
  

 

Abstract— In many Intelligent Transportation System (ITS) 

applications that crowd-source data from probe vehicles, a 

crucial step is to accurately map the GPS trajectories to the 

road network in real time. This process, known as map-

matching, often needs to account for noise and sparseness of the 

data because (1) highly precise GPS traces are rarely available, 

and (2) dense trajectories are costly for live transmission and 

storage. 

We propose an online map-matching algorithm based on 

the Hidden Markov Model (HMM) that is robust to noise and 

sparseness. We focused on two improvements over existing 

HMM-based algorithms: (1) the use of an optimal localizing 

strategy, the variable sliding window (VSW) method, that 

guarantees the online solution quality under uncertain future 

inputs, and (2) the novel combination of spatial, temporal and 

topological information using machine learning. We evaluated 

the accuracy of our algorithm using field test data collected on 

bus routes covering urban and rural areas. Furthermore, we 

also investigated the relationships between accuracy and output 

delays in processing live input streams. 

In our tests on field test data, VSW outperformed the 

traditional localizing method in terms of both accuracy and 

output delay. Our results suggest that it is viable for low-

latency applications such as traffic sensing. 

I. INTRODUCTION 

Real-time sensor data collected by massive vehicle fleets, 

such as the taxis and buses in urban areas, provides vital 

inputs for applications such as traffic sensing [1], traffic 

incident detection [2], travel time prediction [3], fleet 

management [4] and route recommendations [5], [6]. The 

usefulness of these systems depends on the reliability of the 

data extracted by available map-matching algorithms, which 

project the GPS trajectories to their corresponding road 

segments on a digital map. 

Information such as time stamps, locations and speeds are 

commonly recorded by the probe vehicles. However, the 

prohibitive amount of storage and bandwidth necessary for 

handling these large volumes of data has led to the practice of 

collecting sparse samples, with intervals ranging from tens of 

seconds to several minutes [7]. Furthermore, the sensors 

installed on these probes are known to be prone to various 
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errors [7], such as imprecise location and speed 

measurements, repeated transmissions and time stamp 

mismatches. In real-time applications such as traffic sensing, 
it is also desirable to perform map-matching on-the-go while 

future data points are yet to be revealed, i.e. the algorithm has 

to be online. A reliable online map-matching algorithm thus 

has to account for these issues and guarantees outputs which 

are high in accuracy and timeliness.  

Map-matching algorithms can be characterized as either 

global or incremental/online. Global algorithms batch-

process the entire input trajectory before generating the 

solution. Incremental/online algorithms employ localizing 

strategies that divide the input trajectory into smaller 

segments and process them sequentially, sometimes resulting 

in a suboptimal solution. Techniques that have been applied 
in map-matching include geometrical analysis [12], belief 

function theory [13], Extended Kalman Filter [14] and 

Hidden Markov Model (HMM) [11], [15], [16]. The 

strengths and limitations of these methods have been 

reviewed in [9]. In particular, HMM-based algorithms and 

their variants [10], [17] have been adopted for their abilities 

to concurrently evaluate multiple hypotheses of the actual 

mapping in order to find the eventual maximum likelihood 

solution. These methods have been proven to be tolerant 

against highly noisy measurements, such as the location 

fingerprints from GSM towers [16], and their accuracies 
degenerate with increasing temporal sparseness of the 

trajectory [10], [15], [17]. 

Our proposed Online HMM (OHMM) map-matching 

algorithm is inspired by recent methods based on HMM [10], 

[15]–[17]. We addressed two specific issues that have not 

been focused in previous related works: (i) the need for an 

online algorithm that manages the trade-off between accuracy 

and output delay, and (ii) the fusion of multiple scoring 

functions to estimate the transition probability. 

