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Abstract

In this paper we formally introduce a generic real-time multi-vehicle truck-
load pick-up and delivery problem. The problem includes the consideration of
various costs associated with trucks’ empty travel distances, jobs’ delayed com-
pletion times, and job rejections. Although very simple, the problem captures
most features of the operational problem of a real-world trucking fleet that
dynamically moves truckloads between different sites according to customer
requests that arrive continuously over time.

We propose a mixed integer programming formulation for the off-line version
of the problem. We then consider and compare five rolling horizon strategies
for the real-time version. Two of the policies are based on a repeated re-
optimization of various instances of the off-line problem, while the others use
simpler local (heuristic) rules. One of the re-optimization strategies is new
while the other strategies have recently been tested for similar real-time fleet
management problems.

The comparison of the policies is done under a general simulation frame-
work. The analysis is systematic and consider varying traffic intensities, vary-
ing degrees of advance information, and varying degrees of flexibility for job
rejection decisions. The new re-optimization policy is shown to systematically
outperform the others under all these conditions.

∗Accepted for publication in Transportation Science, December 2002
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Introduction

Continuing developments in telecommunication and information technologies provide

unprecedented opportunities for using real-time information to enhance the produc-

tivity, optimize the performance, and improve the energy efficiency of the logistics

and transportation sectors. Interest in the development of dynamic models of fleet

operations and of fleet management systems which are responsive to changes in de-

mand, traffic network and other conditions is emerging in many industries and for

a wide variety of applications. Managing and making use of the vast quantities of

real-time information made available by navigation technologies, satellite positioning

systems, automatic vehicle identification systems and spatial GIS databases require

the development of new models and algorithms.

The area of vehicle routing and scheduling, including dynamic vehicle allocation

and load assignment models, has evolved rapidly in the past few years, both in terms

of underlying mathematical models and actual commercial software tools. While some

of the approaches may well be adaptable to operations under real-time information

availability, underlying existing formulations do not recognize the possible additional

decisions that become available under real-time information.

In this paper we formally introduce a generic real-time multi-vehicle truckload

pick-up and delivery problem called herafter TPDP. The problem includes the con-

sideration of various costs associated with trucks’ empty travel distances, jobs’ delayed

completion times, and job rejections. The TPDP captures most features of the oper-

ational problem of a real-world trucking fleet that moves truckloads between different

sites according to customer requests that arrive continuously in time. On the other

hand, the problem is still a simplification of real-world problems in that the latter also

needs to address issues such as working hour regulations, getting drivers home, and

suitability of the driver and his equipment for a load. Nevertheless, good solutions

for this artificial TPDP should provide good insights and building blocks for more

realistic real-time pick-up and delivery problems.

We propose a mixed integer programming formulation for the off-line version of

the problem. We then consider and compare five rolling horizon strategies for the real-

time version. Two of the policies are based on a repeated re-optimization of various
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instances of the off-line problem, while the others use simpler local (heuristic) rules.

One of the re-optimization strategies is new while the other strategies have recently

been tested for similar real-time fleet management problems. The comparison of the

policies is done under a general simulation framework. The analysis is systematic

and consider varying traffic intensities, varying degrees of advance information, and

varying degrees of flexibility for job rejection decisions.

Before going into more details about the organization and content of this paper

let us first provide an overview of the related existing literature.

Vehicle routing problems (VRPs) are usually concerned with efficiently assigning

vehicles to jobs (such as picking up and/or delivering given loads) in an appropriate

order so that these jobs are completed in time and vehicles’ capacities are not ex-

ceeded. Deterministic and static versions, with all the characteristics of the jobs being

known in advance and every parameter assumed certain, have been widely studied in

the literature. Bodin et al. 1983, Christofides 1985, Fisher 1995, Golden and Assad

1988, and Solomon 1987 provide extensive surveys of the various VRPs and solution

techniques. Bienstock et al. 1993, Bramel and Simchi-Levi 1996, 1997, Bramel et al.

1994, and Bramel et al. 1992 present probabilistic analyses of many heuristics for

deterministic and static VRPs.

Stochastic and static versions of the vehicle routing problem (SVRP) have also

been widely studied. Several authors have addressed the case in which loads are

random. Golden and Stewart 1978 tackle problems with Poisson-distributed loads.

Golden and Yee 1979 consider other load distributions and give theoretical explana-

tions for the relations found empirically by Golden and Stewart. Stewart 1981 and

Stewart and Golden 1983 formulate SVRP as a stochastic programming problem with

recourse. Bastian and Rinnooy Kan 1992 show that with one vehicle and independent

identically distributed loads, SVRP could be reduced to the time-dependent traveling

salesman problem (TDTSP) (Garfinkel 1985). Work in this direction was also done

in papers such as Tillman 1969, Dror and Trudeau 1986, Yee and Golden 1980, Bert-

simas 1992, and Dror et al. 1989. Researchers have further considered the case in

which travel times between jobs are random. Cook and Russell 1978 examine a large

SVRP with random travel times and random loads. Berman and Simchi-Levi 1989

examine the problem of finding the optimal depot in a network with random travel
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times.

Some authors have considered cases in which the number and possibly the loca-

tions of the jobs are not known in advance but are described instead by probability

distributions. The goal is to find optimal a priori routes through all jobs and update

these routes at the time the specific subset of jobs to be served is known. Such a prob-

lem, the probabilistic traveling salesman problem, was first introduced in Jaillet 1985,

1988, who develops an extensive analysis of the case where all potential jobs have the

same probability to materialize. Jezequel 1985, Rossi and Gavioli 1987, Bertsimas

1988 and Bertsimas and Howell 1993 investigate additional theoretical properties and

heuristics for the problem. Berman and Simchi-Levi 1988 discuss the problem of

finding an optimal depot under a general job-appearing distribution. Laporte et al.

1994 formulate the problem as an integer program and solve it using a branch-and-cut

approach.

When information on jobs is gradually known in the course of the system’s oper-

ation, real-time techniques become increasingly important. In his review of dynamic

vehicle routing problems, Psaraftis 1988 points out that very little had been pub-

lished on real-time VRPs as opposed to classical VRPs. Powell et al. 1995 present

a survey of dynamic network and routing models and identify general issues associ-

ated with modeling dynamic problems. For more recent surveys on dynamic vehicle

routing problems and related routing problems, see Psaraftis 1995, Bertsimas and

Simchi-Levi 1996, and Gendreau and Potvin 1998.

