
Machine Learning and the Traveling Repairman

Theja Tulabandhula theja@mit.edu
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Cynthia Rudin rudin@mit.edu
Sloan School of Management and Operations Research Center
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Patrick Jaillet jaillet@mit.edu

Laboratory for Information and Decision Systems, Department of Electrical Engineering and Com-

puter Science, and Operations Research Center

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Abstract

The goal of the Machine Learning and Traveling Repairman Problem (ML&TRP) is to
determine a route for a “repair crew,” which repairs nodes on a graph. The repair crew aims
to minimize the cost of failures at the nodes, but as in many real situations, the failure
probabilities are not known and must be estimated. We introduce two formulations for
the ML&TRP, where the first formulation is sequential: failure probabilities are estimated
at each node, and then a weighted version of the traveling repairman problem is used to
construct the route from the failure cost. We develop two models for the failure cost, based
on whether repeat failures are considered, or only the first failure on a node. Our second
formulation is a multi-objective learning problem for ranking on graphs. Here, we are
estimating failure probabilities simultaneously with determining the graph traversal route;
the choice of route influences the estimated failure probabilities. This is in accordance with
a prior belief that probabilities that cannot be well-estimated will generally be low. It also
agrees with a managerial goal of finding a scenario where the data can plausibly support
choosing a route that has a low operational cost.

1. Introduction

We consider the problem of routing an agent (“repair crew”) on a graph, where each node
in the graph has some probability of failure. The probabilities are not known and must
be estimated from past failure data. Ideally, the nodes that are most prone to failure
should be repaired first, but if those nodes are far away from each other, the extra time
spent traveling between nodes might actually increase the chance of failures occurring at
nodes that have not yet been repaired. In that sense, it is better to construct the route
to minimize the cost of the failures, taking into account the travel time between nodes
and also the (estimated) failure probabilities at each of the nodes. We call this problem the
machine learning and traveling repairman problem (ML&TRP), and in this work, we present

c©2000 Theja Tulabandhula and Cynthia Rudin and Patrick Jaillet.

ar
X

iv
:1

10
4.

50
61

v1
 [

m
at

h.
O

C
]

 2
7

A
pr

 2
01

1

Tulabandhula et al.

systematic approaches to formulating and solving this problem. There are many possible
applications of the ML&TRP, including the scheduling of safety inspections or repair work
for the electrical grid, oil rigs, underground mining, machines in a factory, or airplanes.
Another example is to route delivery trucks that carry items that may be damaged if the
items are in the vehicle too long (e.g., ice cream or other groceries).

We present two formulations for the ML&TRP. The first formulation is sequential : the
failure probabilities are estimated, and then the probabilities determine a graph traversal
cost for each possible route. The route that minimizes the graph traversal cost is then de-
termined by solving a weighted traveling repairman problem (TRP), also called a minimum
latency problem, or more generally, a time-dependent traveling salesman problem (see for
instance, Picard and Queyranne, 1978). The second formulation computes the probabilities
and the route simultaneously, by minimizing an objective with two terms. The first term
is a training error term used for estimating probabilities and the second term is the graph
traversal cost. This means that estimated failure probabilities are chosen together with
knowledge of the graph traversal cost. The graph traversal cost acts as a regularization
term, and has a tendency to lower probability estimates and promote generalization; this
is in accordance with a prior belief that the probabilities will be low if they cannot be
well-estimated. The algorithm will thus prefer routes where the first nodes visited actu-
ally have higher failure probabilities. Another reason to incorporate a prior belief that the
graph traversal cost will be low is managerial. A company might wish to know whether
it is at all possible that a low-cost route can be designed, where the operational costs are
realistically supported by the data. Among all reasonable probability models, our second
formulation will find one that corresponds to the lowest-cost route. This type of formulation
is optimistic; it provides the best possible (but still reasonable) scenario described by the
data.

We design the graph traversal cost in two ways, where either traversal cost can be used
for either the sequential or the simultaneous formulations. The first graph traversal cost
is the expected cost of failures, where multiple expected failures at the same node each
contribute to the cost. The second graph traversal cost is inspired by (but not equal to)
the expected cost of the first failure at each node. The first cost applies when the failure
probability of a node does not change until it is visited by the crew, regardless of whether
a failure already occurred at that node, and the second cost applies when the node is
completely repaired after the first failure, or when it is visited by the repair crew, whichever
comes first. Thus, the choice of cost function should depend on the types of failures and
repairs considered in the application.

In the second formulation, regularizing by the graph traversal cost limits the complexity
of the hypothesis space used for the probabilistic model. This means that the graph traversal
cost term may assist with generalization, that is, the probabilistic model’s ability to predict
well on data drawn from the same distribution. In this work we present a generalization
bound showing how a limitation on the graph traversal cost might lead to a more accurate
model for failure probabilities.

The ML&TRP problem does not fall under the umbrella of semi-supervised learning
since the incorporation of unlabeled data is used for determining the route cost, and is
not used to provide additional distributional information (see for instance, Chapelle et al.,
2006). Also our approach to regularization along the route is entirely different from work

2

Machine Learning & the Traveling Repairman

on graph regularization (Agarwal, 2006; Belkin et al., 2006; Zhou et al., 2004), which does
not concern traversal routes. In that work, there is an assumption that probabilities will
be smooth along the graph. This assumption is not true for many applications; see for
instance, the power grid application discussed below.

We will discuss a motivating example for the ML&TRP in the remainder of the intro-
duction. In Section 2 we will outline the two general formulations, and provide the two
methods for computing the route cost. In Section 3 we provide mixed-integer nonlinear
programs (MINLP’s) for solving the ML&TRP. Section 4 gives relevant illustrations, along
with some experiments on data from the NYC power grid. Section 5 contains the theoretical
generalization result, and in Section 6 we discuss related literature.

Motivation

One particularly motivating application for the ML&TRP is smart grid maintenance. Since
2004, many power utility companies are implementing new inspection and repair pro-
grams for preemptive maintenance, whereas in the past, all repair work was done reactively
(Urbina, 2004). An example of this is vented manhole cover replacement programs, where
each manhole in a city is replaced with a vented cover that allows gases to escape, mitigating
the possibility and effects of serious events including fires and explosions.

New York City’s power company Con Edison, which has such a replacement program,
services tens of thousands of manholes in each borough, and it is not sensible for a repair
crew to travel across the city and back again for each cover replacement. The scheduling
of manhole inspection and repair work in Manhattan, Brooklyn and the Bronx is assisted
by a machine learning model that estimates the probability of failure for each manhole
within a given year (Rudin et al., 2010). Features for the model are derived from physical
characteristics of the manhole (e.g., number of cables entering the manhole), and features
derived from its history of involvement in past events. Repeat failures (serious and non-
serious events) can occur on the same manhole. That said, failures are rare events, and it is
not easy to accurately estimate the probability that a given manhole will fail within a given
period of time. The current model for estimating failures does not take into account the
route of the repair crew that replaces the covers. This leaves open the possibility that, for
this domain and for many other domains, estimating the failure probabilities with knowledge
of the route optimization procedure could lead to an improvement in repair operations.

The features for the NYC machine learning models are recomputed periodically, but not
often, due to the expense of processing the raw data, and the fact that these probabilities
change very slowly with time. Because of this, the route must be determined before the
work starts. Also, the probabilities are not smooth along the graph, as discussed by Rudin
et al. (2010). In initial attempts to model these probabilities on the Manhattan power grid,
estimates were smooth geographically, and this type of model did not perform nearly as well
as a more targeted model. In Manhattan it is very common to have relatively vulnerable
manholes right next to manholes that are not vulnerable.

The limited resources for inspection and repair of manholes should generally be des-
ignated to the most vulnerable manholes. With uncertainty in many of the probability
estimates, if we are not careful, it is possible that most of these resources will be spent
in dealing with outliers whose probabilities are overestimated. Our second ML&TRP for-

3

Tulabandhula et al.

mulation aims to prevent this from happening. At the same time, that formulation may
be able to find a solution that is supported by the data, but also meets operational cost
requirements or targets.

2. ML&TRP Formulations

We first provide some notation. We are given two sets of instances, {xi}mi=1, {x̃i}Mi=1, with

xi ∈ X , x̃i ∈ X that are feature vectors with X ⊂ Rd. Let the xji indicate the j-th
coordinate of the feature vector xi. For the first set of instances, we are also given labels
{yi}mi=1, yi ∈ {−1, 1}. These instances and their labels are the set of training examples.
The other instances {x̃i}Mi=1are unlabeled data that are each associated with a node on a
graph G, where the distance between nodes i and j, di,j ∈ R+ serves as the weight on the
edge connecting them. The graph defined by them is complete. A route on G is represented
by a permutation π of the node indices 1, . . . ,M . Let Π be the set of all permutations of
{1, ...,M}. A set of failure probabilities will be estimated at nodes and these estimates will
be derived from a function of the form fλ, where fλ : X → R, fλ ∈ F . The class of possible
function models F is chosen to be the set of linear combinations of the feature coordinates:

F := {f : f(x) = λ · x for some λ ∈ Rd such that ||λ||2 ≤M1}. (1)

where M1 is a fixed positive real number. We can easily make the function class more
expressive by using affine functions (such as g(x) = λ · x + d). But since g(x), like f(x),
can be written as an inner product of a new parameter [λ d] and a new feature [x 1], we
can append our feature vectors to form new vectors where the last coordinate of x is always
1 and use function class F as described.

For the smart grid maintenance example, the training instances might be manholes
represented by features derived from data prior to 2010, and the labels might encode whether
the manhole experienced a serious event within 2010. The test instances might represent
features derived from data prior to 2011, and the goal is to create a repair route that
minimizes the cost of repairs in 2011.

The sequential formulation for the ML&TRP follows two steps. The TrainingError and
GraphTraversalCost objectives will be defined shortly.

Sequential Formulation

Step 1. Compute the scores f∗λ(x̃i):

f∗λ ∈ argminfλ∈FTrainingError(fλ, {xi, yi}mi=1).

Step 2. Compute a route corresponding to the scores:

π∗ ∈ argminπ∈ΠGraphTraversalCost(π, f∗λ , {x̃i}Mi=1, {di,j}Mi,j=1).

The result π∗ ∈ Π is the route used for the repair crew. In the first step, a transformation
of f∗λ(x) yields an estimate of probability of failure P (y = 1|x). Here, {y = 1} is the event
that a failure occurs on any given day or time step. Let the distances be scaled appropriately
so that a unit of distance is traversed in a unit of time. We assume that the probability of

4

Machine Learning & the Traveling Repairman

failure is the same at each time step until something happens (either the crew visits, or a
failure occurs), and that x does not change over the time that the route is being traversed.
To ensure that these probabilities are in agreement with past observations, we choose f∗λ(x)
to minimize a training error in Step 1. In the second step, the route is chosen to minimize
a weighted TRP cost based on those estimated probabilities.

The sequential formulation is easier to solve than the simultaneous formulation outlined
below.

Simultaneous Formulation

Step 1. Compute the scores f∗λ(x̃i):

f∗λ ∈ argminfλ∈F
[
TrainingError(fλ, {xi, yi}mi=1)

+C1 min
π∈Π

GraphTraversalCost
(
π, fλ, {x̃i}Mi=1, {di,j}Mi,j=1

)]
.

Step 2. Compute a route corresponding to the scores:

π∗ ∈ argminπ∈ΠGraphTraversalCost(π, f∗λ , {x̃i}Mi=1, {di,j}Mi,j=1).

The result π∗ ∈ Π is the route used for the repair crew. In the simultaneous formulation,
the model f∗λ must not have a high graph traversal cost, and must yield probability estimates
that agree with past observations. The constant C1 is a tradeoff parameter between the
accuracy of the predictive model and the cost to traverse the graph. C1 needs to be scaled
relative to the training error, m, M , and distances di,j . If C1 is very small or if the first
term is very large compared to the second, the algorithm essentially becomes sequential;
first the training error is minimized without knowledge of the possible repair routes, and
the graph traversal route would be the same as if it were determined after the model f∗λ .
In some cases, this may be appropriate, for instance if the number of training examples is
extremely large, then there may be little flexibility in the choice of model f∗λ .

In what follows, we define the TrainingError and GraphTraversalCost objectives.

2.1 Training Error Term

The training error term includes a sum of losses over the training examples:

m∑

i=1

lf (xi, yi),

where the loss function lf can be any monotonically decreasing differentiable function
bounded below by zero. We choose the logistic loss: lf (x, y) := ln

(
1 + e−yfλ(x)

)
so that the

probability of failure P (y = 1|x), is estimated as in logistic regression by:

P̂ (y = 1|x) = p(x) :=
1

1 + e−fλ(x)
. (2)

We are thus assuming that the log-odds ratio of the class posterior values P (y = ·|x) can be
represented by an affine/linear function of the features x. The training error corresponds

5

Tulabandhula et al.

to the negative log likelihood:

−log likelihood =
m∑

i=1

− ln
[
p(xi)

(1+yi)/2(1− p(xi))(1−yi)/2
]

=
m∑

i=1

ln
(

1 + e−yifλ(xi)
)
.

We include an `2 penalty over the parameters λ. The regularized training loss is now:

TrainingError(fλ, {xi, yi}mi=1) :=
m∑

i=1

ln
(

1 + e−yifλ(xi)
)

+ C2||λ||22 (3)

where C2 is the corresponding regularization coefficient. Another possible loss function is
the exponential loss e−yifλ(xi), used in boosting (Schapire and Freund, 2011), which also
corresponds to a probability model, though we will not use it here.

2.2 Two Options for the Graph Traversal Cost

The graph traversal cost can be defined to match the application. We present two options.
In Cost 1, for each node there is a cost for failure event {y = 1} in every time step prior to
a visit by the repair crew. There can be repeated failures, where each failure has the same
cost. In Cost 2, there is a cost for the first event on a node prior to its visit by the repair
crew. Cost 2 assumes that the repair crew wants to reach the node before its first failure,
and that there are no additional failures after the first one. Both Cost 1 and Cost 2 can
be appropriate for various power grid applications. Cost 2 is appropriate for the delivery
truck application, where perishable items can fail (once an item has spoiled, it cannot spoil
again). Both graph traversal costs use the predictions on the nodes, fλ(x̃i).

We can provide a very natural interpretation in terms of a simple stochastic process for
both these costs. Consider that there is a continuous time stochastic process at each node
x̃i, which when discretized by time steps of appropriate duration, can be approximated
by a Bernoulli process with parameter p(x̃i). We will see later on that for Cost 2, the
random variables at each time step are required to be independent whereas for Cost 1 no
such restriction is necessary (because of linearity of expectations). Such a stochastic process
perspective is useful when one designs their own, possibly more complex, cost models.

