
tionally efficient. To guide its query selection and facilitate
its proof of the no-regret guarantee, the classical GP-UCB
algorithm (Srinivas et al., 2010) constructs a confidence
bound of the objective function. Similarly, to maximize
the VAR of a random function, we, for the first time to the
best of our knowledge, construct a confidence bound of
VAR (Lemma 2). The resulting confidence bound of VAR
naturally gives rise to a strategy to select x. However, it re-
mains a major challenge to select z to preserve the no-regret
convergence of GP-UCB. To this end, we firstly prove that
our algorithm is no-regret as long as at the selected z, the
confidence bound of VAR lies within the confidence bound
of the objective function. Next, we also prove that this query
selection strategy is feasible, i.e., such values of z, referred
to as lacing values (LV), exist.

Secondly, although our theoretical no-regret property al-
lows the selection of any LV, we design a heuristic to select

an LV such that it improves our empirical performance over
random selection of LV (Section 3.3). We also discuss the
implications when z cannot be selected by BO and is in-
stead randomly sampled by the environment during BO
(Remark 1).

Thirdly, we show that adversarially robust BO (Bogunovic
et al., 2018) can be cast as a special case of our V-UCB when
the risk level α of VAR approaches 0 from the right and the
domain of z is the support of Z. In this case, adversarially
robust BO (Bogunovic et al., 2018) selects the same input
queries as those selected by V-UCB since the set of LV
collapse into the set of minimizers of the lower bound of the
objective function (Section 3.4).

Lastly, we provide practical techniques for implementing V-
UCB with continuous random variable Z (Section 3.5): we
(a) introduce local neural surrogate optimization with the
pinball loss to optimize VAR, and (b) construct an objective
function to search for an LV in the continuous support of Z.

The performance of our proposed algorithm is empirically
demonstrated in optimizing several synthetic benchmark
functions, a portfolio optimization problem, and a simulated
robot task in Section 4.

2. Problem Statement and Background
Let the objective function be defined as f : Dx ×Dz → R
where Dx ⊂ Rdx and Dz ⊂ Rdz are the bounded domain
of the optimization variable x and the support of the envi-
ronmental random variable Z, respectively (dx and dz are
the dimensions of x and z, respectively). The support of Z
is defined as the smallest closed subset Dz of Rdz such that
P (Z ∈ Dz) = 1. Let z ∈ Dz denote a realization of the
random variable Z. Let f(x,Z) denote a random variable
whose randomness comes from Z. The VAR of f(x,Z) at
risk level α ∈ (0, 1) is defined as:

Vα(f(x,Z)) , inf{ω : P (f(x,Z) ≤ ω) ≥ α} (1)

which implies the risk that f(x,Z) is less than its VAR at
level α does not exceed α.

Our objective is to search for x ∈ Dx that maximizes
Vα(f(x,Z)) at a user-specified risk level α ∈ (0, 1). In-
tuitively, the goal is to find x where the evaluations of the
objective function are as large as possible under most real-
izations of the environmental random variable Z (which is
characterized by the probability of 1− α).

The unknown objective function f(x, z) is modeled with
a GP. That is, every finite subset of {f(x, z)}(x,z)∈Dx×Dz

follows a multivariate Gaussian distribution (Rasmussen
& Williams, 2006). The GP is fully specified by
its prior mean and covariance function k(x,z),(x′,z′) ,
cov[f(x, z), f(x′, z′)] for all x,x′ in Dx and z, z′ in Dz.
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For notational simplicity (and w.l.o.g.), the former is as-
sumed to be zero, while we use the squared exponential
(SE) kernel as its bounded maximum information gain can
be used for later analysis (Srinivas et al., 2010).

To identify the optimal x∗ , argmaxx∈Dx Vα(f(x,Z)),
BO algorithm selects an input query (xt, zt) in the t-th
iteration to obtain a noisy function evaluation y(xt,zt) ,
f(xt, zt) + εt where εt ∼ N (0, σ2

n) are i.i.d. Gaussian
noise with variance σ2

n. Given noisy observations yDt
,

(y(x,z))
>
(x,z)∈Dt

at observed inputs Dt , Dt−1 ∪ {(xt, zt)}
(D0 is the initial observed inputs), the GP posterior belief
of function evaluation at any input (x, z) is a Gaussian
p(f(x, z)|yDt

) , N (f(x, z)|µt(x, z), σ2
t (x, z)):

µt(x, z), K(x,z),Dt
ΛDtDt

yDt
,

σ2
t (x, z), k(x,z),(x,z) −K(x,z),Dt

ΛDtDt
KDt,(x,z)

(2)

where ΛDtDt
,
(
KDtDt

+ σ2
nI
)−1

, I is the identity
matrix of the same dimensions as KDtDt

, K(x,z),Dt
,

(k(x,z),(x′,z′))(x′,z′)∈Dt
, KDt,(x,z) , K>(x,z),Dt

, and

KDtDt
, (k(x′,z′),(x′′,z′′))(x′,z′),(x′′,z′′)∈Dt

.

