

Abstract— In many Intelligent Transportation System (ITS)

applications that crowd-source data from probe vehicles, a

crucial step is to accurately map the GPS trajectories to the

road network in real time. This process, known as map-

matching, often needs to account for noise and sparseness of the

data because (1) highly precise GPS traces are rarely available,

and (2) dense trajectories are costly for live transmission and

storage.

We propose an online map-matching algorithm based on

the Hidden Markov Model (HMM) that is robust to noise and

sparseness. We focused on two improvements over existing

HMM-based algorithms: (1) the use of an optimal localizing

strategy, the variable sliding window (VSW) method, that

guarantees the online solution quality under uncertain future

inputs, and (2) the novel combination of spatial, temporal and

topological information using machine learning. We evaluated

the accuracy of our algorithm using field test data collected on

bus routes covering urban and rural areas. Furthermore, we

also investigated the relationships between accuracy and output

delays in processing live input streams.

In our tests on field test data, VSW outperformed the

traditional localizing method in terms of both accuracy and

output delay. Our results suggest that it is viable for low-

latency applications such as traffic sensing.

I. INTRODUCTION

Real-time sensor data collected by massive vehicle fleets,

such as the taxis and buses in urban areas, provides vital

inputs for applications such as traffic sensing [1], traffic

incident detection [2], travel time prediction [3], fleet

management [4] and route recommendations [5], [6]. The

usefulness of these systems depends on the reliability of the

data extracted by available map-matching algorithms, which

project the GPS trajectories to their corresponding road

segments on a digital map.

Information such as time stamps, locations and speeds are

commonly recorded by the probe vehicles. However, the

prohibitive amount of storage and bandwidth necessary for

handling these large volumes of data has led to the practice of

collecting sparse samples, with intervals ranging from tens of

seconds to several minutes [7]. Furthermore, the sensors

installed on these probes are known to be prone to various

C. Y. Goh, J. Dauwels, N. Mitrovic and M. T. Asif are with the School

of Electrical and Electronic Engineering, Nanyang Technological

University, Singapore 639798 (phone: (65) 85716607; e-mail: {gohc0048,

jdauwels, nikola001, muhammad09}@ntu.edu.sg).

A. Oran is with the Center for Future Urban Mobility, Singapore-MIT

Alliance for Research and Technology (SMART), Singapore 117543 (e-

mail: aoran@smart.mit.edu).

P. Jaillet is with the Laboratory for Information and Decision Systems,

Department of Electrical Engineering and Computer Science, and

Operations Research Center, MIT, Cambridge, MA, 02139 USA (e-mail:

jaillet@mit.edu).

errors [7], such as imprecise location and speed

measurements, repeated transmissions and time stamp

mismatches. In real-time applications such as traffic sensing,
it is also desirable to perform map-matching on-the-go while

future data points are yet to be revealed, i.e. the algorithm has

to be online. A reliable online map-matching algorithm thus

has to account for these issues and guarantees outputs which

are high in accuracy and timeliness.

Map-matching algorithms can be characterized as either

global or incremental/online. Global algorithms batch-

process the entire input trajectory before generating the

solution. Incremental/online algorithms employ localizing

strategies that divide the input trajectory into smaller

segments and process them sequentially, sometimes resulting

in a suboptimal solution. Techniques that have been applied
in map-matching include geometrical analysis [12], belief

function theory [13], Extended Kalman Filter [14] and

Hidden Markov Model (HMM) [11], [15], [16]. The

strengths and limitations of these methods have been

reviewed in [9]. In particular, HMM-based algorithms and

their variants [10], [17] have been adopted for their abilities

to concurrently evaluate multiple hypotheses of the actual

mapping in order to find the eventual maximum likelihood

solution. These methods have been proven to be tolerant

against highly noisy measurements, such as the location

fingerprints from GSM towers [16], and their accuracies
degenerate with increasing temporal sparseness of the

trajectory [10], [15], [17].