We assume for convenience and without loss of generality that after the repair crew visits
all the nodes, it returns to the location of the starting node, which is fixed beforehand to be
node 1 (π(1) = 1). This assumption simplifies the exposition of the paper, but in doing so
excludes the scenarios where one might not be interested in returning to the starting node
or when one wants to start from a separate depot. Either of these cases would require a
slight change in the cost model, as discussed for instance by Ezzine et al. (2010), and would
not change the computational complexity of finding a solution. Another setting which one
might be interested in is of finding an optimal tour route without specifying a starting
point. In this case, problem formulation with a fixed starting node can be readily used.
In particular, we can obtain a solution by choosing each node in turn to be the starting
node, solving with a fixed starting node formulation M times, and picking the best of the
M solutions. Because such extensions can be performed relatively easily, we are assuming
a fixed known starting node in our formulations.

Let a route be represented by π : {1, ...,M} 7→ {1, ...,M}, this means that π(i) is the
ith node to be visited. For example, let M = 4, π = [2, 3, 4, 1]. This means, π(1) = 2, node

6

Machine Learning & the Traveling Repairman

2 is the first node to be visited, π(2) = 3, node 3 is the second node on the route, and so
on. The latency of a node π(i) with respect to route π is the time (or equivalently distance)
at which node π(i) is visited. It is the sum of distances traversed before position i on the
route:

Lπ(π(i)) := time at which node π(i) is visited =

{ ∑M
k=1 dπ(k)π(k+1)1[k<i] i = 2, ...,M

∑M
k=1 dπ(k)π(k+1) i = 1.

(4)
The assumption that the final node is the first node means that dπ(M)π(M+1) = dπ(M)π(1).
The starting node π(1) thus has a latency Lπ(π(1)) which is the total length of the route
starting at node π(1) and ending at node π(1) after visiting all other nodes.

Cost 1: Cost is Proportional to Expected Number of Failures Before the
Visit

Up to the time that node π(i) is visited by the repair crew, there is a probability p(x̃π(i)) that
a failure will occur within each unit time interval. Equivalently, within each unit time inter-
val, failures are determined by a Bernoulli random variable with parameter p(x̃π(i)). Thus,
in a time interval of length Lπ(π(i)) units, the number of node failures follows the Binomial
distribution Bin

(
Lπ(π(i)), p(x̃π(i))

)
. For each node, we will associate a cost proportional to

the expected number of failures before the repair crew’s visit, as follows:

Cost of node π(i) ∝ E(number failures in Lπ(π(i)) time units)

= mean of Bin(Lπ(π(i)), p(x̃π(i))) = p(x̃π(i))Lπ(π(i)). (5)

Using this cost, if the failure probability for node π(i), namely p(x̃π(i)), is small, we can
afford to visit it later on during our graph tour when the latency Lπ(π(i)) is larger. If
p(x̃π(i)) is large, we should visit node π(i) earlier to keep our overall graph traversal cost
low.

The total cost of route π is:

GraphTraversalCost(π, fλ, {x̃i}Mi=1, {di,j}Mi,j=1) =
M∑

i=1

p(x̃π(i))Lπ(π(i)).

Substituting the definition of Lπ(π(i)) from (4):

GraphTraversalCost(π, fλ, {x̃i}Mi=1, {di,j}Mi,j=1) =

M∑

i=2

p(x̃π(i))
M∑

k=1

dπ(k)π(k+1)1[k<i] + p(x̃π(1))
M∑

k=1

dπ(k)π(k+1), (6)

where p(x̃π(i)) is given in (2). This will be Cost 1.

There are ways to make Cost 1 more general. The individual node cost in (5) assumes
that the node failure probability p(x̃π(i)) becomes zero after the repair crew’s visit, so that
for the remainder of the route, the cost incurred at this node is ∝ 0× (Lπ(π(1))−Lπ(π(i)).
We could relax this by assuming p(x̃π(i)) does not vanish after the repair crew’s visit and

7

Tulabandhula et al.

adding an additional cost for the expected failures in this period. That is, if β is a constant
of proportionality for the cost after visiting node π(i), then the cost would become:

Cost of node π(i) = β [Lπ(π(1))− Lπ(π(i))] p(x̃π(i)) + Lπ(π(i))p(x̃π(i)).

If β = 1, then the repair crew does not have any effect and cost of each node is independent
of its expected number of failures before the repair crew’s visit. Typically, we expect that
the repair crew will repair the node so that it will not fail, and the second term above is
much larger than the first. Taking the constant of proportionality as β = 0, we return to
the individual costs given by (5).

Note that since the cost is a sum of M terms, it is invariant to ordering or indexing
(caused by π). Thus we can rewrite the cost as

GraphTraversalCost(π, fλ, {x̃i}Mi=1, {di,j}Mi,j=1) =

M∑

i=1

p(x̃i)Lπ(i),

where p(x̃π(i)) is given in (2).

Cost 2: Cost is Proportional to Probability that First Failure is Before
the Visit

This cost reflects the penalty for not visiting a node before the first failure occurs there.
This model is governed by the geometric distribution: the probability that the first failure
for node π(i) occurs at time Lπ(π(i)) is p(x̃π(i))(1− p(x̃π(i)))

Lπ(π(i))−1, and:

P
(

first failure occurs before time Lπ(π(i))
)

= 1− (1− p(x̃π(i)))
Lπ(π(i)). (7)

The cost of visiting node π(i) will be proportional to this quantity. Substituting the ex-
pression (2) for p(x̃π(i)):

Cost of node π(i) ∝
(

1−
(

1− 1

1 + e−fλ(x̃π(i))

)Lπ(π(i))
)

=

(
1−

(
1 + efλ(x̃π(i))

)−Lπ(π(i))
)
. (8)

Similarly to Cost 1, Lπ(π(i)) influences the cost at each node. If we visit a node early in
the route, then the cost incurred is small because the node is less likely to fail before we
reach it. Similarly, if we schedule a visit later on in the tour, the cost is higher because the
node has a higher chance of failing prior to the repair crew’s visit. We generally want to
visit nodes with higher probability of failures early and schedule the less vulnerable nodes
later. The total route cost is thus:

GraphTraversalCost(π, fλ, {x̃i}Mi=1, {di,j}Mi,j=1) =
M∑

i=1

(
1−

(
1 + efλ(x̃π(i))

)−Lπ(π(i))
)
. (9)

8

Machine Learning & the Traveling Repairman

This cost is not directly related to a TRP cost in its present form. That is, when the
failure probabilities of the nodes are all the same, the total cost is not linear in the latencies,
as is the case for Cost 1. Loosely inspired by the route cost above, we will derive a cost that
is similar to a weighted version of the TRP in Section 3.2, choosing it to be of the form:

Cost of node π(i) ∝ Lπ(π(i)) log
(

1 + efλ(x̃π(i))
)
, (10)

as an alternative to (8).
There is a slightly more general version of this formulation (as there was for Cost 1),

which is to take the cost for each node to be a function of two quantities: the probability
of failure before the visit, and the probability of failure after the visit. Let us redefine β
to be a constant of proportionality for the cost of visiting before the failure event. From
the geometric distribution, P (first failure occurs after time Lπ(π(i)) = (1−p(x̃π(i)))

Lπ(π(i)),
and the cost of visiting node π(i) becomes:

Cost of node π(i) ∝ P (failure before Lπ(π(i))) + βP (failure after Lπ(π(i))) . (11)

If β = 1, then the sum above is 1 for all nodes regardless of node failures or latencies. More
realistically, the cost of visiting the node after the failure is more than the cost of visiting
proactively, β � 1 leading to (8).

We could again have written the summation to hide the dependence on π:

GraphTraversalCost(π, fλ, {x̃i}Mi=1, {di,j}Mi,j=1) =
M∑

i=1

(
1−

(
1 + efλ(x̃i)

)−Lπ(i)
)
.

Now that the major steps for both formulations have been defined, we will discuss methods
for optimizing the objectives.

3. Optimization

We start by formulating mixed-integer linear programs (MILP’s) for the graph traversal
cost subproblem.

3.1 Mixed-integer optimization for Cost 1

For either the sequential or simultaneous formulations, we need the solution of the subprob-
lem:

π∗ ∈ argminπ∈ΠGraphTraversalCost(π, f∗λ , {x̃i}Mi=1, {di,j}Mi,j=1),

= argminπ∈Π

M∑

i=2

p(x̃π(i))
M∑

k=1

dπ(k)π(k+1)1[k<i] + p(x̃π(1))
M∑

k=1

dπ(k)π(k+1). (12)

Let us compare this to the standard traveling repairman problem (TRP) problem (see Blum
et al., 1994):

π∗ ∈ argminπ∈Π

M∑

k=1

dπ(k)π(k+1)(M + 1− k). (13)

9

Tulabandhula et al.

The standard TRP objective (13) is a special case of weighted TRP (12) when ∀i =
1, ...,M, p(x̃i) = p:

M∑

i=2

p(x̃π(i))
M∑

k=1

dπ(k)π(k+1)1[k<i] + p(x̃π(1))
M∑

k=1

dπ(k)π(k+1)

= p
M∑

i=2

M∑

k=1

dπ(k)π(k+1)1[k<i] + p
M∑

k=1

dπ(k)π(k+1)

= p

M∑

i=2

M∑

k=1

dπ(k)π(k+1)1[k<i] + p

M∑

k=1

dπ(k)π(k+1)1[k<M+1]

= p
M∑

k=1

dπ(k)π(k+1)

M+1∑

i=2

1[k<i]

= p

M∑

k=1

dπ(k)π(k+1)(M + 1− k).

The TRP is different from the traveling salesman problem (TSP); the goal of the trav-
eling salesman problem is to minimize the total traversal time (in this case, this is the same
as the distance traveled) needed to visit all nodes once, whereas the goal of the traveling
repairman problem is to minimize the sum of the waiting times to visit each node. Both the
TSP and the TRP are known to be NP-complete in the general case (Blum et al., 1994).
Intuitively, a TRP route cost objective captures the total waiting cost of a service system
from the customer’s (the node’s) point of view. For example, consider a truck carrying
prioritized items to be delivered to customers. At each customer’s stop, that customer’s
item is removed from the truck. The goal of the TRP is to minimize the total waiting time
of these customers.

We need to extend the standard TRP to include “unequal flow values” that will accom-
modate the more general problem (12). We use as a starting point the work of Fischetti
et al. (1993) who give an integer programming formulation of the standard TRP. (Note that
there are usually many ways that an integer program can be constructed, see Méndez-Dı́az
et al., 2008). We will suitably introduce pre-defined weights {p̄(x̃i)}i to arrive at (12) as the
objective. For Cost 1, we will take p̄(x̃i) := p(x̃i) = 1/ (1 + exp (−fλ(x̃i))), though we leave
the weights in the formulation more generally as p̄(x̃i). In order to interpret the formulation
below, consider the sum of the probabilities

∑M
i=1 p̄(x̃i) as the total “flow” through a route.

At the beginning of the tour, the repair crew has flow
∑M

i=1 p̄(x̃i). Along the tour, flow of
the amount p̄(x̃i) is dropped when the repair crew visits node i at latency Lπ(π(i)). In this
way, the amount of flow during the tour is the sum of the probabilities p̄(x̃i) for nodes that
the repair crew has not yet visited.

We deviate from the π notation to represent routes in the mixed-integer program. In-
stead, we introduce two sets of variables {zi,j}i,j and {yi,j}i,j which can together represent
a route. Let the set of edges of graph G be denoted by E. Let zi,j represent the flow on
edge (i, j) ∈ E and let a binary variable yi,j represent whether there exists a flow on edge
(i, j) ∈ E. (There will only be a flow along the route, and there will not be a flow along

10

Machine Learning & the Traveling Repairman

edges that are not in the route.) The mixed-integer program is as follows:

min
z,y

M∑

i=1

M∑

j=1

di,jzi,j s.t.(14)

No flow from node i to itself: zi,i = 0 ∀i = 1, ...,M (15)

No edge from node i to itself: yi,i = 0 ∀i = 1, ...,M (16)

Exactly one edge into each node:
M∑

i=1

yi,j = 1 ∀j = 1, ...,M (17)

Exactly one edge out from each node:

M∑

j=1

yi,j = 1 ∀i = 1, ...,M (18)

Flow coming back to the initial point at the end of the loop is p̄(x̃1):
M∑

i=1

zi,1 = p̄(x̃1)(19)

Change of flow after crossing node k is either p̄(x̃k) or it is p̄(x̃1) minus the sum of p̄’s:
M∑

i=1

zi,k −
M∑

j=1

zk,j =

{
p̄(x̃1)−∑M

i=1 p̄(x̃i) k = 1
p̄(x̃k) k = 2, ...,M

(20)

Connects flows z to indicators of edge y: zi,j ≤ ri,jyi,j (21)

where ri,j =





p̄(x̃1) j = 1∑M
i=1 p̄(x̃i) i = 1∑M
i=2 p̄(x̃i) otherwise

Constraints (15) and (16) restrict self-loops from forming. Constraints (17) and (18) impose
that every node should have exactly one edge coming in and one going out. Constraint (19)
represents the flow on the last edge coming back to the starting node. Constraint (20)
quantifies the flow change after traversing a node k. Constraint (21) represents an upper
bound on zi,j relating it to the corresponding binary variable yi,j .

3.2 Mixed integer optimization for Cost 2

Here we reason about the choice for changing Cost 2 in (8) to resemble (10). Starting with
the sum (9) over costs (8),

min
π

M∑

i=1

(
1−

(
1 + efλ(x̃π(i))

)−Lπ(π(i))
)
,

we apply the log function to the cost of each node (8) to get a new cost
(

1− log
(

1 + efλ(x̃π(i))
)−Lπ(π(i))

)
,

and the minimization becomes instead:

min
π

M∑

i=1

(
1− log

(
1 + efλ(x̃π(i))

)−Lπ(π(i))
)

11

Tulabandhula et al.

= −max
π

(
M∑

i=1

log
(

1 + efλ(x̃π(i))
)−Lπ(π(i))

−M
)

= −max
π

(
M∑

i=1

(−Lπ(π(i)) log
(

1 + efλ(x̃π(i))
)
−M

)

= min
π

M∑

i=1

Lπ(π(i)) log
(

1 + efλ(x̃π(i))
)

+M,

which is the sum over nodes of the expression (10). This graph traversal cost term is now

a weighted sum of latencies (+M) where the weights are of the form log
(

1 + efλ(x̃π(i))
)

.

We can thus reuse the mixed integer program (14)-(21) where the weights are defined as
p̄(x̃i) := log

(
1 + eλ·x̃i

)
.

The sequential formulation has now been completely defined for both Cost 1 and Cost
2.

3.3 Solvers for the weighted TRP subproblem

A generic MILP solver like CPLEX1 or Gurobi2 can produce an exact solution using branch-
and-bound or other related exact methods. In our experiments we use Gurobi. The weighted
TRP problem is NP-hard (can be shown by a reduction of the hamiltonian cycle problem)
and hence most likely not solvable by polynomial-time algorithms. The standard (un-
weighted – all weights equal) TRP can be encoded by different mixed-integer programming
formulations (see Fischetti et al., 1993; Eijl van, 1995; Méndez-Dı́az et al., 2008) each with
different performance guarantees (e.g., solving 15-60 nodes), which could be adapted for
our purpose. There are also techniques for producing constant factor approximate solutions
to the unweighted TRP, which could run faster than the MILP solvers for large problem
instances. If the weights are integers, we can adapt these faster techniques for the standard
problem to the weighed TRP problem by replicating the respective nodes by wi times where
wi is equal to the weight of node i. If the weights are rational (as is the case in (22) and
(23)), a rounding and discretization trick is one way to map back to the standard solution
techniques. More on this topic is discussed in Section 6.