3. BO of VAR
Following the seminal work (Srinivas et al., 2010),
we use the cumulative regret as the performance met-
ric to quantify the performance of our BO algorithm.
It is defined as RT ,

∑T
t=1 r(xt) where r(xt) ,

Vα(f(x∗,Z)) − Vα(f(xt,Z)) is the instantaneous re-
gret and x∗ , argmaxx∈Dx Vα(f(x,Z)). We would
like to design a query selection strategy that incurs
no regret, i.e., limT→∞RT /T = 0. Furthermore,
we have that mint≤T r(xt) ≤ RT /T , equivalently,
maxt≤T Vα(f(xt,Z)) ≥ Vα(f(x∗,Z)) − RT /T . Thus,
limT→∞maxt≤T Vα(f(xt,Z)) = Vα(f(x∗,Z)) for a no-
regret algorithm.

The proof of the upper bound on the cumulative regret of
GP-UCB is based on confidence bounds of the objective
function (Srinivas et al., 2010). Similarly, in the next section,
we start by constructing a confidence bound of Vα(f(x,Z)),
which naturally leads to a query selection strategy for xt.

3.1. A Confidence Bound of Vα(f(x,Z)) and the Query
Selection Strategy for xt

Firstly, we adopt a confidence bound of the function f(x, z)
from Chowdhury & Gopalan (2017), which assumes that f
belongs to a reproducing kernel Hilbert space Fk(B) such
that its RKHS norm is bounded ‖f‖k ≤ B.

Lemma 1 (Chowdhury & Gopalan (2017)). Pick δ ∈ (0, 1)
and set βt = (B + σn

√
2(γt−1 + 1 + log 1/δ))2. Then,

f(x, z) ∈ It−1[f(x, z)] , [lt−1(x, z), ut−1(x, z)] ∀x ∈

Dx, z ∈ Dz, t ≥ 1 holds with probability ≥ 1− δ where

lt−1(x, z), µt−1(x, z)− β1/2
t σt−1(x, z)

ut−1(x, z), µt−1(x, z) + β
1/2
t σt−1(x, z) .

(3)

As the above lemma holds for both finite and continuous
Dx and Dz , it is used to analyse the regret in both cases. On
the other hand, the confidence bound can be adopted to the
Bayesian setting by changing only βt following the work of
Srinivas et al. (2010) as noted by Bogunovic et al. (2018).

Then, we exploit this confidence bound on the function
evaluations (Lemma 1) to formulate a confidence bound of
Vα(f(x,Z)) as follows.

Lemma 2. Similar to the definition of f(x,Z), let
lt−1(x,Z) and ut−1(x,Z) denote the random function over
x where the randomness comes from the random variable
Z; lt−1 and ut−1 are defined in (3). Then, ∀x ∈ Dx, t ≥ 1,

Vα(f(x,Z))∈ It−1[Vα(f(x,Z))]
, [Vα(lt−1(x,Z)), Vα(ut−1(x,Z))]

holds with probability ≥ 1 − δ for δ in Lemma 1, where
Vα(lt−1(x,Z)) and Vα(ut−1(x,Z)) are defined as (1).

The proof is in Appendix A. Given the confidence bound
It−1[Vα(f(x,Z))] , [Vα(lt−1(x,Z)), Vα(ut−1(x,Z))]
in Lemma 2, we follow the the well-known “optimism
in the face of uncertainty” principle to select xt =
argmaxx∈Dx Vα(ut−1(x,Z)). This query selection strat-
egy for xt leads to an upper bound of r(xt):

r(xt) ≤ Vα(ut−1(xt,Z))− Vα(lt−1(xt,Z)) ∀t ≥ 1 (4)

which holds with probability≥ 1− δ for δ in Lemma 1, and
is proved in Appendix B.

As our goal is limT→∞RT /T = 0, given the selected
query xt, a reasonable query selection strategy of zt
should gather informative observations at (xt, zt) that
improves the confidence bound It−1[Vα(f(xt,Z))] (i.e.,
It[Vα(f(xt,Z))] is a proper subset of It−1[Vα(f(xt,Z))]
if It−1[Vα(f(xt,Z))] 6= ∅) which can be viewed as the
uncertainty of Vα(f(xt,Z)).

