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Summary

The multi-level approach to the design of an
automatic control system of a large power system
or interconnected power systems was described in
a previous paperl by one of the authors. The
mlti-level approach breaks down the overall prob-
lem into several sub-problems, the solutions of
vwhich are then coordinated to achieve the desired
overall objective, 1In the paper referred to, one
of the sub-problems identified is that of optimi-
zing control, The present paper presents the for=-
mlation of the optimizing problem and, in parti-
cular, that of the emergency operating state, The
application of mathematical programming techniques
which have been found to be highly successful in
other fields is described, The optimizing model
is seen to be one which may be applied with minor
mdifications to other optimizing problems in
electrical operation and in system planning,

Introduction

The design considerations for a control sys-
tem whose overall objective is the reliable oper-
ation of the generation-transmission system were
described in the paper, "The Adaptive Reliability
Control System"”.l 1In order to establish the sub-
ject matter of the present paper in the context
of the total plan, we will first briefly summarize
the salient features of the control structure des-
cribed in the previous paper,

Electrical operation is viewed as a series
of control actions which may be decomposed time-
vise, into three operating states, designated as:
preventive; emergency; and restorative,

In the preventive operating state, the de-
mnds of all customers are being satisfied at
standard frequency and voltage, The control ob-
jective is to continue indefinitely the complete
satisfaction of all customer demand at minimum
cost,

In the emergency operating state, certain
constraints are being violated, The control ob-
jective is to take the necessary corrective action
80 as to meet all the constraints while supplying
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as much customer demand as possible,

In the restorative operating state, service
to some customers has been lost. The control ob~
jective is to return to the complete satisfaction
of all customer demands in a minimum time,

The mechanism for carrying out the control
objective in each state is a hierarchy of three
control levels, namely: direct control; optimi-
zing control; and adaptive control,

At the direct control level, high-speed de-
cisions are performed using logic processes and
the necessary control actions are carried out
directly, The direct control level will be lo-
cated predominantly at local points within the Sys-
tem with a minimum of simple logic decisions to be
done at the control center, Whether done locally
or centrally the distinguishing features of direct
control are its high-speed and the use of logic
programming, The direct control level is, how-
ever, subject to instructions from the upper
levels,

The optimizing control level solves for the
"best' control decisions using a mathematical
model of the operating state and an appropriate
criterion for optimim performance, All optimizing
control decisions would be done on a central com-
puter, Characteristic of the optimizing control
is its relatively slower-speed of decision-making
and the use of mathematical programming,

The adaptive control level determines and ad-
justs the settings, parameters, criteria, and log-
ic used in the first and second levels, Whereas
both the direct control and optimizing control are
automatic, the adaptive control level is a man-
machine combination with the system operator play-
ing an active part., The operator would be aided
as much as possible by information displays, re-
ports, and off-line calculations,

The various control functions required for
each of these levels and for each of the operating
states will be coordinated so as to achieve the



overall objective of service reliability,

Research and engineering work is continuing
at Cleveland Electric Illuminating Company on the
development of the control system briefly des~
cribed above and in more detail in reference 1,
The control system is referred to as ARCS,

The present paper is a discussion of the op-
timizing control in the emergency operating state,
The mathematical model is developed in general
terms to demonstrate the techniques used, These
techniques have been known and tried in optimiza-
tion problems in other fields but are not too well-
known to computer application engineers in the
power industry, Thus the purpose of this paper is
two-fold:

1. To present in more detail the optimizing
control function in the ARCS multi-level struc-
ture;

2, To acquaint power engineers working on
optimization problems with some of the available
techniques which have been tried in connection
with the ARCS project,

The Optimizing Problem

An optimizing problem is generally of the
form:

find the vector x* which minimizes £(x) (1)

subject to gy (x) >0, (1 =1,2,,,.,m)

hy (%) ﬁrO, (i=1,2,...,p).

x = (X],%p,...,X,)" 1s
the vector of decision variables (the superscript
T denoting transposition). f(xX) is a measure of
performance and will be referred to as the objec-
tive function, .

For the optimizing problems of the generation-
tra¥smission system, the vector, V = (V1,Vy,...,
V,)", of the complex voltages at all active busses
may be taken as the vector of decision variables,

The inequality and equality constraints re-
sult from the requirements of service continuity
which all solutions to the optimizing problems
should satisfy, These constraints are:

1., Electric network laws

2, Real and reactive power demands at load

busses

3. Real and reactive limits at generator

busses

4, Real and reactive limits at interconnec-
tion busses
Voltage limits at generator busses
Voltage limits at load busses
Thermal ratings of lines and equipment
Stability limits
System security constraints
Set of miscellaneous equality constraints