3.4 Mixed-integer nonlinear programs (MINLPs)

For the simultaneous formulation, the inputs to the program are training data {xi, yi}mi=1,
unlabeled nodes {x̃i}Mi=1 the distances between them {di,j}Mi,j=1 and constants C1 and C2.
The full objective using Cost 1 is:

min
λ,{zi,j ,yi,j}




m∑

i=1

ln
(

1 + e−yifλ(xi)
)

+ C2||λ||22 + C1

M∑

i=1

M∑

j=1

di,jzi,j


 s.t.

constraints (15) to (21) hold, where p̄(x̃i) =
1

1 + e−λ·x̃i
,

1. IBM ILOG CPLEX Optimization Studio v12.2.0.2 2010
2. Gurobi Optimizer v3.0, Gurobi Optimization, Inc. 2010

12

Machine Learning & the Traveling Repairman

or equivalently,

min
λ




m∑

i=1

ln
(

1 + e−yifλ(xi)
)

+ C2||λ||22 + C1 min
{zi,j ,yi,j}

M∑

i=1

M∑

j=1

di,jzi,j


 s.t. (22)

constraints (15) to (21) hold, where p̄(x̃i) =
1

1 + e−λ·x̃i
.

The full objective using the modified version of Cost 2 is:

min
λ




m∑

i=1

ln
(

1 + e−yifλ(xi)
)

+ C2||λ||22 + C1 min
{zi,j ,yi,j}

M∑

i=1

M∑

j=1

di,jzi,j


 s.t. (23)

constraints (15) to (21) hold, where p̄(x̃i) = log
(

1 + eλ·x̃i
)
.

If we have an algorithm for solving (22), then the same scheme can be used to solve (23).
There are multiple ways of solving (or approximately solving) a mixed integer nonlinear op-
timization problem of the form (22) or (23). We consider three methods here, described
next. The first method is to directly use a generic mixed integer non-linear programming
(MINLP) solver. The second and third methods (called Nelder-Mead and Alternating Min-
imization, denoted NM and AM respectively) are iterative schemes over the λ parameter
space. At every iteration of these algorithms, we will need to evaluate the objective func-
tion. This evaluation involves solving the weighted TRP subproblem, as discussed in the
previous subsections.

Method 1: MINLP Solver

For our experiments we directly use a MINLP solver called Bonmin (Bonami et al., 2008).
These types of solvers typically use general MILP solving techniques like branch and bound
or dynamic programming interleaved with continuous optimization. Since the general MILP
solving techniques, as discussed, can take exponential time when applied directly to our
formulations, the MINLP solvers which use them can in turn, be inefficient if the graph is
moderate to large in size. However, when the graph is small, for instance when we want
to schedule a tour over a small time period with only a few nodes, the MINLP solver can
directly compute a solution to the problems (22) or (23) in manageable time.

Method 2: Nelder-Mead in λ-space (NM)

The Nelder-Mead minimization algorithm requires only function evaluations (Nelder and
Mead, 1965). The ML&TRP can be viewed as a minimization in the space of all λ vec-
tors; since we have solvers for the weighted TRP subproblem, we are able to evaluate
the ML&TRP objective for a given value of λ. In our experiments we use the MILP solver
(Gurobi) for the subproblem. Note that the ML&TRP objective can have non-differentiable
kinks arising from discontinuities in the graph traversal cost term; a method which relies on
the gradient or the Hessian of the objective function might get stuck. By using only function
values, NM may be able to bypass this type of situation. The generic Nelder-Mead scheme
can have disadvantages Rios (2009) with respect to performance. If so, other schemes like

13

Tulabandhula et al.

Multilevel Coordinated Search (MCS) Huyer and Neumaier (1999) can be used in place of
Nelder-Mead. Note that since the objective is nonlinear, all solutions obtained by NM are
only locally optimal.

Method 3: Alternating minimization in λ-π space (AM)

Define Obj as follows:

Obj(λ, π) = TrainingError(fλ, {xi, yi}mi=1)+C1GraphTraversalCost
(
π, fλ, {x̃i}Mi=1, {di,j}Mi,j=1

)
.

(24)
We propose a heuristic minimization algorithm, where starting from an initial vector λ0,
Obj is minimized alternately with respect to λ and then with respect to π, as shown in
Algorithm 1. The second step, solving for π, is the same as solving the TRP subproblem,
and we again use the MILP solver for this.

Algorithm 1 AM: Alternating minimization algorithm

Inputs: {xi, yi}m1 , {x̃i}M1 , {dij}ij , C1, C2, T and initial vector λ0.
for t=1:T do

Compute πt ∈ argminπ∈ΠObj(λt−1, π).
Compute λt ∈ argminλ∈RdObj(λ, πt).

end for
Output: πT .

Conditions for convergence and correctness for such iterative schemes is given by Csiszár
and Tusnády (1984); only locally optimal solutions can be found using this method.

4. Experiments

One of the major goals of this work is to be able to produce low cost solutions that are still
high quality; these models can explain the variance in the training data, while promoting
the prior belief that the cost will be low for carrying out the model’s recommendations.
The sequential formulation will not necessarily be able to accomplish this: the best possible
minimizer of the training error will not necessarily yield a low cost solution. This point is
made through some illustrations that follow next. We then evaluate the two formulations
with respect to both accuracy on a test set and cost of the route, for a set of features derived
from data from New York City’s secondary electrical distribution network.

4.1 Illustrations

Our first illustration shows how a small change in the probabilities can give a completely
different route and change the traversal cost. The graph G given by {di,j}i,j is shown in
Figure 1. The number of unlabeled nodes is M = 4, x̃1, . . . , x̃4 ∈ R2, shown in Figure 2.
The training features are also in the plane, xi ∈ R2, and are represented by two gray circles
in Figure 2 (for instance, the distributions could be Normal with diameters representing
their corresponding variance). Note that it is important not to confuse the feature space of
xi’s with the space that the graph {di,j}i,j is embedded in, these are different spaces, and
the ML&TRP graph need not even have a physical distance interpretation.

14

Machine Learning & the Traveling Repairman

Tulabandhula et al.

x̃1

0.12

x̃2

0.62

x̃3

0.38

x̃1

0.12

x̃4

0.12

1

x̃2

0.62

0.8
2

x

1

3

1.4

0.38
1.2

(a)

x̃4

0.12

1

0.8
2

1

1.4

1.2

(a)

x̃1

0.12

x̃2

0.69

x̃3

0.31

x̃4

0.12

1

0.8

2

˜

1.4

x1

1.2

0

(b)

.12

x̃2

0.69

x̃3

0.31

x̃4

0.12

1

0.8

2

1

1.4

1.2

(b)

1.21.222221.21.2training instances and unlabeled instances in feature space along with a level set drawntraining instances and unlabeled instances in feature space along with a level set drawnFor our second illustration, we consider a new set of experiments with a similar setupFor our second illustration, we consider a new set of experiments with a similar setup

x̃1

0.12

x̃2

0.35

x̃3

0.60

x̃4

0.12

1

0.8
2

1

1.4

1.2

(a)

x̃1

0.12

x̃2

0.30

x̃3

0.55

x̃4

0.12

1

0.8

2

1

1.4

1.2

(b)

Figure 1: Physical space for the four node illustration. The weights on the edges represent
the distance di,j . The optimal route as determined by the sequential formulation is
highlighted in (a). (b) shows a route determined by the simultaneous formulation.

16

Tulabandhula et al.

x̃1

0.12

x̃2

0.62

x̃3

0.38

x̃1

0.12

x̃4

0.12

1

x̃2

0.62

0.8
2

x

1

3

1.4

0.38
1.2

(a)

x̃4

0.12

1

0.8
2

1

1.4

1.2

(a)

x̃1

0.12

x̃2

0.69

x̃3

0.31

x̃4

0.12

1

0.8

2

˜

1.4

x1

1.2

0

(b)

.12

x̃2

0.69

x̃3

0.31

x̃4

0.12

1

0.8

2

1

1.4

1.2

(b)

1.21.222221.21.2training instances and unlabeled instances in feature space along with a level set drawntraining instances and unlabeled instances in feature space along with a level set drawnFor our second illustration, we consider a new set of experiments with a similar setupFor our second illustration, we consider a new set of experiments with a similar setup

x̃1

0.12

x̃2

0.35

x̃3

0.60

x̃4

0.12

1

0.8
2

1

1.4

1.2

(a)

x̃1

0.12

x̃2

0.30

x̃3

0.55

x̃4

0.12

1

0.8

2

1

1.4

1.2

(b)

Figure 1: Physical space for the four node illustration. The weights on the edges represent
the distance di,j . The optimal route as determined by the sequential formulation is
highlighted in (a). (b) shows a route determined by the simultaneous formulation.

16

!"#$%&'()&

Machine Learning & the Traveling Repairman

The sequential formulation produces a function whose 0.5-probability level set is dis-
played (in feature space) as a black line in Figure 2. The route corresponding to that solution
is given in Figure 1(a), which is π∗ = 1−3−4−2−1. Consider instead what might happen
if we used the simultaneous formulation. If we were to move the 0.5-probability level set
slightly, for instance to the dashed line in Figure 2, the probability estimates on the finite
training set would change only slightly, but the route would change entirely. The new route
would be π∗

new = 1−3−2−4−1, and it would yield a lower value of Cost 1. In both cases,
the probability estimators may have similar validation performance, so a solution from the
simultaneous formulation might be preferred.

x̃1

0.12

x̃2

0.62

x̃3

0.38

x̃4

0.12

1

0.8
2

1

1.4

1.2

(a)

x̃1

0.12

x̃2

0.69

x̃3

0.31

x̃4

0.12

1

0.8

2

1

1.4

1.2

(b)

Figure 1: Physical space for the four node illustration. The weights on the edges represent
the distance di,j . The optimal route as determined by the sequential formulation is
highlighted in (a). (b) shows a route determined by the simultaneous formulation.

For our second illustration, we consider a new set of experiments with a similar setup
as before but now with the number of nodes on the graph equal to 6. Figure 3 shows the
training instances and unlabeled instances in feature space along with a level set drawn

15

Machine Learning & the Traveling Repairman

The sequential formulation produces a function whose 0.5-probability level set is dis-
played (in feature space) as a black line in Figure 2. The route corresponding to that solution
is given in Figure 1(a), which is π∗ = 1−3−4−2−1. Consider instead what might happen
if we used the simultaneous formulation. If we were to move the 0.5-probability level set
slightly, for instance to the dashed line in Figure 2, the probability estimates on the finite
training set would change only slightly, but the route would change entirely. The new route
would be π∗

new = 1−3−2−4−1, and it would yield a lower value of Cost 1. In both cases,
the probability estimators may have similar validation performance, so a solution from the
simultaneous formulation might be preferred.

x̃1

0.12

x̃2

0.62

x̃3

0.38

x̃4

0.12

1

0.8
2

1

1.4

1.2

(a)

x̃1

0.12

x̃2

0.69

x̃3

0.31

x̃4

0.12

1

0.8

2

1

1.4

1.2

(b)

Figure 1: Physical space for the four node illustration. The weights on the edges represent
the distance di,j . The optimal route as determined by the sequential formulation is
highlighted in (a). (b) shows a route determined by the simultaneous formulation.

For our second illustration, we consider a new set of experiments with a similar setup
as before but now with the number of nodes on the graph equal to 6. Figure 3 shows the
training instances and unlabeled instances in feature space along with a level set drawn

15

Machine Learning & the Traveling Repairman

The sequential formulation produces a function whose 0.5-probability level set is dis-
played (in feature space) as a black line in Figure 2. The route corresponding to that solution
is given in Figure 1(a), which is π∗ = 1−3−4−2−1. Consider instead what might happen
if we used the simultaneous formulation. If we were to move the 0.5-probability level set
slightly, for instance to the dashed line in Figure 2, the probability estimates on the finite
training set would change only slightly, but the route would change entirely. The new route
would be π∗

new = 1−3−2−4−1, and it would yield a lower value of Cost 1. In both cases,
the probability estimators may have similar validation performance, so a solution from the
simultaneous formulation might be preferred.

x̃1

0.12

x̃2

0.62

x̃3

0.38

x̃4

0.12

1

0.8
2

1

1.4

1.2

(a)

x̃1

0.12

x̃2

0.69

x̃3

0.31

x̃4

0.12

1

0.8

2

1

1.4

1.2

(b)

Figure 1: Physical space for the four node illustration. The weights on the edges represent
the distance di,j . The optimal route as determined by the sequential formulation is
highlighted in (a). (b) shows a route determined by the simultaneous formulation.

For our second illustration, we consider a new set of experiments with a similar setup
as before but now with the number of nodes on the graph equal to 6. Figure 3 shows the
training instances and unlabeled instances in feature space along with a level set drawn

15

Machine Learning & the Traveling Repairman

The sequential formulation produces a function whose 0.5-probability level set is dis-
played (in feature space) as a black line in Figure 2. The route corresponding to that solution
is given in Figure 1(a), which is π∗ = 1−3−4−2−1. Consider instead what might happen
if we used the simultaneous formulation. If we were to move the 0.5-probability level set
slightly, for instance to the dashed line in Figure 2, the probability estimates on the finite
training set would change only slightly, but the route would change entirely. The new route
would be π∗

new = 1−3−2−4−1, and it would yield a lower value of Cost 1. In both cases,
the probability estimators may have similar validation performance, so a solution from the
simultaneous formulation might be preferred.

x̃1

0.12

x̃2

0.62

x̃3

0.38

x̃4

0.12

1

0.8
2

1

1.4

1.2

(a)

x̃1

0.12

x̃2

0.69

x̃3

0.31

x̃4

0.12

1

0.8

2

1

1.4

1.2

(b)

Figure 1: Physical space for the four node illustration. The weights on the edges represent
the distance di,j . The optimal route as determined by the sequential formulation is
highlighted in (a). (b) shows a route determined by the simultaneous formulation.

For our second illustration, we consider a new set of experiments with a similar setup
as before but now with the number of nodes on the graph equal to 6. Figure 3 shows the
training instances and unlabeled instances in feature space along with a level set drawn

15

Figure 1: Physical space for the four node illustration. The weights on the edges represent
the distance di,j . The optimal route as determined by the sequential formulation is
highlighted in (a). (b) shows a route determined by the simultaneous formulation.

!"

#"
$" %"

Figure 2: Feature space for the four node illustration.