Most existing incremental/online algorithms use simple 

localizing strategies such as fixed sliding window and fixed-

depth recursive look-ahead. The sliding window method 
simply divides the trajectory into fixed-sized input sequences 

and handles them independently. A larger window size leads 

to better accuracy [10], [17] but longer output delay, and vice 

versa. The recursive look-ahead method delays the decision 

of each point by a fixed number of steps to evaluate future 

path alternatives [18]. Both of these methods, while simple to 

implement, can lead to suboptimal solutions and long output 

delays. This is clearly undesirable when the map-matching 

algorithm is operating on live input streams and is required to 

generate outputs within a short time window. Motivated by 
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the needs of real-time applications, we propose an optimal 

localizing strategy that uses a variable sliding window 

(VSW) to divide the inputs into smaller sub-problems and 

provably finds the global optimal solution. Our approach is 

conceptually similar to the online Viterbi algorithm in [19], 

[20]. Furthermore, we also developed a suboptimal variant of 
VSW that provides worst-case guarantee on the delay 

performance. In Section V, we will compare the performance 

of these two methods using the fixed sliding window (FSW) 

approach as the benchmark. 

Secondly, we derived a probabilistic scoring mechanism 

that incorporates various sensor data and topological 

information in the modeling of emission and transition 

probabilities in HMM: (i) GPS coordinates (ii) vehicle speed 

(iii) speed limit (iv) road width (v) inferred vehicle heading 

directions, and (vi) topological constraints. We used Support 

Vector Machine (SVM) to learn the transition probability 

function instead of choosing a model a priori [10], [15], [17] 
and then estimating its parameters. The main advantage of 

this approach is that it provides a data-driven framework for 

integrating multiple transition scoring functions. 

We evaluated the performance of our methods using field 

test data collected on 4 bus routes covering both rural and 

urban areas in Singapore. The performance was measured in 

terms of both accuracy and output delay criteria. Our findings 

show that when operating on real-time input streams, the 

proposed algorithms achieved optimal or near-optimal 

solutions with practically low output delays. 

This paper is organized as follows. Section II formulates 
the map-matching problem in terms of HMM. Our method is 
described in Section III. Our experimental setup is explained 
in Section IV. The results are presented in Section V. Finally, 
Section VI summarizes our contributions and discusses the 
rooms for future works. 

II. THE MAP-MATCHING PROBLEM 

A. Problem Definition 

Definition 1: A trajectory,               , is a 

sequence of   data points collected by a vehicle. Each 

trajectory point,    is specified by its longitude (  .lon), 

latitude (  .lat), speed (  .v) and time stamp (  .t). 

Definition 2: A segment,               , is an  -

point polyline representing a road segment curve. It consists 

of a series of line segments connecting the vertices        

in order, where each vertex    is specified by its longitude 

and latitude. A segment is also defined by its road width 

( .w), speed limit ( .v) and permissibility of bi-directional 

travel ( .d               ). 

Definition 3: A digital map,                is a set of 

  segments representing a road network. 

Given a trajectory  , the goal of map-matching is to find 

the correspondence between each trajectory point in   to a 

segment in  . 

B. The HMM Approach 

In HMM-based map-matching algorithms, candidate 

paths are sequentially generated and evaluated on the basis of 

their likelihoods. When a new trajectory point is encountered, 

past hypotheses of the solution are extended to account for 

the new observation. Among all candidates in the last stage, 

the surviving path with the highest joint probability is then 

selected as the final solution. 

For every trajectory point, we first identify a set of 

candidate road segments from which the data was most likely 

collected. Each of these candidates is represented as a hidden 

state in the Markov chain and has an emission probability, 
which is the likelihood of observing the GPS point 

conditional on the candidate segment being the true match. 

Intuitively, we would assign a higher probability to a segment 

if the point were found nearer to it. Then, we compute the 

transition probability for every pair of adjacent hidden states 

in the chain such that the probability of the latter is dependent 

only on the former, hence obeying the Markov assumption. 

Our goal is to find the maximum likelihood path over the 

Markov chain that has the highest joint emission and 

transmission probabilities. The process is illustrated in Fig. 1. 