Our proposed Online HMM (OHMM) map-matching

algorithm is inspired by recent methods based on HMM [10],

[15]–[17]. We addressed two specific issues that have not

been focused in previous related works: (i) the need for an

online algorithm that manages the trade-off between accuracy

and output delay, and (ii) the fusion of multiple scoring

functions to estimate the transition probability.

Most existing incremental/online algorithms use simple

localizing strategies such as fixed sliding window and fixed-

depth recursive look-ahead. The sliding window method
simply divides the trajectory into fixed-sized input sequences

and handles them independently. A larger window size leads

to better accuracy [10], [17] but longer output delay, and vice

versa. The recursive look-ahead method delays the decision

of each point by a fixed number of steps to evaluate future

path alternatives [18]. Both of these methods, while simple to

implement, can lead to suboptimal solutions and long output

delays. This is clearly undesirable when the map-matching

algorithm is operating on live input streams and is required to

generate outputs within a short time window. Motivated by

Online map-matching based on Hidden Markov model for real-time

traffic sensing applications

C.Y. Goh, J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran, P. Jaillet

the needs of real-time applications, we propose an optimal

localizing strategy that uses a variable sliding window

(VSW) to divide the inputs into smaller sub-problems and

provably finds the global optimal solution. Our approach is

conceptually similar to the online Viterbi algorithm in [19],

[20]. Furthermore, we also developed a suboptimal variant of
VSW that provides worst-case guarantee on the delay

performance. In Section V, we will compare the performance

of these two methods using the fixed sliding window (FSW)

approach as the benchmark.

Secondly, we derived a probabilistic scoring mechanism

that incorporates various sensor data and topological

information in the modeling of emission and transition

probabilities in HMM: (i) GPS coordinates (ii) vehicle speed

(iii) speed limit (iv) road width (v) inferred vehicle heading

directions, and (vi) topological constraints. We used Support

Vector Machine (SVM) to learn the transition probability

function instead of choosing a model a priori [10], [15], [17]
and then estimating its parameters. The main advantage of

this approach is that it provides a data-driven framework for

integrating multiple transition scoring functions.

We evaluated the performance of our methods using field

test data collected on 4 bus routes covering both rural and

urban areas in Singapore. The performance was measured in

terms of both accuracy and output delay criteria. Our findings

show that when operating on real-time input streams, the

proposed algorithms achieved optimal or near-optimal

solutions with practically low output delays.

This paper is organized as follows. Section II formulates
the map-matching problem in terms of HMM. Our method is
described in Section III. Our experimental setup is explained
in Section IV. The results are presented in Section V. Finally,
Section VI summarizes our contributions and discusses the
rooms for future works.

II. THE MAP-MATCHING PROBLEM

A. Problem Definition

Definition 1: A trajectory, , is a

sequence of data points collected by a vehicle. Each

trajectory point, is specified by its longitude (.lon),

latitude (.lat), speed (.v) and time stamp (.t).

Definition 2: A segment, , is an -

point polyline representing a road segment curve. It consists

of a series of line segments connecting the vertices

in order, where each vertex is specified by its longitude

and latitude. A segment is also defined by its road width

(.w), speed limit (.v) and permissibility of bi-directional

travel (.d).

Definition 3: A digital map, is a set of

 segments representing a road network.

Given a trajectory , the goal of map-matching is to find

the correspondence between each trajectory point in to a

segment in .

B. The HMM Approach

In HMM-based map-matching algorithms, candidate

paths are sequentially generated and evaluated on the basis of

their likelihoods. When a new trajectory point is encountered,

past hypotheses of the solution are extended to account for

the new observation. Among all candidates in the last stage,

the surviving path with the highest joint probability is then

selected as the final solution.

For every trajectory point, we first identify a set of

candidate road segments from which the data was most likely

collected. Each of these candidates is represented as a hidden

state in the Markov chain and has an emission probability,
which is the likelihood of observing the GPS point

conditional on the candidate segment being the true match.