Assume that there exists zl ∈ Dz such that lt−1(xt, zl) =
Vα(lt−1(xt,Z)) and zu ∈ Dz such that ut−1(xt, zu) =
Vα(ut−1(xt,Z)). Lemma 2 implies that Vα(f(xt,Z)) ∈
It−1[Vα(f(xt,Z))] = [lt−1(xt, zl), ut−1(xt, zu)] with
high probability. Hence, we may naı̈vely want to
query for observations at (xt, zl) and (xt, zu) to reduce
It−1[Vα(f(xt,Z))]. However, these observations may not
always reduce It−1[Vα(f(xt,Z))]. The insight is that
It−1[Vα(f(xt,Z))] changes (i.e., shrinks) when either of its
boundary values (i.e., lt−1(xt, zl) or ut−1(xt, zu)) changes.
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Consider ut−1(xt, zu) and finite Dz as an example, since
ut−1(xt, zu) = Vα(ut−1(xt,Z)), a natural cause for the
change in ut−1(xt, zu) is when zu changes. This hap-
pens if there exists z′ 6= zu such that the ordering of
ut−1(xt, z

′) relative to ut−1(xt, zu) changes given more
observations. Thus, observations that are capable of re-
ducing It−1[Vα(f(xt,Z))] should be able to change the
relative ordering in this case. We construct the following
counterexample where observations at zu (and zl) are not
able to change the relative ordering, so they do not reduce
It−1[Vα(f(xt,Z))].

Example 1. This example is described by Fig. 1. We re-
duce notational clutter by removing xt and t since they
are fixed in this example, i.e., we use f(z), f(Z), and l(z)
to denote f(xt, z), f(xt,Z), and lt−1(xt, z) respectively.
We condition on the event f(z) ∈ I[f(z)] , [l(z), u(z)]
for all z ∈ Dz which occurs with probability ≥ 1 − δ in
Lemma 1. In this example, zl = z1 and l(z1) = u(z1),
so there is no uncertainty in f(zl) = f(z1). Similarly,
there is no uncertainty in f(zu) = f(z2). Thus, new
observations at zl and zu change neither l(zl) nor u(zu),
so these observations do not reduce the confidence bound
I[Vα=0.4(f(Z))] = [l(zl), u(zu)] (plotted as the double-
headed arrow in Fig. 1b). In fact, to reduce I[Vα=0.4(f(Z))],
we should gather new observations at z0 which potentially
change the ordering of u(z0) relative to u(z2) (which is
u(zu) without new observations). For example, after get-
ting new observations at z0, if u(z0) is improved to be
in the white region between A and B (u(z0) > u(z2)
in Fig. 1b changes to u(z0) < u(z2) in Fig. 1c), then
I[Vα=0.4(f(Z))] is reduced to [l(z1), u(z0)] because now
zu = z0. Thus, as the confidence bound I[f(z0)] is short-
ened with more and more observations at z0, the confidence
bound I[Vα=0.4(f(Z))] reduces (the white region represent-
ing the uncertainty of Vα=0.4(f(Z)) in Fig. 1 is ‘laced up’).

In the next section, we define a property of z0 in Example 1
and prove the existence of z’s with this property. Then,
we prove that along with the optimistic selection of xt, the
selection of zt such that it satisfies this property leads to a
no-regret algorithm.

3.2. Lacing Value (LV) and the Query Selection
Strategy for zt

We note that in Example 1, as long as the confidence bound
of the function evaluation at z0 contains the confidence
bound of VAR, observations at z0 can reduce the confidence
bound of VAR. We name the values of z satisfying this
property as lacing values (LV) since observations at LV
‘laces up’ the confidence bound of VAR:

Definition 1 (Lacing values). Lacing values (LV)
with respect to x ∈ Dx and t ≥ 1 are zLV ∈ Dz

that satisfies lt−1(x, zLV) ≤ Vα(lt−1(x,Z)) ≤

Vα(ut−1(x,Z)) ≤ ut−1(x, zLV), equivalently,
It−1[Vα(f(x,Z))] ⊂ [lt−1(x, zLV), ut−1(x, zLV)] .

Recall that the support Dz of Z is defined as the smallest
closed subset Dz of Rdz such that P (Z ∈ Dz) = 1 (e.g.,
Dz is a finite subset of Rdz and Dz = Rdz ). The following
theorem guarantees the existence of lacing values and is
proved in Appendix C.