Bertsimas and Van Ryzin 1991, 1993a, 1993b analyze a dynamic routing problem

in the Euclidean plane with random on-site service times. They use queueig models

to compare the impact of various dispatching rules on the average time spent by the

customer in the system. They derive the asymptotic behavior of the optimal system

time under heavy traffic, and find several policies that result in asymptotic system

times that are within constant factors of that of the optimal one in heavy traffic.

For the more general dynamic VRP with time windows, Gendreau et al. 1999 have

proposed a general heuristic strategy (a continuously running tabu search attempting

to improve on the current best solution, interrupted by a local search heuristic for

inserting newly arrived demand). Their objective takes into account job rejections,

operational cost due to vehicle travel distances, and cost due to customer waiting.
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Ichoua et al. 2000 further consider methods that allow vehicle diversions for these

vehicle routing problems with time windows. Empirical tests show a reduction in

the number of unserved customers if diversion is allowed. Due to computational

limitations and the notorious difficulty of the off-line VRP with time windows, it is

unclear that a re-optimization based strategy similar to the one proposed in our paper

could also be effective for this problem and improve on this tabu search procedure.

Closer to the class of problems considered here, Bookbinder and Sethi 1980, Pow-

ell et al. 1984, Powell 1986, 1987, Dejax and Crainic 1987, Powell 1988, Frantzekakis

and Powell 1990, and Powell 1996 all address the dynamic vehicle allocation problem

(DVA) for which a fleet of vehicles is assigned to a set of locations with dynamically

occuring demands. In all these models, both locations and decision epochs are dis-

crete. Due to the curse of dimensionality, the models have limited time horizons and

cannot effectively address the issue of job delays. Most effective DVA models are of

a multi-stage stochastic programming type. Frantzekakis and Powell 1990 use linear

functions to approximate separable convex recourse objective functions and solve the

problem at each decision epoch using backward recursion. Powell 1996 shows that it

is advantageous to take forecasted demands into consideration when deciding on the

vehicle-location assignment, compared to a model which reacts after new demands

have arrived. This however presumed that one can accurately predict future demands.

More recently, Powell et al. 2000a consider a dynamic assignment of drivers to

known tasks. Their formulation includes many practical issues and driver-related

constraints and generalizes the off-line version of the problem we consider in this

paper. Two primal-dual iterative methods are developed to solve the off-line problem.

Powell et al. 2000b implement the previous primal-dual approaches into a dynamic

driver assignment problem where there are three sources of uncertainty: customer

demands, travel times, and user noncompliance, and compare these with simpler

non-optimal local rules. They find that the increase in future uncertainty may reduce

the benefit of fully re-optimizing the off-line problem each time a new request comes.

This contrasts with some of our findings which indicate that fully re-optimizing each

time leads to an overall better performance, under our various testing situation. We

should however be very cautious in comparing these results because the problems and

the comparison settings are quite different.
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Regan et al. 1995, 1996a, 1996b, 1998 evaluate vehicle diversion as a real-time op-

erational strategy for similar trucload pick up and delivery problems, and investigate

various local rules for the dynamic assignment of vehicles to loads under real-time

information. That approach features relatively simple, easy-to-implement and fast-

to-execute local rules that might not always take full advantage of the existing past

and present information. The empirical analysis of these local rules was conducted

using a limited exploratory simulation framework, typically with small fleet sizes and

under the objective of minimizing total empty distance. Re-optimization real-time

policies for truckload pick-up and delivery problems are further introduced and tested

under a more general objective function in Yang et al. 1998.

In this paper, we build upon this previous work and use computer simulation to

experimentally identify and test good strategies under varying situations. The main

contributions of the paper are the introduction of a new optimization-based policy

(OPTUN) for the TPDP, and its comparison with the simple local rules of Regan

et al. 1998 and other strategies introduced in Yang et al. 1998). The comparison

is done under a general framework in which the objective function relaxes the hard

constraints associated with the delivery of a job and introduces a penalty function for

delay beyond the due time. The analysis is systematic and considers the performance

of the policies under varying traffic intensities, varying degrees of advance information,

and varying degrees of flexibility for job rejection decisions. The OPTUN policy turns

out to be the best-performing policy under all these different conditions, and clearly

outperforms the simple local rules, and other myopic strategies.

The paper is organized as follows. In Section 1, we present the detailed definition

of the problem. In Section 2, we discuss formulations for the off-line problem corre-

sponding to our real-time problem. In Section 3, we discuss the various policies and

present the detailed mechanism of how a trucking company would operate under these

policies. In Section 4, we present the details of our simulation studies. In Section 5,

we present results and conclusions from the simulation studies. Section 6 concludes

the paper.
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1 Problem Statement

Overview

In this stylized problem, we consider a trucking company with a fleet of K trucks.

The company faces a sequence of future and unknown requests for truckload moves,

hereafter called jobs, within a predefined region. Each truck can carry only one

job at a time, and cannot serve another job until the current job is delivered to its

final destination. At the arrival time of a request, the company is given the pick-

up location, the delivery location, the earliest pick-up time, and the latest delivery

time of the job. The company can either accept or reject a job request within a

small prescribed amount of time. The revenue generated from a given accepted job

is proportional to the length of the job, defined as the distance between its pick-up

and delivery locations. Completion beyond the latest delivery time is allowed but

penalized, and the penalty is proportional to both the job’s length and the amount

of delay occured. In case a job request is not accepted, the cost of rejection is the

gross revenue the company would have otherwise obtained had it accepted the job.

Over the course of serving the sequence of requests, the company incurs additional

operating costs proportional to the empty distance traveled by trucks in order to serve

the accepted jobs. Finally we assume that the trucks all move at the same constant

unit speed.

The objective is to find a good strategy for handling this sequence of future un-

known requests in order to maximize the overall net revenue. The strategy needs to

address job acceptance/rejection decisions in “real-time” as well as job-truck assign-

ment decisions for currently accepted jobs, not knowing the timing and characteristics

of possible future requests.

Formal Notation and Model Statement

The time evolution of the system is indexed by a continuous variable t ∈ [0,∞).