Intuitively, we would assign a higher probability to a segment

if the point were found nearer to it. Then, we compute the

transition probability for every pair of adjacent hidden states

in the chain such that the probability of the latter is dependent

only on the former, hence obeying the Markov assumption.

Our goal is to find the maximum likelihood path over the

Markov chain that has the highest joint emission and

transmission probabilities. The process is illustrated in Fig. 1.

Formally, we denote the emission probability as ,
which is the probability of observing a trajectory point t

given the hidden state (segment) . The transition probability

from hidden state s to hidden state is . Given an N-

point trajectory, , the maximum

likelihood sequence of hidden states,
 , satisfies the following recurrence relation,

Here and denotes the set of hidden states

at stage . Then, we can find starting from the last

element,
 , working backwards to

find the sequence of maximum joint probability.

We will present an online algorithm for finding in Section

III-E.

III. OHMM MAP-MATCHING ALGORITHM

A. Basic Flow of the Algorithm

 For each trajectory point, find all candidate segments
within a radius of 50m around it. The reasons for
imposing this threshold are two-fold: (1) to discard
all candidates with very low emission probabilities

i+1 i+2 i+3iStage:

… …

Hidden State Transition Solution Path

Fig. 1. In the Markov chain, each vertex (hidden state) has an

emission probability and the weight of each edge (transition) is the

transition probability between its connecting vertices.

(1)

(below the range of 10-4), and (2) to avoid penalty in
execution speed as a result of excess candidates.

 Emission probability is computed for each candidate
segment (hidden state), whereas transition probability
is assigned to every edge incident on the hidden state.

 The VSW algorithm performs backtracking on the
updated Markov chain and gives the partial solution,
if available. Otherwise, the output is delayed by one
stage.

 The above process is repeated for the next trajectory
point. The algorithm terminates when the last point is
reached.

B. Emission Probability

For each candidate segment found in the vicinity of a

trajectory point , we model its observation probability with a

1D Gaussian function as follows,

 o e ion

Here is the half-width of road segment (.w), is

the point-to-curve great-circle distance between and , and

 is the estimated standard deviation of GPS error. While

the GPS error has been known to exhibit non-Gaussian

distribution, we adopted this model for its ease of
implementation and proven effectiveness in previous works

[10], [15], [17]. Our approach is different in that we also

account for the road width. This will allow finer distinction

between the road segments, especially at junctions.

In addition, we incur a speeding penalty factor based on

the assumption that drivers are unlikely to largely exceed the

speed limits. The aim is to help distinguish between closely

spaced parallel roads, possibly with different speed limits,

that branch out from the same junction. We note that in these

circumstances, position measurements alone are inadequate

for differentiating the segments because the recorded
trajectory points may fall in between them. We define the

penalty function as follows,

m

Here is the recorded speed of (.v) and is the speed

limit of segment (.v). If the speed limit were obeyed, then

 (no cost will be incurred). Combining

(2) and (3), we define the emission probability, as

follows,

 o e ion

C. Transition Probability

Let , denote a pair of candidate segments attributed to

two consecutive trajectory points, and , respectively,

where and . We define the interpolated

path, as the sequence of segments that are most likely

taken by the vehicle when travelling from to . Assuming

that the shortest route is chosen by the driver (which is likely

if the path distance were short), we can find the interpolated

path using the A* path-finding algorithm [21]. For a given

sequence of segments, in , we devise two

scoring functions as follows,

Measure 1: The distance discrepancy function, , measures

the discrepancy between the sensor-deduced travelling

distance and the interpolated path length,

where is the distance travelled by the vehicle

over time interval at average speed of , whereas

is the path length of . Measure 1 above evaluates the

feasibility of the hypothetical path by comparing its

length to the Deduced Reckoning (DR) estimate. The

difference is assumed to be close to zero if were the true

path.