The sequential formulation produces a function whose 0.5-probability level set is dis-
played (in feature space) as a black line in Figure 2. The route corresponding to that solution
is given in Figure 1(a), which is π∗ = 1−3−2−4−1. Consider instead what might happen
if we used the simultaneous formulation. If we were to move the 0.5-probability level set
slightly, for instance to the dashed line in Figure 2, the probability estimates on the finite
training set would change only slightly, but the route would change entirely. The new route
would be π∗new = 1 − 3 − 4 − 2 − 1, and it would yield a lower value of Cost 1 (decrease
by ∼ 16.4%). In both cases, the probability estimators may have very similar validation
performance, so a solution from the simultaneous formulation might be preferred.

15

Tulabandhula et al.

For our second illustration, we consider a new set of experiments with a similar setup
as before but now with the number of nodes on the graph equal to 6. The training set was
chosen uniformly at random from a distribution that is uniform over two triangles pointing
end to end. Again the training data is finite, so that the level set can be moved, yielding
almost the same probability estimates on the training set but accommodating lower costing
routes. Figure 3 shows the training instances and unlabeled instances in feature space along
with two level sets. The first one, colored black drawn at probability estimate 0.5 is learned
from (`2-regularized) logistic regression. The second level set, colored red and also drawn at
probability estimate 0.5 is learned from the new simultaneous formulation. The new level
set was obtained from the simultaneous formulation with graph cost modeled according to
Cost 1 (with an appropriately chosen coefficient C1). Node 6 lies in a low density region
of feature space, so its probability cannot be well estimated. In the sequential formulation,
node 6 which was assigned p(x̃6) = 0.5. The optimal route thus obtained by solving the
weighted TRP problem in the second step is 1−2−3−6−4−5−1 shown in Figure 4. In the
simultaneous formulation, node 6 has been assigned a new probability value p(x̃6) = 0.29.
This big change is possible because its probability estimate can vary quite a lot without
changing the probability estimates of others. This changes the route to 1−2−3−4−5−6−1
as shown in Figure 5. Here, we see that node 6 is also physically far from all other nodes.
If it has a high enough probability estimate compared to nodes 4 and 5 (blue triangles in
the lower left half of Figure 3), then a route that visits node 6 before visiting nodes 4 and 5
would be favored; this is what happens in the sequential formulation. In the simultaneous
formulation, we chose C1 large enough so that the tour route visits 4 and 5 before 6. This
results in ∼ 9% decrease in the route cost (Cost 1).

Using the data from the second illustration, the (`2-regularized) training error is plotted
in Figure 6(a). The axes are the first two coordinates of the λ parameter vector. The
optimal graph traversal cost (Cost 1) was computed for each value of λ and is plotted in
Figure 6(b); for each point, a weighted TRP subproblem was solved. The simultaneous
ML&TRP objective is the sum of the values in Figures 6(a) and 6(b), and the constant C1

controls how these surfaces are added together. If the training error term in Figure 6(a) is
somewhat flat near the minimizer of the ML&TRP objective and the graph traversal term
in 6(b) is not flat, the graph traversal term may be able to have a substantial effect on the
solution.

4.2 ML&TRP on the NYC power grid

We now illustrate the performance of our method on a data set obtained from a collaborative
effort with Con Edison, which is NYC’s power utility company. More details about these
data can be found in (Rudin et al., 2010). This dataset was developed in order to assist Con
Edison with its maintenance and repair programs on the secondary electrical distribution
network in NYC; specifically, it was designed for the purpose of predicting manhole fires and
explosions. We chose to use all manholes from the Bronx (∼23K manholes). Each manhole
is represented by features that encode the number and type of electrical cables entering
the manhole and the number and type of past events involving the manhole (e.g., if the
manhole was the source of partial outages, full outages and/or underground burnouts). The
training features encode events prior to 2008, and the training labels are 1 if the manhole

16

Machine Learning & the Traveling Repairman

Tulabandhula et al.

3 2 1 0 1 2 33

2

1

0

1

2

3

x1

x2

Level set

New level set
✄
✄
✄✄✗

Figure 4: Plotting the unlabeled data {x̃i}M
i=1 in feature space, along with the decision

boundary from Figure 3, and the decision boundary from the simultaneous for-
mulation, illustrating the effect of the graph traversal cost regularization term on
the decision boundary.

randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

18

Tulabandhula et al.

3 2 1 0 1 2 33

2

1

0

1

2

3

x1

x2

Level set

New level set
✄
✄
✄✄✗

Figure 4: Plotting the unlabeled data {x̃i}M
i=1 in feature space, along with the decision

boundary from Figure 3, and the decision boundary from the simultaneous for-
mulation, illustrating the effect of the graph traversal cost regularization term on
the decision boundary.

randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

18

Machine Learning & the Traveling Repairman

3 2 1 0 1 2 33

2

1

0

1

2

3

x1

x2

Level set

Unlabeled x̃i
❈
❈
❈
❈❖

Figure 3: Plotting {xi}m
i=1 and {x̃i}M

i=1 in the feature space. The decision boundary is the
0.5-probability line obtained by minimizing the training error using the sequential
method.

17

Machine Learning & the Traveling Repairman

3 2 1 0 1 2 33

2

1

0

1

2

3

x1

x2

Level set

Unlabeled x̃i

Figure 3: Plotting {xi}m
i=1 and {x̃i}M

i=1 in the feature space. The decision boundary is the
0.5-probability line obtained by minimizing the training error using the sequential
method.

17

Tulabandhula et al.

3 2 1 0 1 2 33

2

1

0

1

2

3

x1

x2

Level set

New level set
✄
✄
✄✄✗

Figure 4: Plotting the unlabeled data {x̃i}M
i=1 in feature space, along with the decision

boundary from Figure 3, and the decision boundary from the simultaneous for-
mulation, illustrating the effect of the graph traversal cost regularization term on
the decision boundary.

randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

18

Figure 3: Plotting {xi}mi=1 and {x̃i}Mi=1 in the feature space. Two level sets corresponding
to 0.5 probability are also shown. The first (black) is obtained by minimizing the
training error using the sequential method. The second (red) is the 0.5 probability
level set obtained from the simultaneous formulation, and illustrates the effect of
the graph traversal cost regularization term on the decision boundary.

17

Tulabandhula et al.
Tulabandhula et al.

x̃1

0.81

x̃3

0.65

x̃2

0.83

x̃5

0.23

x̃4

0.28

x̃6

0.50

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 4: The weights on the edges represent the distance di,j . The optimal route as deter-
mined by the sequential formulation is highlighted. The route cost is 85.4 units
and the training cost is 618 units. The values of p(x̃i) are shown in the node
circles.

was the source of a serious event (fire, explosion, smoke) during 2008. The nodes are 7
randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

Figures 7 and 8 show how the AUC values change with respect to the coefficient C1 of
the graph traversal cost term in the objectives of Cost 1 and Cost 2. The algorithms used
here are the Nelder Mead (NM) method with the MILP solver for the subproblem, and

18

Tulabandhula et al.

x̃1

0.81

x̃3

0.65

x̃2

0.83

x̃5

0.23

x̃4

0.28

x̃6

0.50

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 4: The weights on the edges represent the distance di,j . The optimal route as deter-
mined by the sequential formulation is highlighted. The route cost is 85.4 units
and the training cost is 618 units. The values of p(x̃i) are shown in the node
circles.

was the source of a serious event (fire, explosion, smoke) during 2008. The nodes are 7
randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

Figures 7 and 8 show how the AUC values change with respect to the coefficient C1 of
the graph traversal cost term in the objectives of Cost 1 and Cost 2. The algorithms used
here are the Nelder Mead (NM) method with the MILP solver for the subproblem, and

18

Tulabandhula et al.

x̃1

0.81

x̃3

0.65

x̃2

0.83

x̃5

0.23

x̃4

0.28

x̃6

0.50

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 4: The weights on the edges represent the distance di,j . The optimal route as deter-
mined by the sequential formulation is highlighted. The route cost is 85.4 units
and the training cost is 618 units. The values of p(x̃i) are shown in the node
circles.

was the source of a serious event (fire, explosion, smoke) during 2008. The nodes are 7
randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

Figures 7 and 8 show how the AUC values change with respect to the coefficient C1 of
the graph traversal cost term in the objectives of Cost 1 and Cost 2. The algorithms used
here are the Nelder Mead (NM) method with the MILP solver for the subproblem, and

18

Tulabandhula et al.

x̃1

0.81

x̃3

0.65

x̃2

0.83

x̃5

0.23

x̃4

0.28

x̃6

0.50

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 4: The weights on the edges represent the distance di,j . The optimal route as deter-
mined by the sequential formulation is highlighted. The route cost is 85.4 units
and the training cost is 618 units. The values of p(x̃i) are shown in the node
circles.

was the source of a serious event (fire, explosion, smoke) during 2008. The nodes are 7
randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

Figures 7 and 8 show how the AUC values change with respect to the coefficient C1 of
the graph traversal cost term in the objectives of Cost 1 and Cost 2. The algorithms used
here are the Nelder Mead (NM) method with the MILP solver for the subproblem, and

18

Tulabandhula et al.

x̃1

0.81

x̃3

0.65

x̃2

0.83

x̃5

0.23

x̃4

0.28

x̃6

0.50

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 4: The weights on the edges represent the distance di,j . The optimal route as deter-
mined by the sequential formulation is highlighted. The route cost is 85.4 units
and the training cost is 618 units. The values of p(x̃i) are shown in the node
circles.

was the source of a serious event (fire, explosion, smoke) during 2008. The nodes are 7
randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

Figures 7 and 8 show how the AUC values change with respect to the coefficient C1 of
the graph traversal cost term in the objectives of Cost 1 and Cost 2. The algorithms used
here are the Nelder Mead (NM) method with the MILP solver for the subproblem, and

18

Tulabandhula et al.

x̃1

0.81

x̃3

0.65

x̃2

0.83

x̃5

0.23

x̃4

0.28

x̃6

0.50

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 4: The weights on the edges represent the distance di,j . The optimal route as deter-
mined by the sequential formulation is highlighted. The route cost is 85.4 units
and the training cost is 618 units. The values of p(x̃i) are shown in the node
circles.

was the source of a serious event (fire, explosion, smoke) during 2008. The nodes are 7
randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

Figures 7 and 8 show how the AUC values change with respect to the coefficient C1 of
the graph traversal cost term in the objectives of Cost 1 and Cost 2. The algorithms used
here are the Nelder Mead (NM) method with the MILP solver for the subproblem, and

18

Figure 4: The weights on the edges represent the distance di,j . The optimal route 1− 2−
3− 6− 4− 5− 1 as determined by the sequential formulation is highlighted. The
route cost (Cost 1) is 4.7 units (scaled by C1 = 0.001) and the training cost is
15.7 units. The values of p(x̃i) are shown in the node circles.Machine Learning & the Traveling Repairman

x̃1

0.74

x̃3

0.71

x̃2

0.84

x̃5

0.27

x̃4

0.32

x̃6

0.29

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 5: The optimal route as determined by the simultaneous formulation is highlighted.
The route cost is 71.7 units and the training cost is 748.2 units.

Tulabandhula et al.

x̃1

0.63

x̃2

0.70

x̃3

0.72

x̃4

0.20

x̃5

0.18

x̃6

0.27

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 6: The optimal route as determined by the simultaneous formulation is highlighted.
The route cost is 71.7 units and the training cost is 748.2 units.

2
0

2
4

2

0

2

4
0

50

100

(a)

2
0

2
4

2
0

2
4
60

70

80

90

100

(b)

Figure 7: The values of the two terms in the objective of the simultaneous ML&TRP for-
mulation. (a) Training error as a function of {λ1, λ2}. The last coordinate, λ3 is
kept fixed. (b) Optimal graph traversal cost over a 2D grid of λ1 and λ2, again
with λ3 fixed.

The test AUC values for the simultaneous method were all within 1% of the values
obtained by the sequential method; this is true for both Cost 1 and Cost 2, for each of the
AM, NM, and MINLP solvers. The variation in training error across the methods was also

20

Tulabandhula et al.

x̃1

0.63

x̃2

0.70

x̃3

0.72

x̃4

0.20

x̃5

0.18

x̃6

0.27

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 6: The optimal route as determined by the simultaneous formulation is highlighted.
The route cost is 71.7 units and the training cost is 748.2 units.

2
0

2
4

2

0

2

4
0

50

100

(a)

2
0

2
4

2
0

2
4
60

70

80

90

100

(b)

Figure 7: The values of the two terms in the objective of the simultaneous ML&TRP for-
mulation. (a) Training error as a function of {λ1, λ2}. The last coordinate, λ3 is
kept fixed. (b) Optimal graph traversal cost over a 2D grid of λ1 and λ2, again
with λ3 fixed.

The test AUC values for the simultaneous method were all within 1% of the values
obtained by the sequential method; this is true for both Cost 1 and Cost 2, for each of the
AM, NM, and MINLP solvers. The variation in training error across the methods was also

20

(a)

Tulabandhula et al.

x̃1

0.63

x̃2

0.70

x̃3

0.72

x̃4

0.20

x̃5

0.18

x̃6

0.27

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 6: The optimal route as determined by the simultaneous formulation is highlighted.
The route cost is 71.7 units and the training cost is 748.2 units.

2
0

2
4

2

0

2

4
0

50

100

(a)

2
0

2
4

2
0

2
4
60

70

80

90

100

(b)

Figure 7: The values of the two terms in the objective of the simultaneous ML&TRP for-
mulation. (a) Training error as a function of {λ1, λ2}. The last coordinate, λ3 is
kept fixed. (b) Optimal graph traversal cost over a 2D grid of λ1 and λ2, again
with λ3 fixed.

The test AUC values for the simultaneous method were all within 1% of the values
obtained by the sequential method; this is true for both Cost 1 and Cost 2, for each of the
AM, NM, and MINLP solvers. The variation in training error across the methods was also

20

Tulabandhula et al.

x̃1

0.63

x̃2

0.70

x̃3

0.72

x̃4

0.20

x̃5

0.18

x̃6

0.27

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 6: The optimal route as determined by the simultaneous formulation is highlighted.
The route cost is 71.7 units and the training cost is 748.2 units.

2
0

2
4

2

0

2

4
0

50

100

(a)

2
0

2
4

2
0

2
4
60

70

80

90

100

(b)

Figure 7: The values of the two terms in the objective of the simultaneous ML&TRP for-
mulation. (a) Training error as a function of {λ1, λ2}. The last coordinate, λ3 is
kept fixed. (b) Optimal graph traversal cost over a 2D grid of λ1 and λ2, again
with λ3 fixed.