Initially, at time t = 0, all K trucks are empty and idle at a common depot. Job

pick-up and delivery locations, as well as truck positions at any given time t ≥ 0, are

assumed to be points in a bounded region B of a metric space. For simplicity, we

assume that this space is the Euclidean plane and that the distance between any two

points in that plane is the Euclidean distance hereafter denoted D(., .).
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The exogeneous stimulus of the system is provided by a sequence of job requests.

Formally it is represented by a sequence of increasing real numbers
(
τARV
i

)
i≥1

, where

τARV
i denotes the arrival time of job i (we assume that jobs are labeled according to

their order of arrival). At the arrival time of job i, its characteristics are then revealed

through a 5-tuple Ii ≡
(
oi,di, T

ADV
i , T SLK

i , TRES
i

)
with the following definitions,

(some being also illustrated in Figure 1):

• oi and di are the pick-up and delivery locations, respectively. The corresponding

distance between these two locations, i.e., the length of job i, is denoted Wi.

• TADV
i measures the time between the arrival epoch of job i and its earliest

pick-up time. In other words, if τAV L
i is the earliest pick-up time, then τAV L

i =

τARV
i + TADV

i .

• T SLK
i is the slack time available between earliest possible and latest allowed

delivery, and captures the tightness of job i’s completion deadline. In other

words, if τDLN
i is the time of latest delivery, then τDLN

i = τAV L
i + Wi + T SLK

i .

• Finally, TRES
i is the time within which the company needs to respond to a job

request with a final acceptance or rejection decision. In other words, the latest

time for the trucking company to decide whether to accept or reject job i is

τARV
i + TRES

i .

Figure 1: Illustration of the time elements in Ii
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The joint sequence
(
τARV
i , Ii

)
i≥1

completely characterizes the job requests. Let

(Ft)t≥0 be the (information) filtration generated by the sequence
(
τARV
i , Ii

)
i≥1

. In-

formally, Ft represents the known information up to time t, as contained in all the

past requests j such that τARV
j ≤ t.

Facing this sequence of job requests the company responds with a series of deci-

sions including job acceptance/rejection decisions and job-truck assignment decisions

on accepted jobs. We call such a series of decisions a policy or a strategy. We re-

strict the policies to be Ft-adapted, i.e., any decisions at time t must only depend

on the information up to time t (decisions are Ft-measurable). Because exogeneous

information is updated only at job arrival epochs, a policy can be described in a

rolling-horizon fashion: At any time that is not a job arrival epoch, there is a pre-

viously agreed assignment plan being carried out. At every job arrival epoch, the

previous plan is interrupted and a new plan is decided for the time to come. For this

reason, we also call a job arrival epoch a decision epoch. At every decision epoch, a

myopic policy is to optimize a new assignment plan without recognizing that it may

not be fully carried out because of future unknown requests. We also require that, at

any decision epoch τ , the new plan decided by a policy does not change the previous

acceptance/rejection decisions associated with any job i such that τARV
i + TRES

i ≤ τ .

Indeed, the acceptance/rejection decision status of job i becomes permanent by time

τARV
i + TRES

i and cannot then be changed.

Under such a policy π, each truck k, 1 ≤ k ≤ K, is at any time t, either idle,

moving empty, or moving loaded. We formally represent this status with an integer

variable sπ
k(t) with three possible values: sπ

k(t) = 0 if idle; -1 if moving empty; and +1

if moving loaded. Let lπk(t) be truck k’s current location at time t (a two-dimensional

real-valued vector in case of cartesian coordinates). Let Qπ
k(t) be the current (time

t) ordered list of non-completed jobs assigned to truck k under the last updated

assignment plan associated with the policy π. Qπ
k(t) = ∅ if and only if sπ

k(t) = 0. For

Qπ
k(t) 6= ∅, let qπ

k (t) be the first element of the ordered list and LQπ
k(t) the remaining

other elements of the list (i.e., when non-empty, Qπ
k(t) = {qπ

k (t)} ∪ LQπ
k(t)). Finally

let Lπ
TEMP (t) be the current (time t) set of jobs temporarily rejected under the last

updated assignment plan associated with the policy π.

Together with the fact that vehicles move at a constant unit speed, it should be
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clear that (sπ
k(t), lπk(t), Qπ

k(t)), 1 ≤ k ≤ K and Lπ
TEMP (t) allow a full description of the

dynamics of the system under policy π. The details are as follow. Assume a sequence

of requests
(
τARV
i , Ii

)
i≥1

and a given policy π to serve these requests. Condider that

we are at time t− in a state described by (sπ
k(t−), lπk(t−), Qπ

k(t−)), 1 ≤ k ≤ K and

Lπ
TEMP (t−).

1. Assume first that t is a decision epoch, i.e. t = τARV
j for a given job j. A

new assignment plan is then made according to the policy π. The parameters

(sπ
k(t), lπk(t), Qπ

k(t)), 1 ≤ k ≤ K and Lπ
TEMP (t) are then fully updated according

to the specifics of the policy π, which only depends on the past up to time t.

2. Assume now that t is not a decision epoch. Let τARV > t be the next job arrival.

The dynamics are then as follows:

• Update on the set of temporarily rejected jobs: For all j ∈ Lπ
TEMP (t−)

such that t ≤ τARV
j + TRES

j = t′ ≤ τARV , Lπ
TEMP (t′) = Lπ

TEMP (t−) \ {j}.

• Update on the idle vehicles: For any k such that sπ
k(t−) = 0, we have, for

t ≤ t′ ≤ τARV , sπ
k(t′) = 0, lπk(t′) = lπk(t), and Qπ

k(t′) = ∅.

• Update on the vehicles moving empty: For any k such that sπ
k(t−) = −1,

let i be qπ
k (t−). Moving at unit constant speed, vehicle k would reach the

origin of job i at time ti = t + D(lπk(t),oi). So for t ≤ t′ ≤ min{τARV , ti}
we have sπ

k(t′) = −1, lπk(t′) = lπk(t)+(oi−lπk(t))(t′−t)/(ti−t), and Qπ
k(t′) =

Qπ
k(t−). Then if ti ≤ τARV , sπ

k(ti) = +1, lπk(ti) = oi, and Qπ
k(ti) = Qπ

k(t−).