Measure 2: The momentum change function, , measures

the average momentum change incurred by the vehicle for

every road segment taken in ,

where are the velocity vectors of the vehicle for

each segment in , and are the corresponding

segment lengths. We assume that the vector magnitudes

change linearly with time from to , whereas their

directions are parallel with the segment curves. Note that the

additional parameter, is the initial velocity vector which is

inherited from the terminal velocity of the previous transition.

By similar logic, we will use , the current terminal velocity

as the initial velocity in the next transition, and so on. Fig. 2

illustrates this concept. Measure 2 above can be described as

 „ moo hing f c o ‟ h pen lize infe i le n i ion

consisting of many abrupt turns.

The scoring functions and introduced above offer

 wo diffe en „me u e of fi ne ‟ fo he n i ion .
This suggests that the transition probability, , can be

derived by fusing these two measures together. We trained a

Fig. 2. At every stage, the vehicle heading direction is inferred

based on the terminating direction of the last point and the
historical path leading to the current point.

Trajectory point

Inferred vehicle

heading direction

(2)

(3)

(4)

(5)

(6)

Support Vector Machine (SVM) classifier using instances

that are labeled as either a correct or incorrect transition,

where the feature vector consists of the component scores

given by Measure 1 and Measure 2. With this classification

approach, is the probability that an input score
combination belongs to the „co ec n i ion‟ cl . We will

describe the training process with more details in Section IV-

B.

D. Online Viterbi Algorithm

Our goal is to find the global map-matching solution

using an incremental method. This means that the algorithm

needs to make irreversible, online decisions along the

Markov chain without knowledge of future inputs, while

ensuring that the partial solutions, when combined, results in

the global optimal solution. To achieve this, we apply online

dynamic programming to solve the recurrence relations in

(1). The key insight is that when the current surviving paths
converge at some point (convergence point) in the Markov

chain, all future surviving paths will contain the same sub-

path up to the convergence point. The relevant proofs are

available in [19] and [20].

We formulate the pseudocode of our OHMM algorithm

as follows. Algorithm 1 (MapMatchOHMM) processes the

trajectory points incrementally and in every stage, it outputs

the partial solution returned by Algorithm 2, if available.

Otherwise, it gives an empty output and incurs one delay

stage. Algorithm 2 (OnlineViterbiDecode) checks if there

exists any convergence point in the solution chain and returns
the maximum likelihood subsequence up to that point, if any.

It is convenient to describe the working principles of

Algorithm 1 and 2 in terms of sliding window. The window

expands forward as new trajectory points are processed and

shrinks from behind when a convergence point is found

anywhere in the Markov chain covered by the window. Note

that the sizes of the sliding windows can vary according to

the structure of the state space, hence the name variable

sliding window. Fig. 3 illustrates the working principles of

VSW.

 However, one disadvantage of VSW is that there is no

guarantee of the worst-case window size; hence the output
delays can be arbitrarily large in extreme cases. We modified

Algorithm 1 by setting an upper bound on the window size

such that when the threshold is reached, the algorithm will

output the maximum likelihood solution up to the current

stage. We will label this modified approach the bounded

variable sliding window (BVSW) method. But unlike VSW,

this approach may lead to suboptimal solutions.

IV. EXPERIMENTAL SETUP

A. Field Test Data

Using GPS-enabled smart phones, we collected ground

truth data on 4 pre-determined bus routes in Singapore as

shown in Fig. 4. Since we are concerned with the path

accuracy (which will be defined in Section VI-C) of map-

matching results, knowledge of the actual test path (ground
truth path) is enough for us to validate the algorithm. To

enable comparisons of its performances under different

environmental settings, we picked 4 routes that cover both

the rural and urban areas in Singapore. The rural routes (R1

and R2) involve fewer turns and mostly consist of straight

courses through open areas, such as expressways. The urban

routes (U1 and U2), besides being more highly branched,

Algorithm 1: MapMatchOHMM

Input: trajectory,

Output: matching road segments,
1: Let score[] store the joint probability up to each state;
2: Let pre[] store the parent of each state;
3: for to do