The test AUC values for the simultaneous method were all within 1% of the values
obtained by the sequential method; this is true for both Cost 1 and Cost 2, for each of the
AM, NM, and MINLP solvers. The variation in training error across the methods was also

20

(b)

Figure 6: The values of the two terms in the objective of the simultaneous ML&TRP for-
mulation. (a) Training error as a function of {λ1, λ2}. The last coordinate, λ3 is
kept fixed. (b) Optimal graph traversal cost over a 2D grid of λ1 and λ2, again
with λ3 fixed.

the alternating minimization method (AM) again with the MILP solver. Having the graph
traversal cost as a regularizer lowers predictor fλ∗ ’s AUC values on the training data, as

19

Tulabandhula et al.

x̃1

0.81

x̃3

0.65

x̃2

0.83

x̃5

0.23

x̃4

0.28

x̃6

0.50

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 4: The weights on the edges represent the distance di,j . The optimal route as deter-
mined by the sequential formulation is highlighted. The route cost is 85.4 units
and the training cost is 618 units. The values of p(x̃i) are shown in the node
circles.

was the source of a serious event (fire, explosion, smoke) during 2008. The nodes are 7
randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

Figures 7 and 8 show how the AUC values change with respect to the coefficient C1 of
the graph traversal cost term in the objectives of Cost 1 and Cost 2. The algorithms used
here are the Nelder Mead (NM) method with the MILP solver for the subproblem, and

18

Tulabandhula et al.

x̃1

0.81

x̃3

0.65

x̃2

0.83

x̃5

0.23

x̃4

0.28

x̃6

0.50

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 4: The weights on the edges represent the distance di,j . The optimal route as deter-
mined by the sequential formulation is highlighted. The route cost is 85.4 units
and the training cost is 618 units. The values of p(x̃i) are shown in the node
circles.

was the source of a serious event (fire, explosion, smoke) during 2008. The nodes are 7
randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

Figures 7 and 8 show how the AUC values change with respect to the coefficient C1 of
the graph traversal cost term in the objectives of Cost 1 and Cost 2. The algorithms used
here are the Nelder Mead (NM) method with the MILP solver for the subproblem, and

18

Tulabandhula et al.

x̃1

0.81

x̃3

0.65

x̃2

0.83

x̃5

0.23

x̃4

0.28

x̃6

0.50

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 4: The weights on the edges represent the distance di,j . The optimal route as deter-
mined by the sequential formulation is highlighted. The route cost is 85.4 units
and the training cost is 618 units. The values of p(x̃i) are shown in the node
circles.

was the source of a serious event (fire, explosion, smoke) during 2008. The nodes are 7
randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

Figures 7 and 8 show how the AUC values change with respect to the coefficient C1 of
the graph traversal cost term in the objectives of Cost 1 and Cost 2. The algorithms used
here are the Nelder Mead (NM) method with the MILP solver for the subproblem, and

18

Tulabandhula et al.

x̃1

0.81

x̃3

0.65

x̃2

0.83

x̃5

0.23

x̃4

0.28

x̃6

0.50

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 4: The weights on the edges represent the distance di,j . The optimal route as deter-
mined by the sequential formulation is highlighted. The route cost is 85.4 units
and the training cost is 618 units. The values of p(x̃i) are shown in the node
circles.

was the source of a serious event (fire, explosion, smoke) during 2008. The nodes are 7
randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

Figures 7 and 8 show how the AUC values change with respect to the coefficient C1 of
the graph traversal cost term in the objectives of Cost 1 and Cost 2. The algorithms used
here are the Nelder Mead (NM) method with the MILP solver for the subproblem, and

18

Tulabandhula et al.

x̃1

0.81

x̃3

0.65

x̃2

0.83

x̃5

0.23

x̃4

0.28

x̃6

0.50

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 4: The weights on the edges represent the distance di,j . The optimal route as deter-
mined by the sequential formulation is highlighted. The route cost is 85.4 units
and the training cost is 618 units. The values of p(x̃i) are shown in the node
circles.

was the source of a serious event (fire, explosion, smoke) during 2008. The nodes are 7
randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

Figures 7 and 8 show how the AUC values change with respect to the coefficient C1 of
the graph traversal cost term in the objectives of Cost 1 and Cost 2. The algorithms used
here are the Nelder Mead (NM) method with the MILP solver for the subproblem, and

18

Figure 5: The optimal route 1 − 2 − 3 − 4 − 5 − 6 − 1 as determined by the simultaneous
formulation is highlighted. The route cost (Cost 1) is now 4.25 units (scaled by
C1 = 0.001) and the training cost is 16.2 units.

18

Machine Learning & the Traveling Repairman

Tulabandhula et al.

x̃1

0.63

x̃2

0.70

x̃3

0.72

x̃4

0.20

x̃5

0.18

x̃6

0.27

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 6: The optimal route as determined by the simultaneous formulation is highlighted.
The route cost is 71.7 units and the training cost is 748.2 units.

2
0

2
4

2

0

2

4
0

50

100

(a)

2
0

2
4

2
0

2
4
60

70

80

90

100

(b)

Figure 7: The values of the two terms in the objective of the simultaneous ML&TRP for-
mulation. (a) Training error as a function of {λ1, λ2}. The last coordinate, λ3 is
kept fixed. (b) Optimal graph traversal cost over a 2D grid of λ1 and λ2, again
with λ3 fixed.

The test AUC values for the simultaneous method were all within 1% of the values
obtained by the sequential method; this is true for both Cost 1 and Cost 2, for each of the
AM, NM, and MINLP solvers. The variation in training error across the methods was also

20

Tulabandhula et al.

x̃1

0.63

x̃2

0.70

x̃3

0.72

x̃4

0.20

x̃5

0.18

x̃6

0.27

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 6: The optimal route as determined by the simultaneous formulation is highlighted.
The route cost is 71.7 units and the training cost is 748.2 units.

2
0

2
4

2

0

2

4
0

50

100

(a)

2
0

2
4

2
0

2
4
60

70

80

90

100

(b)

Figure 7: The values of the two terms in the objective of the simultaneous ML&TRP for-
mulation. (a) Training error as a function of {λ1, λ2}. The last coordinate, λ3 is
kept fixed. (b) Optimal graph traversal cost over a 2D grid of λ1 and λ2, again
with λ3 fixed.

The test AUC values for the simultaneous method were all within 1% of the values
obtained by the sequential method; this is true for both Cost 1 and Cost 2, for each of the
AM, NM, and MINLP solvers. The variation in training error across the methods was also

20

(a)

Tulabandhula et al.

x̃1

0.63

x̃2

0.70

x̃3

0.72

x̃4

0.20

x̃5

0.18

x̃6

0.27

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 6: The optimal route as determined by the simultaneous formulation is highlighted.
The route cost is 71.7 units and the training cost is 748.2 units.

2
0

2
4

2

0

2

4
0

50

100

(a)

2
0

2
4

2
0

2
4
60

70

80

90

100

(b)

Figure 7: The values of the two terms in the objective of the simultaneous ML&TRP for-
mulation. (a) Training error as a function of {λ1, λ2}. The last coordinate, λ3 is
kept fixed. (b) Optimal graph traversal cost over a 2D grid of λ1 and λ2, again
with λ3 fixed.

The test AUC values for the simultaneous method were all within 1% of the values
obtained by the sequential method; this is true for both Cost 1 and Cost 2, for each of the
AM, NM, and MINLP solvers. The variation in training error across the methods was also

20

Tulabandhula et al.

x̃1

0.63

x̃2

0.70

x̃3

0.72

x̃4

0.20

x̃5

0.18

x̃6

0.27

7

7

10

10

12

7

10

10

12

10
10

12

7

12

12

Figure 6: The optimal route as determined by the simultaneous formulation is highlighted.
The route cost is 71.7 units and the training cost is 748.2 units.

2
0

2
4

2

0

2

4
0

50

100

(a)

2
0

2
4

2
0

2
4
60

70

80

90

100

(b)

Figure 7: The values of the two terms in the objective of the simultaneous ML&TRP for-
mulation. (a) Training error as a function of {λ1, λ2}. The last coordinate, λ3 is
kept fixed. (b) Optimal graph traversal cost over a 2D grid of λ1 and λ2, again
with λ3 fixed.

The test AUC values for the simultaneous method were all within 1% of the values
obtained by the sequential method; this is true for both Cost 1 and Cost 2, for each of the
AM, NM, and MINLP solvers. The variation in training error across the methods was also

20

(b)

Figure 6: The values of the two terms in the objective of the simultaneous ML&TRP for-
mulation. (a) Training error as a function of {λ1, λ2}. The last coordinate, λ3 is
kept fixed. (b) Scaled optimal graph traversal cost (Cost 1 divided by 100) over
a 2D grid of λ1 and λ2, again with λ3 fixed.

was the source of a serious event (fire, explosion, smoke) during 2008. The nodes are 7
randomly chosen manholes, and the features for the nodes encode events prior to 2009. The
prediction task is to predict events in 2009. The test set (for evaluating the performance
of the predictive model) consists of features derived from the time period before 2009, and
labels from 2009. Predicting manhole events is a difficult task for machine learning, because
one cannot necessarily predict an event using the available data. The operational task was
to design a route for a repair crew that is fixing the nodes. The choice of M = 7 nodes was
only to speed up the computation time. Limitation on the number of nodes for which the
TRP problem can be solved efficiently directly affects the number of nodes which we can
pick for the unlabeled set. This bound is an order of magnitude more than the choice made
here.

The distances between the nodes were obtained from Google Maps, by querying the
driving distance between each pair of nodes. Note that we do not want ‘flying’ distance
between two coordinates as this can be very different from the actual driving distance.
Manhole failures are rare events. This means that we have many more negative labels
than positive labels. Because of the large class imbalance, using a logistic model gives us
probability estimates which are low overall, so the misclassification error is almost always
the size of the whole positive class. To avoid this, we chose to evaluate the quality of the
predictions from fλ∗ using the area under the ROC curve (AUC), for both training and
test. The quality of the route is indicated by computing the optimal route cost at λ∗.

Figures 7 and 8 show how the AUC values change with respect to the coefficient C1

of the graph traversal cost term in the objectives of Cost 1 and Cost 2. The algorithms
used here are the Nelder-Mead method with the MILP solver for the subproblem, and the
alternating minimization method (AM) again with the MILP solver. Having the graph
traversal cost as a regularizer lowers predictor fλ∗ ’s AUC values on the training data, as

19

Tulabandhula et al.

0 0.2 0.4 0.6 0.8

0.59

0.6

0.61

0.62

0.63

AU
C

Test NM
Train NM
Test AM
Train AM
Test MINLP
Train MINLP

C1

Figure 7: The AUC values corresponding to model parameters obtained from the simulta-
neous formulation using Cost 1 by NM-MILP and AM-MILP algorithms along
with MINLP solver, plotted as a function of C1. The AUC values on the train-
ing data decrease slightly and the same values for test data increase marginally.
The two horizontal lines represent the training and test AUC values obtained by
`2-penalized logistic regression and thus, are constant with respect to C1.

expected. In this case, the performance on the test data is basically unchanged. We use a
total of 4 features (that is, xi ∈ R4). On the other hand, a related work on the same dataset
(Rudin et al., 2011) uses more number of features and get about 10% increase in the AUC
values. The increase in training error for the simultaneous formulation (using Cost 1) as a
function of C1 is shown also in Figure 9. The decrease in graph traversal cost as a function
of C1 is shown in Figure 10.

The naive route obtained by estimating probabilities using `2-penalized logistic regres-
sion, and then simply visiting nodes according to decreasing values of these probabilities
is shown in Figure 11. Figure 12 shows the route provided by the sequential formulation.
For the simultaneous method, there are changes in the route as the coefficient C1 increases.
When C1 is low, the route is the same as obtained from the sequential method, in Figure
12. When the graph traversal term starts influencing the optimal solution of the objective
(22) because of an increase in C1, we get a new route, depicted in Figure 13.

We experimented with a large range of values for the regularization parameter C1, with
the goal of seeing a large range of possible results. We chose AUC as the evaluation metric,
which is a measure of ranking quality; it is sensitive to the rank-ordering of the nodes in
order of their probability to fail, and it is not as sensitive to changes in the values of these
probabilities. This means that as the parameter C1 increases, the estimated probability
values will tend to decrease, and thus the graph traversal cost will decrease; however, it

20

Machine Learning & the Traveling Repairman

0 0.2 0.4 0.6 0.8

0.59

0.6

0.61

0.62

0.63

AU
C

Test NM
Train NM
Test AM
Train AM
Test MINLP
Train MINLP

C1

Figure 8: The AUC values obtained from the simultaneous formulation, using Cost 2, from
the NM-MILP and AM-MILP algorithms along with the MINLP solver, plotted
as a function of C1. Again, the training data AUC values decrease and the test
data AUC values remain nearly constant. The horizontal lines represent constant
values of the AUC obtained by `2-penalized logistic regression.

21

Tulabandhula et al.

0 0.2 0.4 0.6 0.8800

805

810

815

Pe
na

liz
ed

 L
og

is
tic

 C
os

t

Cost 1 NM
Cost 2 NM
Cost 1 AM
Cost 2 AM
Cost 1 MINLP
Cost 2 MINLP

C1

Figure 9: The `2-regularized logistic loss increases as a function of increasing C1. The
horizontal line represents the loss value from `2-penalized logistic regression with
no regularization (C1 = 0).

0 0.2 0.4 0.6 0.80

20

40

60

80

100

120

140

160

180

G
ra

ph
 C

os
t

Cost 1 NM
Cost 2 NM
Cost 1 AM
Cost 2 AM
Cost 1 MINLP
Cost 2 MINLP

C1

Figure 10: The graph traversal costs decrease as a function of the regularization parameter
C1. The horizontal lines in the figure represent the sequential formulation solu-
tions; the lower horizontal line is Cost 1 of the solution obtained by `2-penalized
logistic regression, and the upper line is Cost 2 of that solution.

22

Machine Learning & the Traveling Repairman

Figure 11: A naive route: 1-5-4-3-2-6-7-1 obtained by sorting the probability estimates in
decreasing order and visiting the corresponding nodes.

Figure 12: Sequential formulation route: 1-5-3-4-2-6-7-1. The simultaneous formulation
also chooses this route when C1 is small.

23

Tulabandhula et al.

Figure 13: Route chosen by the simultaneous formulation when C1 is larger: 1-6-7-5-3-4-2-
1. Prediction performance is only slightly influenced by the route change, but
the cost of the route (Cost 1) decreases a lot.

may be possible for this to happen without impacting the prediction quality as measured
by the AUC, but this depends on the routes and it is not guaranteed. In our experiments,
for both training and test we had a large sample (∼23K examples). The test AUC values
for the simultaneous method were all within 1% of the values obtained by the sequential
method; this is true for both Cost 1 and Cost 2, for each of the AM, NM, and MINLP
solvers. This means that the AUC prediction quality did not decrease as a result of using
the new simultaneous method. The variation in training error across the methods was also
small, about 2%. On the other hand, as expected, the graph traversal costs varied widely
over the different methods and settings of C1, as a result of the decrease in the probability
estimates, as shown in Figure 10. There is a range of realistic probability estimates, but
towards the right of the plot (for instance when C1 > .85), the probability estimates are
probably too low to be realistic and the costs are substantially underestimated. Let us
compare the values of Cost 1 for our experiments in the more realistic range: Cost 1 of the
näıve method was 24.5% higher than that of the sequential method; As C1 was increased
from 0.05 to 0.5, Cost 1 went from 27.5 units to 3.2 units, which is over eight times smaller.
This means that with a 1-2% variation in the predictive model’s AUC, the graph traversal
cost can decrease a lot, potentially yielding a more cost-effective route for inspection and/or
repair work, by favoring the cost to be underestimated when there is uncertainty.