Theorem 1 (Existence of lacing values). ∀α ∈ (0, 1), ∀x ∈
Dx, ∀t ≥ 1, there exists a lacing value in Dz with respect
to x and t.

Corollary 1.1. Lacing values with respect to x ∈ Dx and
t ≥ 1 are in Z≤l and Z≥u (hence, their intersection) where
Z≤l , {z ∈ Dz : lt−1(x, z) ≤ Vα(lt−1(x,Z))} and Z≥u ,
{z ∈ Dz : ut−1(x, z) ≥ Vα(ut−1(x,Z))}.

As a special case, when zl = zu, It−1[Vα(f(x,Z))] =
It−1[f(x, zl)] which means zl = zu is an LV. Based on The-
orem 1, we can always select zt as an LV w.r.t xt defined in
Definition 1. This strategy for the selection of zt, together
with the selection of xt = argmaxx∈Dx Vα(ut−1(x,Z))
(Section 3.1), completes our algorithm: VAR Upper Confi-
dence Bound (V-UCB) (Algorithm 1).

Upper Bound on Regret. As a result of the selection strate-
gies for xt and zt, our V-UCB algorithm enjoys the fol-
lowing upper confidence bound on its instantaneous regret
(proved in Appendix D):

Lemma 3. By selecting xt as a maximizer of
Vα(ut−1(x,Z)) and selecting zt as an LV w.r.t xt, the in-
stantaneous regret is upper-bounded by:

r(xt) ≤ 2β
1/2
t σt−1(xt, zt) ∀t ≥ 1

with probability ≥ 1− δ for δ in Lemma 1.

We assume that the k(x,z),(x,z) ≤ 1 for all (x, z) ∈ Dx×Dz.
Then, Lemma 3 and Lemma 5.4 from Srinivas et al. (2010)
imply that the cumulative regret of our algorithm is bounded
(Appendix E): RT ≤

√
C1TβT γT where C1 , 8/ log(1 +

σ−2n ), and γT is the maximum information gain about f
that can be obtained from any set of T observations. The
work of Srinivas et al. (2010) has analyzed γT for several
commonly used kernels such as SE and Matérn kernels, and
has shown that for these kernels, the upper confidence bound
on RT grows sub-linearly. This implies that our algorithm
is no-regret because limT→∞RT /T = 0.

Following the work of Bogunovic et al. (2018), at the
T -th iteration of V-UCB, we can recommend xt∗(T ) as
an estimate of the maximizer x∗ of Vα(f(x,Z)), where
t∗(T ) , argmaxt∈{1,...,T} Vα(lt−1(xt,Z)). Then, the
instantaneous regret r(xt∗(T )) is shown to be upper-
bounded by

√
C1βT γT /T with high probability (see Ap-

pendix F). In our experiments in Section 4, we recommend
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Figure 1. A counterexample against selecting zu and zl as input queries. Here z follows a discrete uniform distribution over Dz ,
{z0, z1, z2}. (a) shows the mappings of z to the upper bound u(z) and lower bound l(z). The VAR at α = 0.4 of u(Z) and l(Z) are
u(z2) and l(z1), respectively, i.e., zu = z2 and zl = z1. (b) shows the values of l(z) and u(z) for all z on the same axis, as well as the
confidence bounds of f(z) and Vα(f(Z)). The gray areas A and B indicate the intervals of values ω ∈ R where ω ≤ l(zl) = l(z1) and
ω ≥ u(zu) = u(z2), respectively. (c) shows a hypothetical scenario when I[f(z0)] is shortened/‘laced-up’ with observations at z0.

Algorithm 1 The V-UCB Algorithm
1: Input: Dx, Dz, prior µ0 = 0, σ0, k
2: for i = 1, 2, . . . do
3: Select xt = argmaxx∈Dx Vα(ut−1(x,Z))
4: Select zt as a lacing value w.r.t. xt (Definition 1)
5: Obtain observation yt , f(xt, zt) + εt
6: Update the GP posterior belief to obtain µt and σt
7: end for

argmaxx∈DT
Vα(µt−1(x,Z)) (where µt−1(x,Z) is a ran-

dom function defined in the same manner as f(x,Z)) as an
estimate of x∗ due to its empirical convergence.