4: Find the set of segments nearest to
5: Find the set of segments nearest to

6: for each in do

7: Compute
8: for each in do

9: if then /* initialize the scores */

10: Compute
11: score[] =
12: Compute and infer heading directions

13: score[] =
14:
15: pre[] =

16: if then /* output partial solution, if any */

17: output OnlineViterbiDecode(,)

18: else /* terminate match */

19: =
20: output OnlineViterbiDecode(, pre)

Algorithm 2: OnlineViterbiDecode

Input: , pre

Output: sol
1: Let sol [] denote the partial solution;
2: = findConvergencePoint(, pre)

3: while c is not NULL do

4: sol.add()

5: = pre[]

6: remove all from pre[] where pre[] is in sol
7: return sol.reverse()

n=2, w=2 n=3, w=2 n=4, w=3 n=5, w=3

Convergence Point Solution Path Sliding WindowNotations: n is the solution stage, w is the window size

Fig. 3. The VSW method performs backtracking on the surviving paths and finds the convergence point, if any.

cover city blocks which are densely packed with high-rise

buildings. The lengths of R1, R2, U1 and U2 are 36.3km,

11.3km, 27.3km and 32.5km, respectively. Furthermore, to

simulate trajectories of varying sampling frequencies, we

sub-sampled our original data (recorded once every 1–3

seconds) at sampling intervals ranging from 10 seconds to 5

minutes.

B. Training and Parameter Estimation

The parameter needs to be estimated for the emission

probability in (2) and SVM training is required for the

transition probability.

We estimate by analyzing the perturbations of our

ground truth data. For every trajectory point, we compute the
great-circle distance of the point from the center of its nearest

road segment. Then, the standard deviation is calculated

based on the Median Absolute Deviation (MAD) of the

distances,

 medi n medi n

Here denotes the perpendicular distance between an

individual trajectory point and its matching segment. The

distribution of distances allows us to estimate the one-

dimensional perturbations of trajectory points around the

ground truth path. Note that in (7), the MAD is scaled by a

constant factor of 1.4826 because we assumed that the GPS

measurement error is normally distributed. We adopted the
MAD approach for its resiliency against outliers in the data

set. The same method for estimating the standard deviation

has been adopted in [7], [15]. Based on the entire data set, we

obtained .

To infer the transition probability, we trained a SVM

classifier using 3,000 labeled instances where each

co e pond o ei he co ec n i ion (cl l eled „1‟) o

 n inco ec n i ion (cl l eled „0‟). E ch in nce i

2D feature vector consisting of the score values computed

with (5) and (6) and both components are scaled to [0, 1].

The scaling function is , where is either

component of the feature. Using a grid search on the

parameter space and 5-fold cross validation, we found the

best combination of parameters to be and ,

where is the soft margin parameter and is the Radial

Basis Function (RBF) kernel parameter. The training result is

shown in Fig. 5.

C. Performance Evaluation

We will assess our algorithm using two performance

metrics: accuracy and output delay.

Accuracy is defined as the fraction of correctly matched

trajectory points in the ground truth path. A correct match is

registered when the trajectory point is mapped to any road

segment contained in the ground truth path. This measure of

 ccu cy oid pen lizing „ ound y c e ‟ whe e he poin

are located right in the middle of road junctions. We note

that it is impractical to precisely determine the road segment
from which every trajectory point was collected for two

reason : (i) „ ound y c e ‟ c n e i u ed o he o d

segments on either exit of the junction, and (ii) possible

miscalibration of the digital map. Therefore, the path

accuracy measure is a more suitable assessment criterion.

Output delay is the average output latency incurred by the

algorithm for each trajectory point. It is quantified by the

number of seconds elapsed before a matching result is

obtained.

Tests were conducted as follows:

 We performed map-matching on test trajectories of
varying sampling intervals, ranging from 3 seconds
to 5 minutes, for both the rural and urban test routes.
For each route category, we aggregate the results
obtained for the two test routes.