In most applications relevant to this problem, we suspect that the solution used in
practice is somewhere in between the näıve route and the sequential route, in that a human
views the näıve solution and adjusts it by hand to be closer to the sequential route (without
solving the TRP). For the application to electrical grid maintenance, the simultaneous

24

Machine Learning & the Traveling Repairman

method was able to find a substantially lower cost route that the näıve or sequential method,
with little (if any) change in the AUC prediction quality.

5. Generalization Bound

We initially introduced the graph traversal cost regularization term in order to find scenarios
where the data would support low-cost (more actionable) repair routes. From another
point of view, incorporating regularization reduces the size of the hypothesis space and
may thus promote generalization. The size of the hypothesis space can be controlled using
C1. Increasing C1 may thus assist in predicting failure probabilities on future inputs x
using fλ(x). Here, it is irrelevant whether a new instance x is incorporated into a physical
underlying graph, we aim only to estimate P (y = 1|x), where all {xi, yi}mi=1 and new point
x, y are chosen independently at random from unknown distribution µX×Y . In what follows,
we will provide a generalization bound for the ML&TRP algorithm (22) with Cost 1 using
an upper bound on Cost 1 to limit the size of the hypothesis space. A similar bound for
(23) might be derived using the same method.

Generalization bounds are probabilistic guarantees that are useful for showing what vari-
ables may be important in the generalization process (Bousquet, 2003). The vast majority
of works on generalization analysis are mainly interested in problems where the dimen-
sionality d of the input space (or feature space) is very large, leading to the “curse of
dimensionality.” In that case, various measures of the complexity of the hypothesis space
are incorporated into the bounds; these complexity measures can often gauge the richness
of a class of functions in a way that is independent of the input dimension d. Examples of
such measures include the VC dimension for {0, 1}-valued function classes, ε-fat shattering
dimension for real valued functions, Rademacher complexity, and certain kinds of covering
numbers (Vapnik, 1998; Bartlett and Mendelson, 2002; Mendelson and Vershynin, 2003;
Zhang, 2002; Shawe-Taylor and Cristianini, 2002; Kolmogorov and Tikhomirov, 1959). In
the present work, we are instead interested in how the graph traversal cost influences gen-
eralization for a fixed d, that is, we are interested in how C1 affects generalization, and not
so much interested in the dependence on d. We make the assumption that all input features
affect prediction ability. This means that our bound will depend on the dimensionality of
the input space d, and that there is no standard complexity measure that can reduce the
complexity of the class of functions. Having this dependence on d is not uncommon; for
example, covering number bounds depending on the “Pollard dimension” (equal to input
dimension d when finite) have been obtained for bounded real-valued functions (see The-
orem 14.21 of Anthony and Bartlett, 1999, Theorem 6 of Haussler, 1992). There are also
many bounds that rely directly on the number of elements within the hypothesis space, for
finite hypothesis spaces.

We are seeking to bound the true risk

R(fλ) := E(x,y)∼X×Y lf (x, y) =

∫
ln
(

1 + e−yf(x)
)
∂µX×Y(x, y),

where lf : X × Y → R, lf is the logistic loss. We will bound R(fλ) by the empirical risk:

R(fλ, {xi, yi}m1) =
1

m

m∑

i=1

lf (xi, yi) =
1

m

m∑

i=1

ln
(

1 + e−yif(xi)
)

25

Tulabandhula et al.

plus a complexity term. The complexity term takes into account the limitations on the
hypothesis space of f , namely that f ∈ F where:

F := {f : f(x) = λ · x for some λ ∈ Rd such that ||λ||2 ≤M1}.

Replacing the Lagrange multiplier C1 in (22) with an explicit constraint, f is subject to the
graph traversal cost constraint:

min
π

M∑

i=1

1

1 + e−f(x̃π(i))
Lπ(π(i)) ≤ Cg.

where Cg is a constant (inversely related to C1).

We assume that the features are bounded, specifically, x ∈ X ⊂ Rd with supx∈X ||x||2 ≤
M2. We know fλ : X → [−M1M2,M1M2] by the Cauchy-Schwarz inequality since ∀fλ ∈
F ,∀x ∈ X , |fλ(x)| ≤M1M2.

Let us define the set of functions that are subject to a constraint on the graph traversal
cost:

F0 :=

{
f : f ∈ F ,min

π∈Π

M∑

i=1

Lπ(π(i))
1

1 + e−f(x̃π(i))
≤ Cg

}

=

{
f : f ∈ F ,min

π∈Π

M∑

i=1

Lπ(i)
1

1 + e−f(x̃i)
≤ Cg

}
,

where recall Lπ(π(i)), defined in (4) is the latency of the node π(i), which is the cumulative
distance traveled on a tour before reaching π(i). Our goal in this section will be to show
that a bound on the complexity of the class F0 may assist generalization.

Define di to be the shortest distance from the starting node to node i. Here, d1 is
the length of the shortest tour that visits all the nodes and returns to node 1. This means
di ≤ Lπ(i), and this inequality can be tight if the graph can be embedded into 1-dimensional
Euclidean space (on a line). In what follows, we will fix a vector c, defined element-wise by:

cj =
c̃j

Cg − c̃0

where

c̃j =
eM1M2

(1 + eM1M2)2

(∑

i

dix̃
j
i

)

and

c̃0 =

(
M1M2

eM1M2

(1 + eM1M2)2
+

1

1 + eM1M2

)∑

i

di.

It will be important that the vector c depends on Cg.

The main result follows from these definitions:

26

Machine Learning & the Traveling Repairman

Theorem 1 (Main Result) Let X = {x ∈ Rd : ||x||2 ≤ M2}, Y = {−1, 1}. Let F0 be
defined as above with respect to {x̃i}Mi=1, x̃i ∈ X (not necessarily random). Let {xi, yi}mi=1 be
a sequence of m examples drawn independently according to an unknown distribution µX×Y .
Then for any ε > 0,

P
(
∃f ∈ F0 : |R(fλ, {xi, yi}m1)−R(fλ)| > ε

)
≤ 4α(d,Cg, c)

(
32M1M2

ε
+ 1

)d
exp

(−mε2
512(M1M2)2

)
,

where

α(d,Cg, c) :=
1

2
+
||c||−1

2 + ε
32M2

M1 + ε
32M2

Γ
[
1 + d

2

]
√
πΓ
[
d+1

2

]2F1

(
1
2 ,

1−d
2 ; 3

2 ;

(
||c||−1

2 + ε
32M2

M1+ ε
32M2

)2
)

(25)

or equivalently

α(d,Cg, c) := 1− 1

2
I

1−
(
||c||−1

2 + ε
32M2

)2
/
(
M1+ ε

32M2

)2

(
d+ 1

2
,
1

2

)
(26)

and where 2F1(a, b; c; d) and Ix(a, b) are the hypergeometric function and the regularized
incomplete beta functions respectively.

The term α(d,Cg, c) comes directly from formulas for the volumes of spherical caps. Our
goal was to establish that generalization can depend on Cg. The value of Cg enters into
the bound through vector c. As Cg decreases, the norm ‖c‖2 increases, and thus ‖c‖−1

2

decreases, (26) and (25) decrease, and the whole bound decreases. This indicates that
decreasing Cg may improve generalization ability.

We will provide several lemmas leading to the proof of the theorem. The proof idea is
to enlarge the class of functions just enough so that a bound on the covering number (the
number of balls required to cover the set F0) can be constructed. The class F corresponds
to a ball of radius M1 in λ-space (a ball in Rd). The class F0 corresponds to a subset of that
class. We will construct two classes, F1 and F2 that are slightly larger than F0, but smaller
than F when Cg is small enough. Then we will use a volumetric argument to bound the
covering number of F2, which uses the volumes of spherical caps. The idea is to show that
the value of Cg affects the volume of the hypothesis space, and thus the covering number.
The covering number bound is then applied to a uniform bound of Pollard (1984). The fact
that the covering number of F2 can be below that of F indicates that using functions from
F2 may provide improvements in generalization over the set F . We now proceed with the
proof.

We define the ball F1, using a lower bound on the latencies Lπ(i), namely the minimum
distances di. We have, for any values of p(x̃i) ≥ 0:

∑

i

dip(x̃i) ≤
∑

i

Lπ(i)p(x̃i) ≤ Cg.

This means that the class of functions who probabilities obey
∑

i dip(x̃i) ≤ Cg is larger
than the class obeying

∑
i Lπ(i)p(x̃i) ≤ Cg. That is, F0 ⊆ F1 where

F1 :=

{
f : f ∈ F ,

M∑

i=1

di
1

1 + e−f(x̃π(i))
≤ Cg

}
.

27

Tulabandhula et al.

As long as Cg ≤
∑M

i=1 di, the constraint in F1 is not vacuous.
Let BM1 = {λ : ||λ||2 ≤M1} be a closed ball of radius M1 in Rd. By definition, the set

BM1 are the set of λ used for constructing functions F .
The space of functions F2 is defined with respect to the vector c (defined above the

theorem) as follows:

F2 := {fλ : fλ ∈ F , c · λ ≤ 1} .
The choice of c ensures that F1 is a subset of F2 as we will prove below. The half space
corresponding to F2 is

H||c||−1
2

:= {λ : c · λ ≤ 1}.

The value ||c||−1
2 will be used in the volumetric argument.

We provide some common definitions.

Definition 2 Let A ⊆ X be an arbitrary set and (X, dist) a (pseudo) metric space. Let | · |
denote set size.

• For any ε > 0, an ε-cover for A is a finite set U ⊆ X (not necessarily ⊆ A) s.t.
∀x ∈ A,∃u ∈ U with dist(x, u) ≤ ε.

• A is totally bounded if A has a finite ε-cover for all ε > 0. The covering number of A
is N(ε, A, dist) := infU |U | where U is an ε-cover for A.

• A set R ⊆ X is ε-separated if ∀x, y ∈ R, dist(x, y) > ε. The packing number M(ε, A, dist) :=
supR:R⊆A |R|, where R is ε-separated.

There is a well-known relationship between packing numbers and covering numbers which
we will make use of in proving Theorem 7.

Lemma 3 (Packing and covering numbers) For every (pseudo) metric space (X, dist),
A ⊆ X, and ε > 0,

N(ε, A, dist) ≤M(ε, A, dist).

Proof See Theorem 4 in Kolmogorov and Tikhomirov (1959) or Theorem 12.1 in Anthony
and Bartlett (1999) for a proof of this classical result.

Let µB represent a probability measure on a set B. Let B be a random variable taking
values in B according to µB, and b be a realization of B. Let µmB represent the empirical
measure based on sample Bm

1 = {b1, ..., bm}. Let L2(µB) be a space of functions defined on
set B with the metric ‖f − g‖L2(µB) =

∫
(f(b)− g(b))2dµB. In what follows, we will define B

to be the input space X or the joint input output space X ×Y. Also the squared `2 distance
will continue to be denoted

∑
j(λ

j
1 − λj2)2 = ‖λ1 − λ2‖22.

Lemma 4 (Relating covering numbers in ‖ · ‖L2(µmX) to ‖ · ‖2)

a. supµmX N(ε,F , ‖ · ‖L2(µmX)) ≤ N(ε/M2, BM1 , ‖ · ‖2)

b. supµmX N(ε,F2, ‖ · ‖L2(µmX)) ≤ N(ε/M2, BM1 ∩H||c||−1
2
, ‖ · ‖2).

28

Machine Learning & the Traveling Repairman

Lemma 4 will be used to tie together two results in the proof of the Theorem 1 to relate the
covering number of a class of functions to the covering number of a subset of λ in Rd. The
first result is Lemma 5 which shows how the covering number of different function classes
of interest are related. The second result is Theorem 7 which shows how covering number
of subsets of Rd can be bounded.

Proof Each element f ∈ F corresponds to at least one element of BM1 by definition of
F . Choose any distribution µmX . Consider two elements λf , λg ∈ BM1 corresponding to
functions f, g ∈ F ⊂ L2(µmX). Then,

‖f − g‖2L2(µmX) =
1

m

m∑

i=1

(f(xi)− g(xi))
2

=
1

m

m∑

i=1

((λf − λg) · xi)2

≤ 1

m

m∑

i=1

‖λf − λg‖22‖xi‖22 (Cauchy-Schwarz to each term)

≤ ‖λf − λg‖22

(
1

m

m∑

i=1

M2
2

)
(since sup

x∈X
‖x‖2 ≤M2)

= ‖λf − λg‖22M2
2 .

Consider a minimal ε/M2-cover {λr}r for BM1 where λr corresponds to function r ∈ F .
Then by definition, ∀λ ∈ BM1 , ∃λr : ‖λ − λr‖2 ≤ ε/M2. Thus, picking any two such ele-
ments λf , λg in a ball of radius ε/M2 around λr, we see that, the corresponding functions
f, g belong to a ball of radius ε measured using distance in L2(µmX) by the inequality above.
The centers of these ε-balls in L2(µmX) form an ε-cover for F . The size of this set is equal to
N(ε/M2, BM1 , ‖ · ‖2). The size of the minimal ε-cover of F is less than or equal to this size,
N(ε,F , ‖ · ‖L2(µmX)) ≤ N(ε/M2, BM1 , ‖ · ‖2). Taking a supremum over all µmX , we obtain the
first inequality of the Lemma. The same argument also works for the second inequality.

We will upper bound the covering number for F1 with the covering number for the more
tractable F2. We need to derive the vector c in such a way that F2 is a larger class than
F1.

Lemma 5 (F0 is contained in F2)

N(ε,F0, ‖ · ‖L2(µmX)) ≤ N(ε,F1, ‖ · ‖L2(µmX)) ≤ N(ε,F2, ‖ · ‖L2(µmX)).

Proof It is sufficient to show F0 ⊆ F1 ⊆ F2. The first inequality was discussed earlier;
since di ≤ infπ∈Π Lπ(i), this implies:

M∑

i=1

dip(x̃i) ≤
M∑

i=1

Lπ(i)p(x̃i) ≤ Cg ⇒ F0 ⊆ F1.

29

Tulabandhula et al.