Computational Complexity. To compare our computa-
tional complexity with that of the ρKG and ρKGapx algo-
rithms in Cakmak et al. (2020), we exclude the training
of the GP model (line 6 of Algorithm 1) and assume that
Dz is finite. Then, the time complexity of V-UCB is domi-
nated by that of the selection of xt (line 3 of Algorithm 1)
which includes the time complexityO(|Dz||Dt−1|2) for the
GP prediction at {x} × Dz, and O(|Dz| log |Dz|) for the
sorting of ut−1(x,Dz) and searching of VAR. Hence, our
overall complexity isO(n|Dz| (|Dt−1|2+log |Dz|)), where
n is the number of iterations to maximize Vα(ut−1(x,Z))
(line 3 of Algorithm 1). This time complexity of V-UCB
is more computationally efficient than ρKG and its vari-
ant with approximation ρKGapx whose time complexi-
ties are shown in the work of Cakmak et al. (2020) as
O(noutninK|Dz| (|Dt−1|2+ |Dz||Dt−1|+ |Dz|2+M |Dz|))
and O(nout|Dt−1|K|Dz| (|Dt−1|2 + |Dz||Dt−1|+ |Dz|2 +
M |Dz|)), respectively (nout and nin are the numbers of it-
erations for the outer and inner optimization procedures,
respectively; K is the number of fantasy GP models re-
quired for ρKG’s and ρKGapx’s one-step lookahead, and
M is the number of functions sampled from the GP posterior
belief).

3.3. On the Selection of zt

Although Algorithm 1 is guaranteed to be no-regret with any
choice of LV as zt, we would like to select the LV that can
reduce a large amount of the uncertainty of Vα(f(xt,Z)).
However, relying on the information gain measure or the
knowledge gradient method often incurs the expensive one-
step lookahead. Therefore, we use a simple heuristic by
choosing the LV zLV with the maximum probability mass
(or probability density if Z is continuous) of zLV. We mo-
tivate this heuristic using an example with α = 0.2, i.e.,
Vα=0.2(f(xt,Z)) = inf{ω : P (f(xt,Z) ≤ ω) ≥ 0.2}.
Suppose Dz is finite and there are 2 LV’s z0 and z1
with P (z0) ≥ 0.2 and P (z1) = 0.01. Then, because
P (f(xt,Z) ≤ f(xt, z0)) ≥ P (z0) ≥ 0.2, it follows
that Vα=0.2(f(xt,Z)) ≤ f(xt, z0), i.e., querying z0 at
xt gives us information about an explicit upper bound on
Vα=0.2(f(xt,Z)) to reduce its uncertainty. In contrast, this
cannot be achieved by querying z1 due to its low probability
mass. This simple heuristic can also be implemented when
Z is a continuous random variable which we will introduce
in Section 3.5.

Remark 1. Although we assume that we can select both
xt and zt during our algorithm, Corollary 1.1 also gives us
some insights about the scenario where we cannot select
zt. In this case, in each iteration t, we select xt while zt is
randomly sampled by the environment following the distri-
bution of Z. Next, we observe both zt and y(xt,zt) and then
update the GP posterior belief of f . Of note, Corollary 1.1
has shown that all LV lie in the set Z≤l . However, the proba-
bility of this set is usually small, because P (Z ∈ Z≤l ) ≤ α
and small values of α are often used by real-world applica-
tions to manage risks. Thus, there is a small probability that
the sampled zt is an LV. As a result, we suggest sampling a
large number of zt’s from the environment to increase the
chance that an LV is sampled. On the other hand, the small
probability of sampling an LV motivates the need for us to
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select zt.

3.4. V-UCB Approaches STABLEOPT as α→ 0+

Recall that the objective of adversarially robust BO is to
find x ∈ Dx that maximizes minz∈Dz f(x, z) (Bogunovic
et al., 2018) by iteratively specifying input query (xt, zt) to
collect noisy observations yxt,zt

. It is different from BO of
VAR since its z is not random but selected by an adversary
who aims to minimize the function evaluation. The work of
Bogunovic et al. (2018) has proposed a no-regret algorithm
for this setting named STABLEOPT, which selects

xt= argmax
x∈Dx

min
z∈Dz

ut−1(x, z) ,

zt= argmin
z∈Dz

lt−1(xt, z)
(5)

where ut−1 and lt−1 are defined in (3).

At first glance, BO of VAR and adversarially robust BO
are seemingly different problems because Z is a random
variable in the former but not in the latter. However, based
on our key observation on the connection between the mini-
mum value of a continuous function h(w) and the VAR of
the random variable h(W) in the following theorem, these
two problems and their solutions are connected as shown in
Corollary 2.1, and 2.2.
Theorem 2. Let W be a random variable with the support
Dw ⊂ Rdw and dimension dw. Let h be a continuous func-
tion mapping from w ∈ Dw to R. Then, h(W) denotes the
random variable whose realization is the function h evalua-
tion at a realization w of W. Suppose h(w) has a minimizer
wmin ∈ Dw, then limα→0+ Vα(h(W)) = h(wmin) .