 We compared 3 localizing strategies in terms of
accuracy and output delay: VSW, BVSW and FSW.
For BVSW and FWS, different window sizes were
tested. For every window size , we aggregate the
results for the whole set of test data (4 test routes
with sampling intervals between 10 seconds to 5
minutes).

V. RESULTS

Fig. 6 shows the comparison of map-matching accuracy

between rural and urban test routes. The results indicate that

accuracy for rural routes is better than urban routes by a

margin of about 5%, except at sampling intervals larger than

4 minutes. At intervals of less than 1 minute, the accuracy for

both routes is above 0.9. In both cases, the accuracy

deteriorates with increasing sampling intervals.

In Fig. 7 and Fig. 8, the dotted line represents the optimal

result achieved using the VSW localizing strategy. The
BVSW method converges to the optimal accuracy of 0.921 at

 and above. In all cases, the FSW method gave

consistently lower accuracy and did not converge to the

optimal solution even at .

In Fig. 8, the average output delay for VSW is 82s.

Compared to FSW, it achieves substantially lower latencies

without trading off optimality of the solution. Using BVSW,

there was no significant advantage in the delay performance

at window sizes of 4 and above. This suggests that most

decision points in the Markov chain occurred before the

Fig. 4. The 4 selected bus routes cover both the rural and urban

regions in Singapore.

(7)

window bound was reached. In the case of FSW, the delay

increases proportionately with window size but the accuracy

gains diminish to nearly zero after a certain threshold point.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we described an online algorithm for map-

matching and analyzed its performance on ground truth data.

We devised the VSW and BVSW methods for finding the
online solutions. Both outperformed the traditional FSW

localizing strategy used in previous HMM-based algorithms

in terms of accuracy and output delay. We also developed a

data-driven approach for inferring the transition probability

which fuses sensor measurements and topological

information in the map-matching process. Altogether, these

methods provide a general framework for designing online

HMM-based map-matching algorithms which are suitable for

real-time applications using floating car data. Other variants

of the algorithm may incorporate additional sensor data, such

as acceleration and altitude measurements, in estimating the
emission and transition probabilities.

For future work, we can explore the design of map-

matching algorithms with dynamic parameters that detect and

adapt to different environmental settings, such as in urban or

rural areas where GPS accuracies may vary. Sensor

information, such as the dilution of precision (DOP) values

for GPS measurements, may prove useful in achieving this

goal. Furthermore, we suggest better methods [22] for

interpolating the trajectory points rather than assuming the

shortest paths between them. A better approximation of the

actual traveled paths may improve map-matching accuracy.

ACKNOWLEDGMENT

The research described in this project was funded in part

by the Singapore National Research Foundation (NRF)

through the Singapore-MIT Alliance for Research and

Technology (SMART) Center for Future Mobility (FM).

REFERENCES

[1] Lim Z., Zhu Y., Zhu H. & Li M., “Compressive sensing approach to

u n ffic en ing,” Distributed Computing Systems (ICDCS), 2011

31st International Conference, pp.889-898, 20-24 June 2011.

[2] Li M., Zhang Y. & Wang W., "Analysis of congestion points based on

probe car data," Intelligent Transportation Systems ITSC '09, 12th

International IEEE Conference, pp.1-5, 4-7 Oct. 2009.

[3] De Fabritiis, C., Ragona, R. & Valenti, G., “Traffic estimation and

prediction based on real ime flo ing c d ,” 11th International

IEEE Conference on Intelligent Transportation Systems, 197-203,

2008.

[4] Liao Z., “Real-time taxi dispatching using global positioning

 y em ,” Communications of the ACM, 46(5), 81-83, 2003.

[5] Zheng Y. & Xie X., “Learning travel recommendations from user-

gene ed GPS ce ,” ACM Transactions On Asian Language

Information Processing, 2(1), 9-es, 2011.

[6] Yuan J., Zheng Y., Zhang C., Xie W., Xie X., Sun G. & Huang Y.,

“T-Drive: Driving direction ed on i jec o ie ,” Science And

Technology, 99-108, 2010.