Formally, we denote the emission probability as       , 
which is the probability of observing a trajectory point t 

given the hidden state (segment)  . The transition probability 

from hidden state s to hidden state   is       . Given an N-

point trajectory,               , the maximum 

likelihood sequence of hidden states,             
     , satisfies the following recurrence relation, 

 

               
      

               

Here              and    denotes the set of hidden states 

at stage  . Then, we can find    starting from the last 

element,               
      , working backwards to 

find the sequence           of maximum joint probability. 

We will present an online algorithm for finding    in Section 

III-E. 

III. OHMM MAP-MATCHING ALGORITHM 

A. Basic Flow of the Algorithm 

 For each trajectory point, find all candidate segments 
within a radius of 50m around it. The reasons for 
imposing this threshold are two-fold: (1) to discard 
all candidates with very low emission probabilities 

 

i+1 i+2 i+3iStage:

… …

Hidden State Transition Solution Path

Fig. 1.  In the Markov chain, each vertex (hidden state) has an 

emission probability and the weight of each edge (transition) is the 

transition probability between its connecting vertices. 

(1) 



  

(below the range of 10-4), and (2) to avoid penalty in 
execution speed as a result of excess candidates. 

 Emission probability is computed for each candidate 
segment (hidden state), whereas transition probability 
is assigned to every edge incident on the hidden state. 

 The VSW algorithm performs backtracking on the 
updated Markov chain and gives the partial solution, 
if available. Otherwise, the output is delayed by one 
stage. 

 The above process is repeated for the next trajectory 
point. The algorithm terminates when the last point is 
reached. 

B. Emission Probability 

For each candidate segment   found in the vicinity of a 

trajectory point  , we model its observation probability with a 

1D Gaussian function as follows, 
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Here   is the half-width of road segment   (     .w),   is 

the point-to-curve great-circle distance between   and  , and 

   is the estimated standard deviation of GPS error. While 

the GPS error has been known to exhibit non-Gaussian 

distribution, we adopted this model for its ease of 
implementation and proven effectiveness in previous works 

[10], [15], [17]. Our approach is different in that we also 

account for the road width. This will allow finer distinction 

between the road segments, especially at junctions. 

In addition, we incur a speeding penalty factor based on 

the assumption that drivers are unlikely to largely exceed the 

speed limits. The aim is to help distinguish between closely 

spaced parallel roads, possibly with different speed limits, 

that branch out from the same junction. We note that in these 

circumstances, position measurements alone are inadequate 

for differentiating the segments because the recorded 
trajectory points may fall in between them. We define the 

penalty function   as follows, 



         
  

m              

 

Here    is the recorded speed of   ( .v) and    is the speed 

limit of segment   ( .v). If the speed limit were obeyed, then 

               (no cost will be incurred). Combining 

(2) and (3), we define the emission probability,        as 

follows, 


                 o  e    ion  

C. Transition Probability 

Let  ,   denote a pair of candidate segments attributed to 

two consecutive trajectory points,    and     , respectively, 

where       and        . We define the interpolated 

path,      as the sequence of segments that are most likely 

taken by the vehicle when travelling from   to  . Assuming 

that the shortest route is chosen by the driver (which is likely 

if the path distance were short), we can find the interpolated 

path using the A* path-finding algorithm [21]. For a given 

sequence of   segments,           in     , we devise two 

scoring functions as follows, 

Measure 1: The distance discrepancy function,   , measures 

the discrepancy between the sensor-deduced travelling 

distance and the interpolated path length, 



             
           

    

 

where              is the distance travelled by the vehicle 

over time interval    at average speed of      , whereas      

is the path length of     . Measure 1 above evaluates the 

feasibility of the hypothetical path      by comparing its 

length to the Deduced Reckoning (DR) estimate. The 

difference is assumed to be close to zero if      were the true 

path. 