Corollary 2.1. Adversarially robust BO which finds
argmaxx minz f(x, z) can be cast as BO of VAR by let-
ting (a) α approach 0 from the right and (b) Dz be the
support of the environmental random variable Z, i.e.,
argmaxx limα→0+ Vα(f(x,Z)).

Interestingly, from Theorem 2, we observe that Z≤l
in Corollary 1.1 approaches the set of minimizers
argminz∈Dz lt−1(xt, z) as α → 0+. Corollary 2.2 below
shows that LV w.r.t xt becomes a minimizer of lt−1(xt, z)
which is same as the selected zt of STABLEOPT in (5).
Corollary 2.2. The STABLEOPT solution to adversarially
robust BO selects the same input query as that selected by
the V-UCB solution to the corresponding BO of VAR in
Corollary 2.1.

The proof of Theorem 2 and its two corollaries are shown
in Appendix G. We note that V-UCB is also applicable to
the optimization of Vα(f(x,Z)) where the distribution of
Z is a conditional distribution given x. For example, in
robotics, if there exists noise/perturbation in the control, an
optimization problem of interest is Vα(f(x + ξ(x))) where
ξ(x) is a random perturbation that depends on x.

3.5. Implementation of V-UCB with Continuous
Random Variable Z

The V-UCB algorithm involves two steps: selecting xt =
argmaxx∈Dx Vα(ut−1(x,Z)) and selecting zt as the LV
zLV with the largest probability mass (or probability den-
sity). When Dz is finite, given x, Vα(ut−1(x,Z)) can be
computed exactly. The gradient of Vα(ut−1(x,Z)) with
respect to x can be obtained easily (e.g., using automatic
differentiation provided in the Tensorflow library (Abadi
et al., 2015)) to aid the selection of xt. In this case, the latter
step can also be performed by constructing the set of all LV
(checking the condition in the Definition 1 for all z ∈ Dz)
and choosing the LV zLV with the largest probability mass.

Estimation of VAR. When Z is a continuous random vari-
able, estimating VAR by an ordered set of samples (e.g.,
in Cakmak et al. (2020)) may require a prohibitively large
number of samples, especially for small values of α. Thus,
we employ the following popular pinball (or tilted absolute
value) function in quantile regression (Koenker & Bassett,
1978) to estimate VAR:

ρα(w) ,

{
αw if w ≥ 0 ,

(α− 1)w if w < 0

where w ∈ R. In particular, to estimate Vα(ut−1(x,Z)) as
ν ∈ R, we find ν that minimizes:

Ez∼p(Z)[ρα(ut−1(x, z)− ν)] . (6)

A well-known example is α = 0.5, then ρα is the absolute
value function and the optimal ν is the median. The loss
in (6) can be optimized using stochastic gradient descent
with a random batch of samples of Z at each optimization
iteration.

Maximization of Vα(ut−1(x,Z)). Unfortunately, to max-
imize Vα(ut−1(x,Z)) over x ∈ Dx, there is no gradient
of Vα(ut−1(x,Z)) with respect to x under the above ap-
proach. This situation resembles the BO problem where
there is no gradient information, but only noisy observa-
tions at input queries. Unlike BO, the observation (samples
of ut−1(x,Z) at x) is not costly. Therefore, we propose
the local neural surrogate optimization (LNSO) algorithm
to find argmaxx∈Dx Vα(ut−1(x,Z)) which is visualized in
Fig. 2. Suppose the optimization is initialized at x = x(0),
instead of maximizing Vα(ut−1(x,Z)) (whose gradient
w.r.t. x is unknown), we maximize a surrogate function
g(x,θ(0)) (modeled by a neural network) that approximates
Vα(ut−1(x,Z)) well in a local region of x(0), e.g., a ball
B(x(0), r) of radius r in Fig. 2. We obtain such parameters
θ(0) by minimizing the following loss function:

Lg(θ,x(0))

, Ex∈B(x(0),r)EZ∼p(Z) [ρα(ut−1(x, z)− g(x;θ))] (7)
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Figure 2. Plot of a hypothetical optimization path (as arrows) of
LNSO initialized at x(0). Input x is 2-dimensional. The boundary
of a ball B of radius r is plotted as a dotted circle. When the
updated x moves out of B, the center of B and θ are updated.

where the expectation Ex∈B(x(0),r) is taken over a uniformly
distributed X in B(x(0), r). Minimizing (7) can be per-
formed with stochastic gradient descent. If maximizing
g(x,θ(0)) leads to a value x(i) /∈ B(x(0), r) (Fig. 2), we
update the local region to be centered at x(i) (B(x(i), r))
and find θ(i) = argminθ Lg(θ,x(i)) such that g(x,θ(i))
approximates Vα(ut−1(x,Z)) well ∀x ∈ B(x(i), r). Then,
x(i) is updated by maximizing g(x,θ(i)) for x ∈ B(x(i), r).
The complete algorithm is described in Appendix H.