We now show F1 ⊆ F2. We will show how c̃ and c̃0 were derived so that:

c̃ · λ+ c̃0 ≤
M∑

i=1

dip(x̃i) ≤
M∑

i=1

Lπ(i)p(x̃i) ≤ Cg,

which will allow us to say that the set of λ such that c̃ · λ+ c̃0 ≤ Cg is larger than F1; this
set is F2. We will find c̃ and c̃0 by finding m1 and m0 such that for any i,

m1(λ · x̃i) +m0 ≤ p(x̃i), (27)

so that c̃ and c̃0 will be defined with respect to m0 and m1 by:

∑

i

dip(x̃i) ≥
∑

i

di(m1(λ · x̃i) +m0) = m1

(∑

i

dix̃i

)
· λ+m0

∑

i

di =: c̃ · λ+ c̃0. (28)

Let us now define m1 and m0 in order to obey (27). The condition in (27) is:

m1f(x̃i) +m0 ≤
1

1 + e−f(x̃i)
.

Within the range [−M1M2,M1M2] we lower bound the function g(z) = 1/(1 + e−z) by the
line with slope

m1 = g′(−M1M2) =
eM1M2

(1 + eM1M2)2

that intersects the point (−M1M2, g(−M1M2)), and thus has y-intercept

m0 = M1M2
eM1M2

(1 + eM1M2)2
+

1

1 + eM1M2
.

Incorporating this into (28), we have c̃ ·λ+ c̃0 ≤
∑

i dip(x̃i) ≤ Cg, where c̃ is defined element
wise by

c̃j = m1

(∑

i

dix̃
j
i

)
=

eM1M2

(1 + eM1M2)2

(∑

i

dix̃
j
i

)

and

c̃0 = m0

∑

i

di =

(
M1M2

eM1M2

(1 + eM1M2)2
+

1

1 + eM1M2

)∑

i

di.

Finally, we obtain vector c from c̃ and c̃0,

{λ : c̃ · λ+ c̃0 ≤ Cg} = {λ : c̃ · λ ≤ Cg − c̃0}

= {λ :
c̃

Cg − c̃0
· λ ≤ 1}

=: {λ : c · λ ≤ 1}

where c is defined element-wise by

cj =
c̃j

Cg − c̃0
.

30

Machine Learning & the Traveling Repairman

Machine Learning & the Traveling Repairman

1 0.5 0 0.5 11

0.5

0

0.5

1

λ1

λ2
Boundary of F1

Boundary from (29)

Boundary of F2

✚
✚❃

✚
✚❃

✚
✚
✚

✚✚❃

Figure 14: Hyperplanes upper bounding the nonlinear constraint in the description of F1.
Here, λ ∈ R2. The �2 ball represents F . For convenience, we have assumed
M1 = 1.

31

Figure 14: Hyperplanes upper bounding the nonlinear constraint in the description of F1.
Here, λ ∈ R2. The `2 ball represents F . For convenience, we have assumed
M1 = 1.

31

Tulabandhula et al.

This is same the definition of c used in the theorem and for F2. Thus, F2 ⊇ F1.

Another way to obtain a suitable c such that F2 is a good superset of F1 is to minimize
the distance of the hyperplane we want to construct from the origin by solving a semi-infinite
program 29:

max
c
||c||22

s.t. ∀λ ∈ Λ ∪ Λ0, c · λ ≤ 1

where Λ = {λ : λ ∈ BM1 ,
M∑

i=1

di
1

1 + exp (−λ · x̃i)
= Cg} (29)

and Λ0 = {λ : ||λ||2 = M1,

M∑

i=1

di
1

1 + exp (−λ · x̃i)
≤ Cg}.

One can approximate the two sets Λ and Λ0 in the program formulation by discretizing
the points on them, and the semi-infinite program becomes a non-linear program. Figure
(14) provides a 2-dimensional illustration of F ,F1,F2 and the approximate solution of the
semi-infinite program. The semi-infinite program yields a tighter bound on F1 but is more
expensive to compute.

Because of rotational symmetry of BM1 , the volume cut off by a hyperplane c·λ = 1 from
BM1 is determined only by its distance from the origin, which is 1/||c||2. Such a portion
(or its complement, if smaller) of a ball obtained from slicing it with a hyperplane is called
a spherical cap. It can be parameterized by the distance of its (hyper)plane base from the
center of the ball.

Let the volume of a set A ⊂ Rd be represented as V ol(A). For example, V ol(B1) =
πd/2

Γ[d/2+1] .

Lemma 6 (Volume of spherical caps) Let the volume of ball BM1 in Rd be denoted as
V ol(BM1). Let Hz = {λ : c · λ ≤ 1, ||c||−1

2 = z} be a half space parameterized by z. Let
the spherical cap be denoted by BM1 ∩H ′z where the cap is at a distance z (measured from
the base of the cap to the center of the ball), and H ′z represents the complement half space
(Hz ∪H ′z = Rd). Then,

V ol(BM1 ∩H ′z) = V ol(BM1)

(
1
2 − z

M1

Γ[1+ d
2]√

πΓ[d+1
2]2F1

(
1
2 ,

1−d
2 ; 3

2 ;
(

z
M1

)2
))

where 2F1(a, b; c; d) is the hypergeometric function. Alternatively,

V ol(BM1 ∩H ′z) = V ol(BM1)1
2I1−z2/M2

1

(
d+1

2 , 1
2

)

where Ix(e, f) is the regularized incomplete beta function.

Proof See Li (2011) and references therein.

32

Machine Learning & the Traveling Repairman

Machine Learning & the Traveling Repairman

1 0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

z: Distance of Hz from origin

Vo
lu

m
e

Normalized Vol(B1 Hz)

d = 1
d = 2
d = 3
d = 4
d = 5
d = 6
d = 7
d = 8
d = 9

Figure 15: Normalized volume of a unit �2-ball (centered at (1, 0)) intersected with a halfs-
pace, as a function of the distance of the hyperplane from the center of the ball.
This also illustrates the dependence of α(d, Cg, c) on Cg.

M(�, BM1 ∩ H||c||−1
2

, � · �2) ≤




V ol
�
BM1+�/2 ∩ H||c||−1

2 +�/2

�

V ol(B1)


 1

(�/2)d

=




V ol
�
BM1+�/2 ∩ H||c||−1

2 +�/2

�

V ol(B1)


 1

�/2d

(M1 + �/2)d

(M1 + �/2)d

=




V ol
�
BM1+�/2 ∩ H||c||−1

2 +�/2

�

V ol(BM1+�/2)


 (M1 + �/2)d

(�/2)d
.

Again, scaling � to �/M2 and using the relationship between N(�, A, dist) and M(�, A, dist)
in Lemma 3 yields the second result.

• z: Distance of Hz from the origin

• Volume

• Normalized V ol(B1 ∩ Hz)

33

Machine Learning & the Traveling Repairman

1 0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

z: Distance of Hz from origin

Vo
lu

m
e

Normalized Vol(B1 Hz)

d = 1
d = 2
d = 3
d = 4
d = 5
d = 6
d = 7
d = 8
d = 9

Figure 15: Normalized volume of a unit �2-ball (centered at (1, 0)) intersected with a halfs-
pace, as a function of the distance of the hyperplane from the center of the ball.
This also illustrates the dependence of α(d, Cg, c) on Cg.

M(�, BM1 ∩ H||c||−1
2

, � · �2) ≤




V ol
�
BM1+�/2 ∩ H||c||−1

2 +�/2

�

V ol(B1)


 1

(�/2)d

=




V ol
�
BM1+�/2 ∩ H||c||−1

2 +�/2

�

V ol(B1)


 1

�/2d

(M1 + �/2)d

(M1 + �/2)d

=




V ol
�
BM1+�/2 ∩ H||c||−1

2 +�/2

�

V ol(BM1+�/2)


 (M1 + �/2)d

(�/2)d
.

Again, scaling � to �/M2 and using the relationship between N(�, A, dist) and M(�, A, dist)
in Lemma 3 yields the second result.

• z: Distance of Hz from the origin

• Volume

• Normalized V ol(B1 ∩ Hz)

33

Figure 15: Normalized volume of a unit `2-ball intersected with a halfspace (V ol(B1∩Hz)),
as a function of the distance of the hyperplane from the center of the ball. This
also illustrates the dependence of α(d,Cg, c) on Cg.

Note that for 0 ≤ z ≤M1, V ol(BM1∩H ′z) ≤ V ol(BM1). If V ol(BM1∩H ′z) ≤ 1
2V ol(BM1),

then the volume of the spherical cap reduces with increasing dimension d. This has an
important effect on the covering number as a function of dimension d, and ultimately on
generalization too. Figure 15 illustrates this point by showing the volume on one side of the
hyperplane as the hyperplane moves through the ball, for various values of the dimension d.
If d is fairly large, then the volume decreases dramatically as the hyperplane passes through
the center of the ball.

We now use the volume of the spherical cap in Lemma 6 to bound the covering numbers
of subsets of Rd, noting that the relationship between the spherical cap and its complement
is: V ol (BM1 ∩H ′z) = V ol(BM1)− V ol (BM1 ∩Hz).

Theorem 7 (Bound on Covering Numbers)

N(ε/M2, BM1 , ‖ · ‖2) ≤
(

2M1M2

ε
+ 1

)d

N
(
ε/M2, BM1 ∩H||c||−1

2
‖ · ‖2

)
≤



V ol

(
BM1+ ε

2M2
∩H||c||−1

2 + ε
2M2

)

V ol
(
BM1+ ε

2M2

)



(

2M1M2

ε
+ 1

)d
.

33

Tulabandhula et al.

Proof Both statements involve a volumetric argument. There are various versions of
proof for the first part. For example, see Section 3 of Kolmogorov and Tikhomirov (1959),
Lemma 4.10 in Pisier (1989), Lorentz (1966) and Lemma 3 in Cucker and Smale (2002)
among others. We will provide an argument along these lines. Let λ1, .., λM be an optimal
ε-packing for BM1 . That is, M = M(ε, BM1 , ‖ · ‖2). The volume of BM1+ε/2 (an extra ε/2
added so that the packing elements can lie within the boundary) is,

V ol(BM1+ε/2) = V ol(B1)(M1 + ε/2)d

where V ol(B1) is the volume of a unit ball in dimension d. The volume of an ε/2 ball with
packing element λi as the center is:

V ol(Bε/2 + λi) = V ol(Bε/2) = V ol(B1)(ε/2)d.

Since the sum of the volume of the ε/2 balls should be less than or equal to the volume of
the extended ball BM1+ε/2 (else one of the packing elements λi will be outside the boundary
of BM1 contradicting the definition of packing) we have:

M(ε, BM1 , ‖ · ‖2)V ol(B1)(ε/2)d ≤ V ol(B1)(M1 + ε/2)d.

Scaling ε to ε/M2 and using the inequality between minimal covering and maximal packing
numbers from Lemma 3 we obtain the first stated result.

To show the second part, let the volume of the complement of the spherical cap be
V ol(BM1 ∩H||c||−1

2
); we need to find an upper bound for the minimal ε/M2-cover of this set.

We can do that by scaling a minimal ε-cover, which we find now. By extending the boundary
of BM1∩H||c||−1

2
by ε/2 we can bound the maximal packing number M(ε, BM1∩H||c||−1

2
, ‖·‖2)

as follows.

M(ε, BM1 ∩H||c||−1
2
, ‖ · ‖2)V ol(B1)(ε/2)d ≤ V ol(BM1+ε/2 ∩H||c||−1

2 +ε/2)

M(ε, BM1 ∩H||c||−1
2
, ‖ · ‖2) ≤



V ol

(
BM1+ε/2 ∩H||c||−1

2 +ε/2

)

V ol(B1)


 1

(ε/2)d

=



V ol

(
BM1+ε/2 ∩H||c||−1

2 +ε/2

)

V ol(B1)


 1

ε/2d
(M1 + ε/2)d

(M1 + ε/2)d

=



V ol

(
BM1+ε/2 ∩H||c||−1

2 +ε/2

)

V ol(BM1+ε/2)


 (M1 + ε/2)d

(ε/2)d
.

Again, scaling ε to ε/M2 and using the relationship between N(ε, A, dist) and M(ε, A, dist)
in Lemma 3 yields the second result.

We are now done with the covering number and volumetric arguments. What remains
is to show how a uniform generalization bound can be adapted to handle covering numbers.

34

Machine Learning & the Traveling Repairman

We initially concern ourselves with the class of loss functions lF := {lf : f ∈ F}, and adapt
the bound to handle classes F , F2 and F0. The form and proof of the convergence in terms
of the size of lF becomes simpler when each lf ∈ lF is non-negative and bounded. This
is indeed the case since the logistic loss is non-negative and bounded (the latter because
F and its subsets are bounded sets of linear functions). We will use the following uniform
convergence bound of Pollard (1984).

Theorem 8 (Pollard 1984) Let lF be a set of functions on X × Y with 0 ≤ lf (x, y) ≤
Mbound, ∀lf ∈ lF and ∀(x, y) ∈ X × Y. Let {xi, yi}m1 be a sequence of m examples drawn
independently according to µX×Y . Then for any ε > 0,

P (∃lf ∈ lF : |R(fλ, {xi, yi}m1)−R(fλ)| > ε) ≤ 4E[N(ε/16, lF , ‖ · ‖L1(µmX×Y))] exp

(−mε2
128M2

bound

)
.

Proof See Theorem 24 in Pollard (1984) (also in Zhang, 2002, Theorem 1). Note that the
constants have been refined in other works since the first result and we have left the original
constants intact here.

We can relate the covering numbers for Pollard’s lF and covering numbers for F as
follows.

Lemma 9 (Relating lF to F) If every function from function class lF represented as
l : f(X) × Y 7→ R, f ∈ F is Lipschitz in its first argument with Lipschitz constant L, then
the covering number of lF is related to the covering number of F as

sup
µmX×Y

N(ε, lF , ‖ · ‖L1(µmX×Y)) ≤ N(ε/L,F , ‖ · ‖L1(µmX))

Proof Consider two functions f, g ∈ F . Let the corresponding functions in class lF be
lf (x, y) = l(f(x), y) and lg = l(g(x), y).

‖lf − lg‖L1(µmX×Y) =
1

m

m∑

i=1

|lf (xi, yi)− lg(xi, yi)| =
1

m

m∑

i=1

|l(f(xi), yi)− l(g(xi), yi)|

≤ 1

m

m∑

i=1

L|f(xi)− g(xi)| = L‖f − g‖L1(µmX).

This implies, given {X,Y }m1 , if F̂ is a minimal ε/L-cover of F in L1(µmX), we can construct
an ε-cover of lF in L1(µmX×Y) as

l̂F = {lfi : fi ∈ F̂ .}

The logistic loss log(1 + e−yf(x)) when viewed as a function of f(x) has a Lipschitz
constant L ≤ 1. For a similar result using the squared loss see Lemma 17.4 of Anthony and
Bartlett (1999).

35

Tulabandhula et al.

Theorem 8 involves an L1 covering number, but our volumetric argument is in terms
of an L2 covering number. The following lemma applies the statement ‖f − g‖L1(µmX) ≤
‖f−g‖L2(µmX) (true because of Jensen’s inequality applied to norms) to the covering numbers.

Lemma 10 N(ε, A, ‖ · ‖L1(µmX)) ≤ N(ε, A, ‖ · ‖L2(µmX)).