Measure 2: The momentum change function,  , measures 

the average momentum change incurred by the vehicle for 

every road segment taken in     , 



                    
            

 
 

       
 
 

 

where           are the velocity vectors of the vehicle for 

each segment in     , and           are the corresponding 

segment lengths. We assume that the vector magnitudes 

change linearly with time from      to     , whereas their 

directions are parallel with the segment curves. Note that the 

additional parameter,    is the initial velocity vector which is 

inherited from the terminal velocity of the previous transition. 

By similar logic, we will use   , the current terminal velocity 

as the initial velocity in the next transition, and so on. Fig. 2 

illustrates this concept. Measure 2 above can be described as 

  „ moo hing f c o ‟  h   pen lize  infe  i le    n i ion  

consisting of many abrupt turns. 

The scoring functions   and   introduced above offer 

 wo diffe en  „me  u e  of fi ne  ‟ fo   he    n i ion    . 
This suggests that the transition probability,       , can be 

derived by fusing these two measures together. We trained a 

 

Fig. 2.  At every stage, the vehicle heading direction is inferred 

based on the terminating direction of the last point and the 
historical path leading to the current point. 

Trajectory point 

Inferred vehicle 

heading direction 

(2) 

(3) 

(4) 

(5) 

(6) 



  

Support Vector Machine (SVM) classifier using instances 

that are labeled as either a correct or incorrect transition, 

where the feature vector consists of the component scores 

given by Measure 1 and Measure 2. With this classification 

approach,        is the probability that an input score 
combination belongs to the „co  ec     n i ion‟ cl   . We will 

describe the training process with more details in Section IV-

B. 

D. Online Viterbi Algorithm 

Our goal is to find the global map-matching solution 

using an incremental method. This means that the algorithm 

needs to make irreversible, online decisions along the 

Markov chain without knowledge of future inputs, while 

ensuring that the partial solutions, when combined, results in 

the global optimal solution. To achieve this, we apply online 

dynamic programming to solve the recurrence relations in 

(1). The key insight is that when the current surviving paths 
converge at some point (convergence point) in the Markov 

chain, all future surviving paths will contain the same sub-

path up to the convergence point. The relevant proofs are 

available in [19] and [20]. 

We formulate the pseudocode of our OHMM algorithm 

as follows. Algorithm 1 (MapMatchOHMM) processes the 

trajectory points incrementally and in every stage, it outputs 

the partial solution returned by Algorithm 2, if available. 

Otherwise, it gives an empty output and incurs one delay 

stage. Algorithm 2 (OnlineViterbiDecode) checks if there 

exists any convergence point in the solution chain and returns 
the maximum likelihood subsequence up to that point, if any. 

It is convenient to describe the working principles of 

Algorithm 1 and 2 in terms of sliding window. The window 

expands forward as new trajectory points are processed and 

shrinks from behind when a convergence point is found 

anywhere in the Markov chain covered by the window. Note 

that the sizes of the sliding windows can vary according to 

the structure of the state space, hence the name variable 

sliding window. Fig. 3 illustrates the working principles of 

VSW. 

 However, one disadvantage of VSW is that there is no 

guarantee of the worst-case window size; hence the output 
delays can be arbitrarily large in extreme cases. We modified 

Algorithm 1 by setting an upper bound on the window size 

such that when the threshold is reached, the algorithm will 

output the maximum likelihood solution up to the current 

stage. We will label this modified approach the bounded 

variable sliding window (BVSW) method. But unlike VSW, 

this approach may lead to suboptimal solutions. 

IV. EXPERIMENTAL SETUP 

A. Field Test Data 

Using GPS-enabled smart phones, we collected ground 

truth data on 4 pre-determined bus routes in Singapore as 

shown in Fig. 4. Since we are concerned with the path 

accuracy (which will be defined in Section VI-C) of map-

matching results, knowledge of the actual test path (ground 
truth path) is enough for us to validate the algorithm. To 

enable comparisons of its performances under different 

environmental settings, we picked 4 routes that cover both 

the rural and urban areas in Singapore. The rural routes (R1 

and R2) involve fewer turns and mostly consist of straight 

courses through open areas, such as expressways. The urban 

routes (U1 and U2), besides being more highly branched, 

Algorithm 1: MapMatchOHMM 

Input: trajectory,             

Output: matching road segments,             
1: Let score[ ] store the joint probability up to each state; 
2: Let pre[ ] store the parent of each state; 
3: for     to     do 