We prefer a small value of r so that the ball B is small. In
such case, Vα(ut−1(x,Z)) for x ∈ B can be estimated well
with a small neural network g(x,θ) whose training requires
a small number of iterations.

Search of Lacing Values. Given a continuous random
variable Z, to find an LV w.r.t xt in line 4 of Algo-
rithm 1, i.e., to find a z satisfying du(z) , ut−1(xt, z) −
Vα(ut−1(xt,Z)) ≥ 0 and dl(z) , Vα(lt(xt,Z)) −
lt−1(xt, z) ≥ 0, we choose a z that minimizes

LLV(z) , ReLU(−du(z)) + ReLU(−dl(z)) (8)

where ReLU(ω) = max(ω, 0) is the rectified linear unit
function (ω ∈ R). To include the heuristic in Section 3.3
which selects the LV with the highest probability density,
we find z that minimizes

LLV-P(z) , LLV(z)− Idu(z)≥0Idl(z)≥0 p(z)

where LLV(z) is defined in (8); p(z) is the probability den-
sity; Idu(z)≥0 and Idl(z)≥0 are indicator functions.

4. Experiments
In this section, we empirically evaluate the performance
of V-UCB. The work of Cakmak et al. (2020) has moti-
vated the use of the approximated variant of their algo-
rithm ρKGapx over its original version ρKG by showing
that ρKGapx achieves comparable empirical performances
to ρKG while incurring much less computational cost. Fur-
thermore, ρKGapx has been shown to significantly outper-
form other competing algorithms (Cakmak et al., 2020).
Therefore, we choose ρKGapx as the main baseline to em-
pirically compare with V-UCB. The experiments using

ρKGapx is performed by adding new objective functions
to the existing implementation of Cakmak et al. (2020) at
https://github.com/saitcakmak/BoRisk.

Regarding V-UCB, when Dz is finite and the distribution of
Z is not uniform, we perform V-UCB by selecting zt as an
LV at random, labeled as V-UCB Unif, and by selecting zt
as the LV with the maximum probability mass, labeled as
V-UCB Prob.

The performance metric is defined as Vα(f(x∗,Z)) −
Vα(f(x̃,Z)) where x̃ is the recommended input. The eval-
uation of VAR is described in Section 3.5. The recom-
mended input is argmaxx∈DT

Vα(µt−1(x,Z)) for V-UCB,
and argminx∈Dx Et−1[Vα(f(x,Z))] for ρKGapx (Cakmak
et al., 2020), where Et−1 is the conditional expectation over
the unknown f given the observations yDt−1

(approximated
by a finite set of functions sampled from the GP posterior
belief).2 We repeat each experiment 10 times with different
random initial observations yD0

and plot both the mean (as
lines) and the 70% confidence interval (as shaded areas) of
the log 10 of the performance metric. The detailed descrip-
tions of experiments and the comparison with the strategy of
randomly selecting input queries are deferred to Appendix I.

4.1. Synthetic Benchmark Functions

The experiments with discrete Dz are conducted with
Branin-Hoo-(1, 1), Goldstein-Price-(1, 1), Hartmann-3D-
(1, 2), Hartmann-3D-(2, 1), and Hartmann-6D-(5, 1) where
the tuple (dx, dz) represents the dimensions of x and z. The
noise variance σ2

n is set to 0.01. The risk level α is 0.1. We
observe in Fig. 3 that V-UCB Unif is on par with ρKGapx in
optimizing Branin-Hoo-(1, 1) and Goldstein-Price-(1, 1),
and outperforms ρKGapx in optimizing Hartmann-3D-
(1, 2), Hartmann-3D-(2, 1), and Hartmann-6D-(5, 1). On
the other hand, V-UCB Prob is able to exploit the probability
distribution of Z to outperform V-UCB Unif in optimizing
Branin-Hoo-(1, 1), Goldstein-Price-(1, 1), Hartmann-3D-
(1, 2), and Hartmann-3D-(2, 1). The unsatisfactory perfor-
mance of ρKGapx in some experiments may be attributed to
its approximation of the inner optimization problem in the
acquisition function (Cakmak et al., 2020), and the approxi-
mation of VAR using samples of Z and function samples of
the GP posterior belief.