Proof See for a version, Lemma 10.5 in Anthony and Bartlett (1999).

Finally, we can prove the main result.
Proof (Of Theorem 1) Starting from the expectation term on the right hand side of The-
orem 8,

E[N(ε/16, lF0 , ‖ · ‖L1(µmX×Y))]

≤ E[N(ε/16, lF2 , ‖ · ‖L1(µmX×Y))] from Lemma 5

≤ sup
µmX×Y

N(ε/16, lF2 , ‖ · ‖L1(µmX×Y)) bounding expectation by supremum

≤ sup
µmX

N
(ε

16L ,F2, ‖ · ‖L1(µmX)

)
from Lemma 9

≤ sup
µmX

N
(ε

16L ,F2, ‖ · ‖L2(µmX)

)
from Lemma 10

≤ N

(
ε

16 · 1 ·M2
, BM1 ∩H‖c‖−1

2
, ‖ · ‖2

)
from Lemma 4 and substituting L = 1

≤



V ol

(
BM1+ ε

32M2
∩H‖c‖−1

2 + ε
32M2

)

V ol(BM1+ ε
32M2

)



(

32M1M2

ε
+ 1

)d
from Theorem 7

= α(d,Cg, c)

(
32M1M2

ε
+ 1

)d
from Lemma 6.

The above step uses the relationship between the spherical cap and its complement along
with Lemma 6,

V ol
(
BM1 ∩H ′‖c‖−1

2

)
= V ol(BM1)− V ol

(
BM1 ∩H‖c‖−1

2

)
.

Using the bound on E[N(ε/16, lF0 , ‖·‖L1(µmX×Y))] obtained above in Theorem 8 gives the
result.

6. Discussion and Related Works

In this work, we present a machine learning algorithm that takes into account the way its
recommendations will be ultimately used. This algorithm takes advantage of uncertainty
in the model in order to potentially find a much more practical solution. Including these

36

Machine Learning & the Traveling Repairman

operating costs is a new way of incorporating “structure” into machine learning algorithms,
and we plan to explore this in other ways in ongoing work. One main focus of the work is
to discuss a tradeoff between training error and operational cost. In doing so, we showed
a new way in which data dependent regularization can influence an algorithm’s prediction
ability, formalized through generalization bounds.

There is a vast literature on regularization, but in the past it has been used to impose
prior beliefs (e.g., “structure” such as sparsity like Tibshirani, 1996, shrinking certain coeffi-
cients towards each other), robustness (e.g., to obtain a large “margin” which is the distance
from the decision boundary to the nearest training example like Vapnik, 1998), or additional
distributional information (semi-supervised learning, see for instance Chapelle et al., 2006).
Out of these, only semi-supervised learning uses unlabeled data, but our problem differs in
that our unlabeled data does not need to be drawn from the same distribution as the train-
ing data, and thus does not necessarily provide any distributional information. It provides
instead information about the practical cost of following the algorithm’s recommendations.

In addition to the above, we developed cost models that apply to routing problems. For
the power grid application and other maintenance applications, {dij}ij in (4) correspond
to physical distances. It is possible to use the techniques developed here for more abstract
routing problems, for instance, network scheduling or network routing problems, where
distance on the graph does not necessarily correspond to a physical distance. There are
other works that schedule events based on a linearly increasing cost model (see for instance
Anily et al., 1998).

There is a body of literature regarding cost models for maintenance in the reliability
modeling literature, though the emphasis in those works is usually to design a model that
accurately represents the stochastic process for the failures. In particular, there are works on
condition-based maintenance, where a maintenance schedule is created from the predicted
condition of the equipment (but not on the cost of performing the repairs in a certain order
or routing a vehicle between the equipment). Barbera et al. (1996) develop a model that
assumes that equipment have exponential rates of failure and fail only once in an inspec-
tion interval, and they use this model to determine a maintenance schedule. Marseguerra
et al. (2002) introduces a model for degradation leading to failure for a continuous complex
system, and use Monte Carlo simulations to determine the optimal degradation level to
perform an inspection. Their work uses a very different cost model from ours; the cost is
the long run average maintenance cost and cost of failures. A neural-network based main-
tenance model was developed by Heng et al. (2009). Another large body of work considers
more sophisticated estimates for system faults: for example, by modeling (repeat) measure-
ments as time series (Xu et al., 2009). Depending on the application, one could replace the
training error in our model with a more elaborate failure model such as the ones developed
in these works.

If we were able to find an efficient method for approximately solving the TRP subprob-
lem, it could allow us to compute solutions to the ML&TRP significantly faster. Constant
factor approximation algorithms for the standard (unweighted) TRP have been developed
in several works (Goemans and Kleinberg, 1998; Blum et al., 1994; Arora and Karakostas,
2006; Archer et al., 2008; Archer and Blasiak, 2010). These schemes typically have (quasi-)
polynomial time guarantees and approximate up to a constant ratio of the optimal standard
TRP objective value. The constant factors are at least 3.59 or above. Heuristic methods

37

Tulabandhula et al.

might also be used for solving the standard TRP and related problems (Dewilde et al.,
2010; Salehipour et al., 2010), which can potentially be adapted to solve the weighted TRP.
There are some difficulties in doing this because the heuristics depend on the exact way
the cost is defined. For example, Dewilde et al. (2010) solve a variation of the TRP which
cannot easily be adapted for solving the weighted TRP problem. Lechmann (2009) has a
survey of the various applications and solution techniques of the different versions of TRP
problem.

There could be many variations on the setup for the ML&TRP. In some applications,
real time sensor measurements are available, and it is possible to automatically turn off
the equipment when it fails in order to prevent more failures from occurring. This is not
possible for the power grid application, since it is not possible (and not desirable) to turn
off the electricity supply in the secondary electrical distribution network, but it may be
possible in other applications.

A related work on routing for emergency maintenance on the electrical grid is the heuris-
tic algorithm of Weintraub et al. (1999) that dispatches vehicles to areas where there are
currently breakdowns and where there are likely to be breakdowns in the future.

Acknowledgements

This material is based upon work supported by an International Fulbright Science and
Technology Award, the MIT Energy Initiative, and the National Science Foundation under
Grant No IIS-1053407.

References

Shivani Agarwal. Ranking on graph data. In Proceedings of the 23rd International Confer-
ence on Machine Learning, 2006.

Shoshana Anily, Celia A. Glass, and Refael Hassin. The scheduling of maintenance service.
Discrete Applied Mathematics, 82(1-3):27–42, 1998.

Martin Anthony and Peter L. Bartlett. Neural network learning: Theoretical foundations.
Cambridge University Press, 1999.

Aaron Archer and Anna Blasiak. Improved approximation algorithms for the minimum
latency problem via prize-collecting strolls. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 429–447, 2010.

Aaron Archer, Asaf Levin, and David P. Williamson. A faster, better approximation algo-
rithm for the minimum latency problem. SIAM J. Comput., 37(5):1472–1498, 2008.

Sanjeev Arora and George Karakostas. A 2 + ε approximation algorithm for the k-MST
problem. Math. Program., 107(3):491–504, 2006.

Fran Barbera, Helmut Schneider, and Peter Kelle. A condition based maintenance model
with exponential failures and fixed inspection intervals. The Journal of the Operational
Research Society, 47(8):pp. 1037–1045, 1996.

38

Machine Learning & the Traveling Repairman

Peter L. Bartlett and Shahar Mendelson. Gaussian and Rademacher complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3:463–482, 2002.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geomet-
ric framework for learning from labeled and unlabeled examples. Journal of Machine
Learning Research, 7:2399–2434, 2006.

Avrim Blum, Prasad Chalasani, Don Coppersmith, Bill Pulleyblank, Prabhakar Raghavan,
and Madhu Sudan. On the minimum latency problem. ArXiv Mathematics e-prints,
September 1994.

Pierre Bonami, Lorenz T. Biegler, Andrew R. Conn, Gérard Cornuéjols, Ignacio E. Gross-
mann, Carl D. Laird, Jon Lee, Andrea Lodi, François Margot, Nicolas W. Sawaya, and
Andreas Wächter. An algorithmic framework for convex mixed integer nonlinear pro-
grams. Discrete Optimization, 5(2):186–204, 2008.

Olivier Bousquet. New approaches to statistical learning theory. Annals of the Institute of
Statistical Mathematics, 55(2):371–389, 2003.

Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, editors. Semi-Supervised Learn-
ing. MIT Press, Cambridge, MA, 2006.

Imre Csiszár and G. Tusnády. Information geometry and alternating minimization proce-
dures. Statistics and Decisions, 1(Suppl.):205–237, 1984.

Felipe Cucker and Steve Smale. On the mathematical foundations of learning. Bulletin-
American Mathematical Society, 39(1):1–50, 2002.

Thijs Dewilde, Dirk Cattrysse, Sofie Coene, Frits C. R. Spieksma, and Pieter Vansteenwe-
gen. Heuristics for the Traveling Repairman Problem with Profits. 10th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, pages
34–44, 2010.

C. A. Eijl van. A polyhedral approach to the delivery man problem. Technical report, Mem-
orandum COSOR 95–19, Department of Mathematics and Computer Science, Eindhoven
University of Technology, The Netherlands, 1995.

Imen Ome Ezzine, Fréderic Semet, and Habib Chabchoub. New formulations for the Travel-
ing Repairman Problem. In Proceedings of the 8th International Conference of Modeling
and Simulation, pages 1889–1894, May 2010.

Matteo Fischetti, Gilbert Laporte, and Silvano Martello. The delivery man problem and
cumulative matroids. Oper. Res., 41:1055–1064, November 1993.

Michel Goemans and Jon Kleinberg. An improved approximation ratio for the minimum
latency problem. Mathematical Programming, 82:111–124, 1998.

David Haussler. Decision theoretic generalizations of the PAC model for neural net and
other learning applications. Information and computation, 100(1):78–150, 1992.

39

Tulabandhula et al.

Aiwina Heng, Andy C.C. Tan, Joseph Mathew, Neil Montgomery, Dragan Banjevic, and
Andrew K.S. Jardine. Intelligent condition-based prediction of machinery reliability. Me-
chanical Systems and Signal Processing, 23(5):1600 – 1614, 2009.

Waltraud Huyer and Arnold Neumaier. Global optimization by multilevel coordinate search.
J. of Global Optimization, 14:331–355, June 1999.

Andrey Nikolaevich Kolmogorov and Vladimir Mikhailovich Tikhomirov. ε-entropy and
ε-capacity of sets in function spaces. Uspekhi Matematicheskikh Nauk, 14(2):3–86, 1959.

Miriam Lechmann. The traveling repairman problem - an overview. Diplomarbeit, Univer-
sitat Wein, pages 1–79, 2009.

Shengqiao Li. Concise Formulas for the Area and Volume of a Hyperspherical Cap. Asian
Journal of Mathematics & Statistics, 4(1):66–70, 2011.

George G. Lorentz. Metric entropy and approximation. Bull. Am. Math. Soc., 72:903–937,
1966.

Marzio Marseguerra, Enrico Zio, and Luca Podofillini. Condition-based maintenance opti-
mization by means of genetic algorithms and monte carlo simulation. Reliability Engi-
neering & System Safety, 77(2):151 – 165, 2002.

Shahar Mendelson and Roman Vershynin. Entropy and the combinatorial dimension. In-
ventiones Mathematicae, 152(1):37–55, 2003.

Isabel Méndez-Dı́az, Paula Zabala, and Abilio Lucena. A new formulation for the traveling
deliveryman problem. Discrete Applied Mathematics, 156(17):3223–3237, 2008.

John Ashworth Nelder and Roger Mead. A simplex method for function minimization.
Computer Journal, 7(4):308–313, 1965.

Jean-Claude Picard and Maurice Queyranne. The time-dependent traveling salesman prob-
lem and its application to the tardiness problem in one-machine scheduling. Operations
Research, 26(1):86–110, January–February 1978.

Gilles Pisier. The volume of convex bodies and Banach space geometry, volume 94. Cam-
bridge University Press, Cambridge, 1989.

David Pollard. Convergence of stochastic processes. Springer, 1984.

Luis Miguel Rios. Algorithms for derivative-free optimization. PhD thesis, University of
Illinois at Urbana-Champaign, pages 1–133, 2009.

Cynthia Rudin, Rebecca Passonneau, Axinia Radeva, Haimonti Dutta, Steve Ierome, and
Delfina Isaac. A process for predicting manhole events in Manhattan. Machine Learning,
80:1–31, 2010.

40

Machine Learning & the Traveling Repairman

Cynthia Rudin, David Waltz, Roger Anderson, Albert Boulanger, Ansaf Salleb-Aouissi,
Maggie Chow, Haimonti Dutta, Phil Gross, Bert Huang, Steve Ierome, Delfina Isaac,
Artie Kressner, Rebecca Passonneau, Axinia Radeva, and Leon Wu. Machine learning
for the New York City power grid. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2011. accepted subject to minor revision.

Amir Salehipour, Kenneth Sorensen, Peter Goos, and Olli Bräysy. Efficient GRASP+
VND and GRASP+ VNS metaheuristics for the traveling repairman problem. 4OR: A
Quarterly Journal of Operations Research, pages 1–21, 2010.

Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algorithms. MIT Press,
2011. In Preparation.

John Shawe-Taylor and Nello Cristianini. On the generalization of soft margin algorithms.
IEEE Transactions on Information Theory, 48(10):2721–2735, 2002.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267–288, 1996. ISSN 0035-9246.

Ian Urbina. Mandatory safety rules are proposed for electric utilities. New York Times,
2004. August 21, Late Edition, Section B, Column 3, Metropolitan Desk, Page 2.

Vladimir Naumovich Vapnik. Statistical learning theory, volume 2. Wiley New York, 1998.

Andrés Weintraub, J. Aboud, C. Fernandez, G. Laporte, and E. Ramirez. An emergency
vehicle dispatching system for an electric utility in Chile. Journal of the Operational
Research Society, pages 690–696, 1999.

Zhengguo Xu, Yindong Ji, and Donghua Zhou. A new real-time reliability prediction method
for dynamic systems based on on-line fault prediction. IEEE Transactions on Reliability,
58(3):523–538, 2009.

Tong Zhang. Covering number bounds of certain regularized linear function classes. Journal
of Machine Learning Research, 2:527–550, 2002.

Dengyong Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet, and Bernhard Schölkopf.
Ranking on data manifolds. In Advances in Neural Information Processing Systems 16,
pages 169–176. MIT Press, 2004.

41

	1 Introduction
	2 ML&TRP Formulations
	2.1 Training Error Term
	2.2 Two Options for the Graph Traversal Cost

	3 Optimization
	3.1 Mixed-integer optimization for Cost 1
	3.2 Mixed integer optimization for Cost 2
	3.3 Solvers for the weighted TRP subproblem
	3.4 Mixed-integer nonlinear programs (MINLPs)

	4 Experiments
	4.1 Illustrations
	4.2 ML&TRP on the NYC power grid

	5 Generalization Bound
	6 Discussion and Related Works