Otherwise at t′ = τARV we are back in Case 1 above.

• Update on the vehicles moving loaded: For any k such that sπ
k(t−) = +1,

let i be qπ
k (t−). Moving at unit constant speed, vehicle k would reach

the destination of job i at time ti = t + D(lπk(t),di). So for t ≤ t′ ≤
min{τARV , ti} we have sπ

k(t′) = +1, lπk(t′) = lπk(t)+(di−lπk(t))(t′−t)/(ti−t),

and Qπ
k(t′) = Qπ

k(t−). Then if ti ≤ τARV , sπ
k(ti) = 0 if LQπ

k(t−) = ∅,
sπ

k(ti) = −1 otherwise, lπk(ti) = di, and Qπ
k(ti) = Qπ

k(t−) \ {i}. Otherwise

at t′ = τARV we are back in Case 1 above.

We have made no assumption on how to model the uncertainty associated with the

sequence of requests, because we want to devise real-time strategies assuming little,
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if any, knowledge (deterministic or probabilistic) of the future requests. Of course,

present actions influence the company’s performance in the future. The difficulty is

to make decisions based only on the past and current requests. The approach usually

taken is to assume some probabilistic model of the future and act on this basis. This is

the starting point of the theory of Markov Decision Processes (see for example Heyman

and Sobel 1984). Another approach is to devise and evaluate strategies under the

worst possible scenario using the concept of “competitive analysis”, now well known in

the analysis of online problems and algorithms (see for example Borodin and El-Yaniv

1998). In this paper we are taking a middle ground. We assume that the strategies

have to be developed with no knowledge of the future (with the exception of one of the

proposed strategies, OPTUN, which uses some minimal probabilistic information on

the location of job requests, as explained in Section 3). The analysis and comparison of

the proposed strategies however are performed under some very specific probabilistic

assumptions. Specifically, we consider a probability space (Ω,F , P) under which is

defined a Poisson process (Nt)t≥0 with intensity λ. The sequence of job arrival epochs(
τARV
i

)
i≥1

corresponds to the Poisson process arrival times. We also define in this

probability space a stochastic process (Ii)i≥1 with values in R5 describing the sequence

of job characteristics.

Under such probabilistic assumptions one can go further in properly defining an

objective function for the evaluation of strategies. We first define time-dependent set

of random variables that record the system’s performance when a certain stationary

policy π is adopted. For each vehicle k we let Υπ
k(t) = 1[sπ

k(t) < 0] be a 0-1 random

variable indicating whether or not truck k is moving empty at time t. Now let

N(t) = {i : τARV ≤ t} be the set of jobs which have been requested by time t.

Let M(t) = {i : τARV
i + TRES

i ≤ t} be the subset of jobs in N(t) for which a final

acceptance or rejection decision is mandatory by time t. Finally let R(t) be the

subset of jobs in N(t) which have been fully served by time t. Note that for all s ≤ s′,

N(s) ⊂ N(s′), M(s) ⊂ M(s′), and R(s) ⊂ R(s′). For each job i ∈ M(t), we let yπ
i (t)

be a 0-1 random variable indicating whether job i has been permanently rejected.

Note that the policy π imposes consistencies in the sense that for each job i ∈ M(t)

we have yπ
i (t′) = yπ

i (t) for all t′ ≥ t. For each job i ∈ R(t), we let τπ,COM
i (t) ≤ t be

the time of completion of job i.
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We will assume that as a function of t, (Υπ
k(t))t, (yπ

i (t))t, and (τπ,COM
i (t))t are

well-defined stochastic processes with right-continuous left-limit sample paths.

Let us now specify applicable cost parameters. Let α be the operational cost per

unit distance of truck-empty-movement, and let β be the penalty cost per unit of time

delay and per unit of job length (5 units of time delay for a job i of length Wi = 10

costs 50β, i.e., the longer the job the more costly proportionally it is to delay its final

delivery).

Because of unit speed, the total empty distance covered by truck k up to time t

is the random variable
∫ t

0
Υπ

k(s)ds. Under policy π and up to time t, the cumulative

cost Cπ(t) is a random variable defined as

Cπ(t) ≡ α
K∑

k=1

∫ t

0

Υπ
k(s)ds + β

∑
i∈R(t)

Wi

(
τπ,COM
i (t)− τDLN

i

)+

+
∑

i∈M(t)

Wiy
π
i (t). (1)

Cπ(t) captures the fleet’s operational cost due to empty movement, the loss of

customer good will due to delay, and the loss of revenue from job rejections. For the

second cost term, accounting at time t is done for completed jobs; while for the third

term, accounting at time t is done for those jobs whose acceptance/rejection decisions

have been finalized.

We assume that all the policies π under consideration in this paper are stable

ergodic policies, by which we mean that there exists a constant cπ such that

lim
t→∞

Cπ(t)

t
= cπ (a.s.) and lim

t→∞
E

[
Cπ(t)

t

]
= cπ. (2)

Mathematically the overall optimization problem is to find a πopt among the set

of all stable ergodic policies Π such that

cπopt

= inf
π∈Π

cπ.

This is in that precise sense that an optimal policy is defined in this paper.

One can define an equivalent optimization problem. For any integer n, let τπ,∗
n =

inf{t : for all 1 ≤ i ≤ n, yπ
i (t) = 1 or i ∈ R(t)}. (τπ,∗

n is the smallest time t by which

all n first jobs have either been served or rejected.) For stable ergodic policies as

defined above, we then have

lim
n→∞

Cπ(τπ,∗
n )

n
= cπ

a (a.s.) and lim
n→∞

E

[
Cπ(τπ,∗

n )

n

]
= cπ

a . (3)
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Note that for any π ∈ Π the two constants cπ and cπ
a defined in (2) and (3) respectively

are such that cπ
a = cπ/λ. The two problems infπ∈Π cπ and infπ∈Π cπ

a are thus equivalent.

The constant cπ
a can be interpreted as the long-run average cost per requested job.

For each stable ergodic policy π introduced in this paper we are going to numeri-

cally estimate the constant cπ
a by considering a finite approximation. More precisely

for a large enough n, we will assume that the following measure

E

[
Cπ(τπ,∗

n )

n

]
(4)

is a good approximation of the constant cπ
a to minimize. It is this approximate

objective function (4) which we numerically estimate via our simulation experiments

in Section 5, and which we call AvgCost. Section 4 precisely describes how AvgCost

relates to (4).