The experiments with continuous Dz are conducted with
Branin-Hoo-(1, 1), Goldstein-Price-(1, 1), Hartmann-3D-
(1, 2), and Hartmann-3D-(2, 1). In the implementation of
LNSO, the local region is defined with r = 0.1. The sur-
rogate function is a neural network of 2 hidden layers with

2While the work of Cakmak et al. (2020) considers a minimiza-
tion problem of VAR, our work considers a maximization problem
of VAR. Therefore, the objective functions for ρKGapx are the
negation of those for V-UCB. For V-UCB at risk level α, the risk
level for ρKGapx is 1− α.
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30 hidden neurons each and sigmoid activation functions.
The results are shown in Fig. 4. We observe that V-UCB
Prob outperforms ρKGapx because of the approximation
involved in ρKGapx as explained in the above experiments
with discrete Dz.
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Figure 3. Synthetic benchmark functions with finite Dz.

4.2. Simulated Optimization Problems

The first problem is portfolio optimization adopted by (Cak-
mak et al., 2020). There are dx = 3 optimization variables
(risk and trade aversion parameters, and the holding cost
multiplier) and dz = 2 environmental random variables
(bid-ask spread and borrow cost). The variable Z follows
a discrete uniform distribution with |Dz| = 100. Hence,
there is no difference between V-UCB Unif and V-UCB
Prob. Thus, we only report the results of the latter. The
objective function is the posterior mean of a trained GP on
the dataset in Cakmak et al. (2020) of size 3000 generated
from CVXPortfolio. The noise variance σ2

n is set to 0.01.
The risk level α is set to 0.2.
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Figure 4. Synthetic benchmark functions with continuous Dz.
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Figure 5. Simulated experiments.

The second problem is a simulated robot pushing task
for which we use the implementation from the work of
Wang & Jegelka (2017). The simulation is viewed as a
3-dimensional function h(rx, ry, tp) returning the 2-D lo-
cation of the pushed object, where rx, ry ∈ [−5, 5] are the
robot location and tp ∈ [1, 30] is the pushing duration. The
objective is to minimize the distance to a fixed goal location
g = (gx, gy)

>, i.e., the objective function of the maximiza-
tion problem is f0(rx, ry, tp) = −‖h(rx, ry, tp)− g‖. We
assume that there are perturbations in specifying the robot lo-
cation Wx,Wy whose support Dz includes 64 equi-distant
points in [−1, 1]2 and whose probability mass is propor-
tional to exp(−(W 2

x +W 2
y )/0.4

2). It leads to a random ob-
jective function f(rx, ry, tp,Wx,Wy) , f0(rx +Wx, ry +
Wy, tp). We aim to maximize the VAR of f which is more
difficult than maximizing that of f0. Moreover, a random
noise following N (0, 0.01) is added to the evaluation of f .
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The risk level α is set to 0.1.

The results are shown in Fig. 5. We observe that V-UCB
outperforms ρKGapx in both problems. Furthermore, in
comparison to our synthetic experiments, the difference
between V-UCB Unif and V-UCB Prob is not significant in
the robot pushing experiment. This is because the chance
that a uniform sample of LV has a large probability mass
is higher in the robot pushing experiment due to a larger
region of Dz having high probabilities.

5. Conclusion
To tackle the BO of VAR problem, we construct a no-regret
algorithm, namely VAR upper confidence bound (V-UCB),
through the design of a confidence bound of VAR and a
set of lacing values (LV) that is guaranteed to exist. Be-
sides, we introduce a heuristic to select an LV that improves
the empirical performance of V-UCB over random selec-
tion of LV. We also draw an elegant connection between
BO of VAR and adversarially robust BO in terms of both
problem formulation and solutions. Lastly, we provide prac-
tical techniques for implementing VAR with continuous Z.
While V-UCB is more computationally efficient than the
state-of-the-art ρKGapx algorithm for BO of VAR, it also
demonstrates competitive empirical performances in our
experiments. For future works, it is of interest to generalize
this work to the optimization of CVAR of a black-box func-
tion (Cakmak et al., 2020), multi-fidelity BO (Zhang et al.,
2017; 2019), high-dimensional BO (Hoang et al., 2018),
batch BO (Daxberger & Low, 2017), private outsourced BO
(Kharkovskii et al., 2020), and ranking BO (Nguyen et al.,
2021).
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