4:  Find the set of segments   nearest to    
5:  Find the set of segments   nearest to      

6:  for each   in   do 

7:   Compute            
8:   for each   in   do 

9:    if     then /* initialize the scores */ 

10:    Compute         
11:    score[ ] =         
12:   Compute        and infer heading directions 

13:  score[ ] =                                   
14:                                 
15:  pre[ ] =   

16: if       then /* output partial solution, if any */ 

17:  output OnlineViterbiDecode( ,    ) 

18: else /* terminate match */ 

19:    =                      
20:  output OnlineViterbiDecode( , pre) 

 
Algorithm 2: OnlineViterbiDecode 

Input:  , pre 

Output: sol 
1: Let sol [ ] denote the partial solution; 
2:   = findConvergencePoint( , pre) 

3: while c is not NULL do 

4:  sol.add( ) 

5:    = pre[ ] 

6: remove all   from pre[ ] where pre[ ] is in sol 
7: return sol.reverse() 

 

 

 

n=2, w=2 n=3, w=2 n=4, w=3 n=5, w=3

Convergence Point Solution Path Sliding WindowNotations: n is the solution stage, w is the window size

Fig. 3.  The VSW method performs backtracking on the surviving paths and finds the convergence point, if any.  



  

cover city blocks which are densely packed with high-rise 

buildings. The lengths of R1, R2, U1 and U2 are 36.3km, 

11.3km, 27.3km and 32.5km, respectively. Furthermore, to 

simulate trajectories of varying sampling frequencies, we 

sub-sampled our original data (recorded once every 1–3 

seconds) at sampling intervals ranging from 10 seconds to 5 

minutes. 

B. Training and Parameter Estimation 

The parameter    needs to be estimated for the emission 

probability in (2) and SVM training is required for the 

transition probability. 

We estimate    by analyzing the perturbations of our 

ground truth data. For every trajectory point, we compute the 
great-circle distance of the point from the center of its nearest 

road segment. Then, the standard deviation is calculated 

based on the Median Absolute Deviation (MAD) of the 

distances, 

          medi n      medi n        

Here    denotes the perpendicular distance between an 

individual trajectory point and its matching segment. The 

distribution of distances allows us to estimate the one-

dimensional perturbations of trajectory points around the 

ground truth path. Note that in (7), the MAD is scaled by a 

constant factor of 1.4826 because we assumed that the GPS 

measurement error is normally distributed. We adopted the 
MAD approach for its resiliency against outliers in the data 

set. The same method for estimating the standard deviation 

has been adopted in [7], [15]. Based on the entire data set, we 

obtained         .  

To infer the transition probability, we trained a SVM 

classifier using 3,000 labeled instances where each 

co  e pond   o ei he    co  ec     n i ion (cl    l  eled „1‟) o  

 n inco  ec     n i ion (cl    l  eled „0‟). E ch in   nce i    

2D feature vector consisting of the score values computed 

with (5) and (6) and both components are scaled to [0, 1]. 

The scaling function is        , where   is either 

component of the feature. Using a grid search on the 

parameter space and 5-fold cross validation, we found the 

best combination of parameters to be        and      , 

where   is the soft margin parameter and   is the Radial 

Basis Function (RBF) kernel parameter. The training result is 

shown in Fig. 5. 

C. Performance Evaluation 

We will assess our algorithm using two performance 

metrics: accuracy and output delay. 