Before we can describe the five proposed online policies for TDPP, it is important

to first understand the following corresponding off-line problem: given a set of trucks

and known jobs, find an optimal plan to serve these jobs assuming no future requests.

Even though we introduce the off-line problem as a problem being repeatedly solved

at decision epochs by a myopic policy for the real-time problem, it models a specific

and interesting problem in its own right. This is the subject of the next section.

2 The Off-line Problem

In this off-line problem we consider a problem with K trucks. We assume that truck

k is first available at time τ 0
k and at location lk. We assume that there are N known

jobs, each being characterized by an arrival epoch and a 5-tuple I as described above.

For notational simplicity, we let Dk
0i be the distance from truck k’s location lk to job

i’s pick-up location and Dij be the distance from job i’s delivery location to job j’s

pick-up location. Out of the N jobs, we assume that a subset A of these have to be

served. The other jobs could be rejected, if it is economically optimal to do so. For

an arbitrary choice of A the given off-line problem could be infeasible.

Note that when the off-line problem is the problem solved at a decision epoch

in an on-line strategy as described in the previous section, τ 0
k and lk are either the

current time and location of truck k if it is idle or moving empty, or the time and
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location at which truck k will finish its current job if it is moving loaded. Also, the

N jobs would be those in the real-time problem which are already known at t and

neither have been picked up nor have been permanently rejected yet. In this setting

some jobs may have been permanently accepted, and form the elements of the set A.

Since the off-line problem is always called at the arrival epoch of a new job and we

can always reject the new job and keep the previous plan, introducing this set A does

not make the off-line problem infeasible.

We have looked at two equivalent formulations for the problem. The first formula-

tion is of a multi-commodity network-flow type and has been inspired by the work of

Desrochers et al. 1988. All the nodes except for one dummy node, node 0, represent

jobs. All the arcs except for those linking job nodes to the dummy node represent

possible connections in real services. A truck’s route is represented by a flow unit

from the dummy node, through some job nodes, and then back to the dummy node.

Empirically, this first formulation is not as competitive as the second one, so we omit

going into its details here.

In the chosen formulation, we model the problem as an assignment problem with

timing constraints. The assignment problem, in turn, consists of finding a least-cost

set of cycles going through all the nodes of (1, ..., K,K + 1, ..., K + N), where node k

for k = 1, ..., K corresponds to truck k and node K + i for i = 1, ..., N corresponds to

job i. In the formulation, we use binary variable xuv for u, v = 1, ..., K +N to indicate

whether arc (u, v) is selected in one of the cycles. In the truck-job terminology, xk,K+i

indicates whether truck k first serves job i, xK+i,K+j indicates whether there is a truck

that serves jobs i and j consecutively, xkk = 1 means that truck k serves no job, and

xK+i,K+i = 1 means that job i is rejected. We also use continuous variables τPICK
i

and δi to represent the pick-up time and amount of delay of job i, respectively.

The timing constraints presented below prevent cycles to be formed with job nodes

only. As a result there is a clear interpretation of a feasible cycle using our truck-job

terminology. For instance, if a cycle goes as 1, K + 1, K + 2, 2, K + 3, K + 4, K + 5, 1,

the interpretation is that truck 1 serves jobs 1 and 2, truck 2 serves jobs 3, 4, and 5.

The mixed integer programming formulation is presented below:

min α

(
K∑

k=1

N∑
i=1

Dk
0ixk,K+i +

N∑
i=1

N∑
j=1,j 6=i

DijxK+i,K+j

)
+ β

N∑
i=1

Wiδi +
N∑

i=1

WixK+i,K+i
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subject to
K+N∑
v=1

xuv = 1 ∀u = 1, ..., K + N (1)

K+N∑
v=1

xvu = 1 ∀u = 1, ..., K + N (2)

xuv = 0, 1 ∀u, v = 1, ..., K + N (3)

−
K∑

k=1

(
Dk

0i + τ 0
k

)
xk,K+i + τPICK

i ≥ 0 ∀i = 1, ..., N (4)

−TxK+i,K+j − τPICK
i + τPICK

j ≥ −T + Wi + Dij ∀i, j = 1, ..., N, i 6= j (5)

τPICK
i ≥ τAV L

i ∀i = 1, ..., N (6)

δi − τPICK
i ≥ Wi − τDLN

i ∀i = 1, ..., N (7)

δi ≥ 0 ∀i = 1, ..., N (8)

xK+i,K+i = 0 ∀i ∈ A (9)

Constraints (1), (2), and (3) are classical assignment constraints. Constraints

(4), (5), and (6) are the timing constraints, with T a large number. Constraints

(4) ensure that truck k arrives at the pick-up location of job i after Dk
0i + τ 0

k if i

is the first job being served by k. Constraints (5) insures that the truck arrives at

the pick-up location of job j at least Wi + Dij amount of time after reaching job

i’s pick-up location if j is to be served after i. Because T is large enough, when

xK+i,K+j = 0, the constraints are nonrestrictive. We note that constraints (4) and

(5) are those that prevent cycles without a truck. Constraints (6) simply enforce that

a job’s pick-up time is no earlier than its earliest pick-up time. Constraints (7) and

(8) specify ranges of the amount of delay. Constraints (9) prevent rejection of jobs in

the specified subset A.

3 Real-time Policies

In all the policies considered in this paper, a truck remains idle at the destination

of its last job when not assigned to a new job. Under any given plan, a truck k is

assigned a queue of jobs which have been (permanently or tentatively) accepted. If
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truck k is currently idle, the queue is empty. If truck k is currently moving empty, the

queue has at least one waiting job and truck k is moving toward the pick-up location

of the first waiting job. Finally if truck k is moving loaded, the queue contains at

least the job being currently served. For all policies, queues are non-preemptive: once

a job is picked up, it is delivered without disruption.