[7] Wang Y., Zhu Y., He Z., Yue Y. & Li Q., “Challenges and

opportunities in exploiting large-Scale GPS probe data”, HP

Laboratories, Technical Report HPL-2011-109, 21 Jul. 2011.

[8] Wenk C., S l R. & Pfo e D., “Addressing the need for map-

matching speed: localizing global curve-matching algorithms,” 18th

International Conference on Scientific and Statistical Database

Management SSDBM06 (pp. 379-388), 2006.

[9] Quddus M., Ochieng W. & Noland R., “Current map-matching

algorithms for transport applications: State-of-the art and future

research directions,” Transportation Research Part C: Emerging

Technologies, 15(5), 312-328, 2007.

[10] Lou Y., Zhang C., Zheng Y., Xie X., Wang W. & Huang Y., “Map-

matching for low-sampling-rate GPS trajectories,” Proceedings of the

17th ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems GIS 09, (c), 352, 2009.

[11] Pink O. & Hummel B, “A statistical approach to map matching using

road network geometry, topology and vehicular motion constraints,”

11th International IEEE Conference on Intelligent Transportation

Systems, 862-867, 2008.

[12] Chen D., D iemel A., Gui L. J. & Wenk C., “Approximate Map

Matching with respect to the Frechet Distance,” Computing, 75-83,

2011.

[13] N eddine G., A d ll h F. & Denoeu T., “Map matching algorithm

using interval analysis and Dempster-Sh fe heo y,” Intelligent

Vehicles Symposium, 2009 IEEE, vol., no., pp.494-499, 3-5 Jun 2009.

[14] O do ic D., Lenz H., & Schupfne M., “Fusion of Map and Sensor

Data in a Modern Car Navigation System,” The Journal of VLSI

Signal Processing Systems for Signal Image and Video Technology,

45(1-2), 111-122, 2006.

[15] Newson P. & Krumm J., “Hidden Markov map matching through

noise and sparseness,” Proceedings of the 17th ACM SIGSPATIAL

International Conference on Advances in Geographic Information

Systems GIS 09, 336, 2009.

[16] Thiagarajan A., Ravindranath L., Balakrishnan H., Madden S. &

Girod L, “Accu e, Low-Energy Trajectory Mapping for Mobile

Devices,” Artificial Intelligence, 20–20, 2011.

[17] Yuan J., Zheng Y., Zhang C., Xie X., & Sun G.-Z., “An Interactive-

Voting B ed M p M ching Algo i hm,” Eleventh International

Conference on Mobile Data Management, 43-52, 2010.

[18] B k oul S., Pfo e D., S l R. & Wenk, C, “On Map-Matching

Vehicle Tracking Data,” Proceedings of the 31st International

Conference on Very Large Databases (pp. 853-864), 2005.

[19] Bloit J. & Rodet X, “Short-time Viterbi for online HMM decoding:

Evaluation on a real-time phone recognition task,” IEEE International

Conference on Acoustics Speech and Signal Processing, 2121-2124,

2008.

[20] Š ámek R., B ejo á B. & Vin ř T., “On-line Viterbi Algorithm and Its

Relationship to Random Walks”, arXiv:0704.0062v1, 2007.

[21] Hart, N. Nilsson, & B. Raphael, “A formal basis for the heuristic

determination of minimum cost paths,” IEEE Transactions on system

science and cybernetics, 4:100-107, 1968.

[22] Leung I. X. Y., Chan S.-Y., Hui P. & Lio P, “In -City Urban

Ne wo k nd T ffic Flow An ly i f om GPS Mo ili y T ce,”

arXiv:1105.5839v1, 2011.

Fig. 5. Transition probability
function derived from SVM training

Fig. 6. Comparison of accuracy

between rural and urban test routes

Fig. 7. Accuracy for VSW, BVSW

and FSW, aggregated over all test
routes and sampling intervals

Fig. 8. Output delay for VSW,

BVSW and FSW, averaged over all

test routes and sampling intervals