Accuracy is defined as the fraction of correctly matched 

trajectory points in the ground truth path. A correct match is 

registered when the trajectory point is mapped to any road 

segment contained in the ground truth path. This measure of 

 ccu  cy   oid  pen lizing „ ound  y c  e ‟ whe e  he poin   

are located right in the middle of road junctions.  We note 

that it is impractical to precisely determine the road segment 
from which every trajectory point was collected for two 

reason : (i) „ ound  y c  e ‟ c n  e     i u ed  o  he  o d 

segments on either exit of the junction, and (ii) possible 

miscalibration of the digital map. Therefore, the path 

accuracy measure is a more suitable assessment criterion. 

Output delay is the average output latency incurred by the 

algorithm for each trajectory point. It is quantified by the 

number of seconds elapsed before a matching result is 

obtained. 

Tests were conducted as follows: 

 We performed map-matching on test trajectories of 
varying sampling intervals, ranging from 3 seconds 
to 5 minutes, for both the rural and urban test routes. 
For each route category, we aggregate the results 
obtained for the two test routes. 

 We compared 3 localizing strategies in terms of 
accuracy and output delay: VSW, BVSW and FSW. 
For BVSW and FWS, different window sizes were 
tested. For every window size  , we aggregate the 
results for the whole set of test data (4 test routes 
with sampling intervals between 10 seconds to 5 
minutes). 

V. RESULTS 

Fig. 6 shows the comparison of map-matching accuracy 

between rural and urban test routes. The results indicate that 

accuracy for rural routes is better than urban routes by a 

margin of about 5%, except at sampling intervals larger than 

4 minutes. At intervals of less than 1 minute, the accuracy for 

both routes is above 0.9. In both cases, the accuracy 

deteriorates with increasing sampling intervals. 

In Fig. 7 and Fig. 8, the dotted line represents the optimal 

result achieved using the VSW localizing strategy. The 
BVSW method converges to the optimal accuracy of 0.921 at 

    and above. In all cases, the FSW method gave 

consistently lower accuracy and did not converge to the 

optimal solution even at     . 

In Fig. 8, the average output delay for VSW is 82s. 

Compared to FSW, it achieves substantially lower latencies 

without trading off optimality of the solution. Using BVSW, 

there was no significant advantage in the delay performance 

at window sizes of 4 and above. This suggests that most 

decision points in the Markov chain occurred before the 

 
Fig. 4.  The 4 selected bus routes cover both the rural and urban 

regions in Singapore. 

(7) 



  

window bound was reached. In the case of FSW, the delay 

increases proportionately with window size but the accuracy 

gains diminish to nearly zero after a certain threshold point. 

VI. CONCLUSIONS & FUTURE WORK 

In this paper, we described an online algorithm for map-

matching and analyzed its performance on ground truth data.  

We devised the VSW and BVSW methods for finding the 
online solutions. Both outperformed the traditional FSW 

localizing strategy used in previous HMM-based algorithms 

in terms of accuracy and output delay. We also developed a 

data-driven approach for inferring the transition probability 

which fuses sensor measurements and topological 

information in the map-matching process. Altogether, these 

methods provide a general framework for designing online 

HMM-based map-matching algorithms which are suitable for 

real-time applications using floating car data. Other variants 

of the algorithm may incorporate additional sensor data, such 

as acceleration and altitude measurements, in estimating the 
emission and transition probabilities. 

For future work, we can explore the design of map-

matching algorithms with dynamic parameters that detect and 

adapt to different environmental settings, such as in urban or 

rural areas where GPS accuracies may vary. Sensor 

information, such as the dilution of precision (DOP) values 

for GPS measurements, may prove useful in achieving this 

goal. Furthermore, we suggest better methods [22] for 

interpolating the trajectory points rather than assuming the 

shortest paths between them. A better approximation of the 

actual traveled paths may improve map-matching accuracy. 
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Fig. 5.  Transition probability 
function derived from SVM training 

Fig. 6.  Comparison of accuracy 

between rural and urban test routes 

Fig. 7.  Accuracy for VSW, BVSW 

and FSW, aggregated over all test 
routes and sampling intervals 

Fig. 8.  Output delay for VSW, 

BVSW and FSW, averaged over all 

test routes and sampling intervals 

 