3.1 A Simple Benchmark Policy

The first policy considered in this paper, BENCH, reflects what a company might

do without the aid of sophisticated decision support systems. At a job arrival epoch,

BENCH decides whether or not this new job is accepted, and, if accepted, assigns

it to the queue of a specific vehicle k. These decisions are permanent and are based

on a sequential evaluation. For each truck k, BENCH calculates the marginal cost of

serving this new job if inserted at the end of its queue. In case all marginal costs are

higher than the cost of rejection, the job is rejected. Otherwise it is assigned at the

end of the queue of the truck k with the lowest marginal cost.

3.2 Advanced Policies

In these policies, initial acceptance/rejection decisions are not necessarily permanent,

and a job being accepted or rejected at one decision epoch could be reconsidered before

a permanent decision has to be made (based on the extra time TRES). As introduced

in Section 1, we use a list Lπ
TEMP (t) to represent at any time t the tentatively rejected

jobs whose acceptance decision deadlines have not expired yet.

At a job arrival (decision) epoch τ , we first permanently remove jobs in Lπ
TEMP (τ)

whose response deadlines have expired (they become permanently rejected). For all

remaining jobs in Lπ
TEMP (τ) as well as the current new job (which triggered the

current decision epoch), we need to decide whether to tentatively accept or reject

them. For convenience, we refer to these jobs as the pending jobs. Also at the same

time, some waiting jobs in the queue of some vehicles will have passed their acceptance

decision deadlines and hence become permanently accepted. The other waiting jobs

(tentatively accepted) could be potentially rejected as well at this new decision epoch.

Out of the four advanced policies to be presented below, the last three will consider
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this as an option.

The first two policies are local in the sense that, like BENCH, they evaluate the

insertion of each pending job, one at a time, into each truck’s queue, also one at a

time. Pending jobs are evaluated in the decreasing order of their arrival epochs. Each

pending job is either inserted into a particular queue if the corresponding marginal

cost is the smallest among all queues and is smaller than the cost of rejection, or is

tentatively rejected otherwise. In the latter case, the pending job is added (back) to

Lπ
TEMP (τ).

The two local policies differ in how they consider insertion of a pending job in

a truck’s queue. NS does not modify the relative ordering of the jobs already in

the queue and only considers all possible insertions in between these jobs. It also

doesn’t consider rejecting a tentatively accepted job in a queue while trying to insert

the pending job. On the contrary, SE evaluates all possible orderings of the original

waiting jobs together with the current pending job, and does so by solving a one-truck

instance of the off-line problem. The optimal solution determines whether the current

pending job and previously tentatively accepted jobs of the queue are accepted and,

if accepted, in what order in the queue they should be served. If the pending job

or a previously tentatively accepted job becomes tentatively rejected, it is added to

Lπ
TEMP (τ).

Strategies BENCH, NS, and SE are similar to strategies evaluated previously by

Regan et al. 1998, albeit with very different implementations (in particular, we allow

in the current paper rejection of a job based on cost considerations, and, accep-

tance/rejection decisions may not be immediately permanent). These strategies have

also been considered in our previous paper Yang et 1998.

We also propose two re-optimization policies which consider, in one optimization

run, all trucks, all acceptance/rejection and allocation decisions of pending and ten-

tatively accepted waiting jobs, and all reallocation decisions of permanently accepted

waiting jobs. MYOPT optimizes the acceptance and (re-)allocation decisions as if

no future new job would ever be requested. It corresponds to solving a full instance of

the off-line problem. Conceivably, this policy should perform better than any of the

local policies. However this remains an empirical question and is investigated using

a systematic simulation framework introduced in Section 4.
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OPTUN operates in almost the same way as MYOPT. The only difference is that

OPTUN introduces opportunity costs of serving jobs, somewhat accounting for future

job requests. It assumes some knowledge about the probability law of future job pick-

up (and delivery) locations. More precisely, let D̄(a) be the expected distance from

a random point to point a and ¯̄D be the expected distance between two independent

random points, where random points are distributed according to the probability law

of job pick-up and delivery locations. Instead of using Dk
0i’s, Dij’s, and Wi’s in the

formulation of the off-line problem, OPTUN uses Ck
0i’s, Cij’s, and γWi’s, respectively.

The new parameters are:

Ck
0i ≡ Dk

0i + KO
1

(
D̄(oi)− D̄(lk)

)
+ KO

2

(
D̄(di)− ¯̄D

)
,

Cij ≡ Dij + KO
1

(
D̄(oj)− D̄(di)

)
+ KO

2

(
D̄(dj)− ¯̄D

)
,

and

γ =
(
1 + KO

3

)( K∑
k=1

N∑
i=1

Ck
0i +

N∑
i=1

N∑
j=1,j 6=i

Cij

)
/

(
K∑

k=1

N∑
i=1

Dk
0i +

N∑
i=1

N∑
j=1,j 6=i

Dij

)
,

where KO
1 , KO

1 , and KO
3 are exogenous parameters.

In the expressions of Ck
0i and Cij, the term associated with KO

1 is to influence

the vehicle-job assignment decision, and the term associated with KO
2 is to influence

the job acceptance/rejection decision. The rationale behind these corrective terms

is based on the following crude heuristic arguments, illustrated here for Ck
0i (the

arguments being similar for Cij):

The multiplicative term of KO
1 , i.e., D̄(oi) − D̄(lk) represents a measure of the

change in the opportunity cost for a truck moving empty from lk to oi. One can

think of D̄(a) as the average distance between a and a potential future job’s pickup

location, and is thus a measure of how isolated the point a is. If the truck moves from

lk to oi, and a new request comes when the truck is a fraction 0 ≤ θ ≤ 1 away from

its departure, its new position has an “isolation” measure of (1 − θ)D̄(lk) + θD̄(oi).

The difference between this and the isolation of the initial starting point is then

(1 − θ)
(
D̄(lk)− D̄(oi)

)
. The parameter KO

1 is exogenously chosen and partially

reflects what (1− θ) would be on average.
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The multiplicative term of KO
2 , i.e., D̄(dj)− ¯̄D represents a measure of the resulting

action of accepting job i and, after serving it up, of ending up in a location di with

an isolation measure, D̄(dj), significantly different from the one of a random point,
¯̄D. This corrective term results in penalizing remote locations, and favoring central

locations.

Finally the term γ and the associated parameter KO
3 are simply used to compen-

sate for the inflation in the other parameters in the formulation.

4 Simulation Set-up

The goal of the simulation experiments is to compare the proposed policies under

typical probabilistic settings and under various parameters. Because of the heavy

computational requirements of individual simulation runs, a full factorial experimen-

tal design is neither practical nor necessary. Therefore, the policies are tested under

several typical scenarios rather than the full range of possible occurences.

Throughout the simulation study, we assume that (i) job arrival rate λ to be

1/T INT ; (ii) pick-up and destination locations of the jobs are independent identically

distributed uniform random variables in a unit square; and (iii) TADV
i ’s, T SLK

i ’s, and

TRES
i ’s are all drawn independently from uniform distributions with mean TADV ,

T SLK , and TRES, and ranges [0, 2TADV ], [0, 2T SLK ], and [0, 2TRES], respectively.

In a unit square, the average distance between two points is approximately 0.522.

So the maximum possible service rate per truck is µ ' 1/0.522 ' 1.916 (this max-

imum service rate corresponds to a very high job arrival rate for which the empty

distance from a job’s destination to a next job’s origin can be made arbitrarily small

in expectation). We define the traffic intensity ρ to be 1/(KT INT µ). Without job

rejection, ρ should be below 1 for the system to be stable. In order to be realistic and

allow trucks to have some operational flexibility, we have chosen ρ = 0.5 as a default

value. For given values of K and ρ, the inter-arrival time for demands is chosen as

T INT = 1/(Kρµ).

Finally we assume that α = 1.0 and β = 0.2. This choice of α implies that the

cost per unit of empty distance has the same weight as the loss revenue per unit of

loaded distance. Also β = 0.2 implies that 5 units of delay would offset the revenue
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from any accepted job.

For every input parameter vector, and for every policy under investigation, we

simulate R = 10 independent runs. Each policy experiences the same 10 independent

runs. Each run starts with all trucks located at the central depot and simulates the

arrivals of n = 100 × K jobs. Let Cn,r denote the value of the function Cπ(τπ,∗
n )/n

(see (3)) that we record for the rth run. The way Cn,r is computed in our simulation

is as follows. For each truck, we have a double-precision variable ET [k] which records

the truck’s total empty travel distance at decision and job-completion epochs. For

each job i, we have a double-precision variable TCOM [i] variable which records the

job’s completion time and a binary variable REJ [i] which indicates whether this

job has been permanently rejected, at decision and job-completion epochs. When

τπ,∗
n has been reached in this rth run, it is straightforward for us to use (1) and

the three arrays of variables to calculate the corresponding Cn,r. The sample mean

AvgCost =
∑R

r=1 Cn,r/R serves as our approximation of the policy measure (4) defined

in Section 1. From extensive initial tests, we find that this number of simulated

arrivals is sufficient to guarantee steady-state behaviors and remove the effects of

initial conditions. Also, due to the option of job rejection, the actual traffic intensity

of the system is much smaller than 1 and so, for every policy and every batch of 10

independent runs, the sample variation of various results across runs stay well below

1% of their corresponding sample means.

The SE policy and the two re-optimization policies need to call CPLEX to solve

instances of the off-line problem. To guarantee robustness and timeliness of the

solutions, we limit the number of jobs involved in each optimization to a fixed upper-

bound NB (10 for the SE policy and 20 for the re-optimization policies). In order to do

this, we both limit the size of Lπ
TEMP (t) to NB−1 (if the output of an off-line problem

optimization leads to TR > NB − 1 tentatively rejected jobs, then TR − NB + 1 of

them are picked at random and permanently rejected) and, if needed consider only

few waiting jobs at the end of each queue (for the re-optimization strategies, this

is done as evenly as possible across all trucks, by keeping on average only the last

(NB − 1 − Lπ
TEMP (t))/K jobs per queue). We also limit the total amount of time

the SE and re-optimization policies spend solving each optimization problem to a

fixed TLIM (20 seconds). When the SE policy is used with N pending jobs, each
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optimization is allocated a maximum time of TLIM/(K ∗N). When a re-optimization

policy is used, each optimization is allocated a maximum time of TLIM .

Table 1 lists various values of the parameters used in our main comparisons of the

five proposed policies. The default parameter values in Table 1 are used as starting

Table 1: Values of Parameters in Main Simulation Results

K T SLK α β ρ TADV TRES

Default 10 2.0 1.0 0.2 0.5 0.0 0.0

Table 2 10 2.0 1.0 0.2 0.5 0.0 0.0

Table 3 10 2.0 0.2 1.0 0.5 0.0 0.0

Table 4 10 0.5 1.0 0.2 0.5 0.0 0.0

Figure 2 10 2.0 1.0 0.2 0.2 ∼ 0.8 0.0 0.0

Figure 3 10 2.0 1.0 0.2 0.5 0.0 ∼ 1.5 0.0

Figure 4 10 2.0 1.0 0.2 0.5 0.25 0.0 ∼ 0.375

points to find good values for the remaining parameters associated with the policies

under investigation. We find that OPTUN works best when KO
1 = 0.12, KO

2 = 0.10,

and KO
3 = 0.06. Finally, as mentioned before, for the SE and re-optimization policies,

we always let TLIM to be 20.0 seconds and NB to be 10 for SE and 20 for the re-

optimization policies.

Assuming that all these parameters are given, each simulation is now parame-

terized by a vector ( K, T SLK , α, β, ρ, TADV , TRES ). In our implementation, the

instances of the off-line problem are solved by the commercial CPLEX 6.5 solver. The

simulation source code is written in C language. All the runs have been conducted

on a Dell OptiPlex machine with a Pentium II processor.

List of all input parameters:

R: number of independent runs; Its default value: 10;

K: number of trucks; Its default value: 10;

n: number of jobs; Its default value: 100×K = 1000;

ρ: traffic intensity; Its reasonable range: 0.2 ∼ 0.8; Its default value: 0.5;

α: relative weight of cost due to empty traveling vs. cost due to job rejection; Its
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default value: 1.0;

β: relative weight of cost due to job waiting vs. cost due to job rejection; Its default

value: 0.2;

TADV : the average TADV
i ; Its reasonable range: 0 ∼ 1.5;

T SLK : the average T SLK
i ; Its default value: 2.0;

TRES: the average TRES
i ; Its default value: 0.0;

NB: maximumly-allowed number of jobs to be involved in each optimization; Its de-

fault values: 10 for the SE policy and 20 for the re-optimization policies;

TLIM : maximumly-allowed amount of optimization time to be spent during one de-

cision epoch in the SE and re-optimization policies; Its default value: 20 seconds.

5 Simulation Results

The first set of simulation experiments are performed with the default parameter

values. The results are shown in Table 2. In the table, RjcRate is the average rate of

Table 2: Performance of Policies under Typical Parameters

Policy RjcRate EmpDist DelayWt RjLDist AvgCost

BENCH 0.154 0.197 0.061 0.236 0.213

NS 0.097 0.177 0.091 0.221 0.198

SE 0.101 0.174 0.107 0.226 0.199

MYOPT 0.092 0.155 0.050 0.209 0.169

OPTUN 0.076 0.155 0.047 0.188 0.166

jobs being rejected, EmpDist is the average empty distance traveled by the trucks per

accepted job, DelayWt is the average weighted delay per accepted job, RjLDist is the

average distance of the rejected jobs, and AvgCost is the average cost incurred per

requested job. Note that AvgCost is the value of the objective minimized (expressed

on a per requested job basis), and is therefore the ultimate figure of merit in this

evaluation. Under the default parameters, the re-optimization policies appear to

outperform the more limited policies by a significant margin. The results confirm the
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value of seeking optimal solutions at each decision epoch, even when the formulation

is limited to consideration of only those loads that have already materialized.

The policies are compared under a different combination of parameter values, in

which delay time is given greater weight by increasing the value of β from 0.2 to 1.0,

and the empty distance is correspondingly de-emphasized by reducing α from 1.0 to

0.2. The results, shown in Table 3, again indicate that the re-optimization policies

outperform the local policies.

Table 3: Performance of Policies when Delay Penalty is Relatively More Important

Policy RjcRate EmpDist DelayWt RjLDist AvgCost

BENCH 0.013 0.226 0.014 0.179 0.061

NS 0.006 0.211 0.012 0.163 0.054

SE 0.006 0.210 0.012 0.087 0.054

MYOPT 0.004 0.181 0.008 0.065 0.045

OPTUN 0.004 0.180 0.007 0.064 0.043

In the next set of experiments, all parameters are kept at their default levels,

with the exception of the average time until latest pick-up T SLK , which is reduced

from 2.0 to 0.5, reflecting tighter pick-up windows and greater job urgency than the

default scenario. The results are shown in Table 4, indicating that re-optimization

policies again outperform local policies, though by a smaller margin (about 10% in

terms of AvgCost) than in the less constrained cases. The simulation experiments

shown here clearly indicate that optimization over available job requests at each

decision epoch leads to better overall (over the entire sequence of load requests)

job acceptance/rejection decisions, and shorter empty distance than the more local

strategies considered here. Under all situations considered, applying re-optimization

policies appears to produce significant savings in operating costs.

The next set of simulations examine how the policies fare under varying degrees

of relative saturation in the system, captured by the index ρ. The results are shown

in Figure 2. The most striking phenomenon here is the widening of the gap between

the respective performance of the local and re-optimization policies up to ρ = 0.7.
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Table 4: Performance of Policies when Jobs are very Urgent

Policy RjcRate EmpDist DelayWt RjLDist AvgCost

BENCH 0.168 0.194 0.162 0.251 0.231

NS 0.132 0.182 0.191 0.247 0.224

SE 0.133 0.180 0.196 0.252 0.224

MYOPT 0.122 0.166 0.170 0.228 0.203

OPTUN 0.102 0.167 0.160 0.217 0.201

When ρ increases, the average number of jobs at each decision epoch increases and

action on one job affects more jobs. Also re-optimization policies generate even better

payoffs under higher traffic intensities. Finally, the increase of ρ makes the knowledge

about future jobs more important. From the widening of the gap between OPTUN

and MYOPT in the first half of the experiment, we see that OPTUN utilize the

distributional information about jobs in a more efficient way. The jump in the average

cost under both re-optimization policies at highest saturation rate (from ρ = 0.7 to

ρ = 0.8) is due to the computational limitations imposed on the solution of individual

problem instances at each decision epoch. In fact, in these experiments (with a 20-

second limit on any problem instance), only about 14% of the optimizations reached

duality gaps within one percent.

Next, we investigate the effect of advanced information. With all other parameters

at their default levels, we vary the average time that a job is requested prior to its

earliest pick-up time, TADV . The results are shown in Figure 3. BENCH is not very

sensitive to the change of TADV . Its performance even degrades when TADV becomes

too big. This degradation can be partially explained by the fact that this policy

inserts jobs at the end of the queues, even though they could be available for pick-up

earlier than for any other jobs currently in the queues.

The performance of SE and the two re-optimization policies improve as TADV

increases. For SE, the range where TADV has a visible effect is from 0 to 0.7 and the

maximal improvement is about 3%. For the two re-optimization policies, the range

where TADV has visible effects is from 0 to 1.0 and the maximal improvements are
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Figure 2: Performance of Policies when ρ is varying
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about 10%.

Finally, we conduct another simulation to study the effect of TRES. In this sim-

ulation, all the parameters stay typical, except that we let TADV = 0.25 and TRES

vary. The results are shown in Figure 4.

By definition, BENCH is not affected by TRES at all since its decisions are made

permanently at job arrival epochs. For all other policies, changes brought by the

varying TRES are visible yet not remarkable.

6 Concluding Remarks

In this paper, we have introduced and studied a generic real-time truckload pick-up

and delivery problem in a very general framework in which various costs due to job

rejection, empty travel of trucks and delay time of job completions are taken into

considerations. The framework also facilitates investigation of the value of advanced

information.

We have evaluated several rolling-horizon policies based on various heuristics ei-

ther previously introduced in the literature, or proposed here for the first time. We

found that the policies based on fully optimizing the off-line model of the problem

perform very competitively with other policies under typical cost structures. The best

policy we found is the one that takes some future job distribution into consideration.

We also found that advanced information is very useful for some of the policies.

We think future research should concentrate on the search for better policies that

utilize some information about future jobs more efficiently. From the improvement of

OPTUN over MYOPT, we believe that there is still much potential for progress left

uncovered.
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