.
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If it is assumed that the equality constraints,

hy(v) =0, (i =1,2,.,.,p), may be satisfied to
within a certain tolerance, then these constraints
can be expressed as inequalities, The optimizing
problem then becomes:
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find the vector V¥ of complex {i
voltages which minimizes f(V) subject

to gi(V) » 0, (i =1,2,.,.Y) where Y

is the total number of inequalities,

In the preventive operating state, the objece
tive function, £(V), is the total operating cost,
In the emergency operating state, the objective
function is the negative of the sum of active
powers supplied to the loads, (It should be re-
called from reference 1 that the emergency condi-
tions we are concerned with in the optimizing cone
trol level is one involving thermal overloads andf
or low voltage conditions, Cases of instability
or reduced frequency operation would be problems
to be resolved at the direct control level,)

It is evident that the objective function and
most of the constraints are non-linear functions
of V. 1If there were no constraints, the solution
for a minimum of f(v) could be found very effi-
ciently by applying one of several powerful
methods2,3,4 for unconstrained minimization of a
non-linear function:

Hence if we transform the original constrained
problem to one without constraints we would be able
to take advantage of unconstrained minimization of
a non-linear function,

Unconstrained Minimization

In the general case, minimization methods for
non-linear functions can at best find local mini-
ma, To find a local minimum of a function, f(x),
a first-order gradient method is generally very
slow, Second~order gradient methods, i,e,, methods
which make use of second derivatives of the func-
tion, are far more efficient, Among these are the
so-called "conjugate direction" methods2,3,%4,
These methods are noteworthy in that the second
derivatives are not explicitly calculated, In
fact, one of the methods’ uses no derivatives at
all, The details of these methods are well pre-
sented in the reference literature, The method
which has been tried on our optimization problem
is that due to Fletcher and Powell?,

The algorithm used in the Fletcher-Powell
method for finding a local minimum of f£(x) is as

follows:
1. Let x; be the starting point of the

(L + 1)th step.
2, Calculate the gradient, VEf(xi)
3. Calculate direction of descent,
Si = -Hin(Xi)
H, is the unit matrix and
Hy 41 = Hy + A3 + By
(A{ and Bj are defined below)
4, Findod > 0, such that £(x; + X;8;)
is a minimum
5. Repeat 1-4 and stop when
Jfx+ 1 - £(x)] < &

Starting with the unit matrix for i = 0, H;
remains a symmetric, positive matrix with A; and
B; given as:
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B =
: YiTHiYi

Yi =Vf(xi + 1) ‘Vf(xi)

Single-Dimensional Minimization

For step 4 of the Fletcher-Powell algorithm,
various methods are available for finding the step
length along the direction §; that minimizes the
value of f(%y + ®iS;). This is a one-dimensional
minimization problem and the techniques widely
used are either an interpolative procedure or a
systematic search such as the Fibonacci method,>
In our application we use the interpolative tech-
nique using quadratic approximation to the funce
tion f(xi-+°(isi). Fletcher and Powell in their
paper2 used a cubic interpolation.

The Penalty Function Formulation

Let us now consider the transformation of the
original problem of minimizing f(V) subject to in-
equality constraints to an unconstrained minimi-
zation, The method that we will use is known as
the penalty function technique, Basically the
idea is to form a new function:

F=f£f"4p
where f' is the original objective function or
a variant of it and p is the so-called ""penalty
function", p is, in general, a linear combination
of penalty terms each of which is a function of
one of the constraints, Each constraint is thus
represented by one term in the penalty function,

Consider the following formulation, which is
due to Fiacco and McCormick:6

Y
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where the parameter, r > 0,

Here the original function is combined with

the penalty function, p = r = E;?VT to form
the new function, F, Suppose we find a point Vg
which is feasible, i.e., g5(Vy) > 0 for all i,
This means that Vo is strictly in the interior of
the constraint space, For some initial value

r; > 0 of the parameter r, and starting with the
feasible point Vo, we find the point V1 which
minimizes the function F(V,r;). The minimization
of F(V,ry) is unconstrained and we can apply the
Fletcher-Powell method, It will be noted that in
the Fiacco-McCormick formulation, equation 3),
one or more of the penalty terms I/gi(V) will in-
crease very rapidly whenever the poinit V tends to
approach the constraint surface and p becomes in-
finite at the boundary, Thus in finding the mini-
mizing Visthe constraints will remain satisfied
as the minimum of F(V,r1) would be expected to
stay within the boundary of the constraint space,
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For a sequence of values of r,ry > 1r) >
el Ty > 0 the process of unconstrained minimiza-
tions is repeated,yielding a sequence of decision
vectors Vi, V,, ... Vy each of which is inside
the constraint space, Since the value of r is
being reduced at each step the penalty is gradu-
ally being reduced., As would be expected, the
minimum of F(V,r) would approach the minimum of
£(V) as r approaches zero. The solution towards
the desired minimum via a sequence of unconstrain-
ed minimizations is the essence of the Fiacco~
McCormick method. 1In practice the sequence is
stopped by suitable stopping criteria,

In general it will be rather unusual to make
a choice for the starting point Vo, which is
feasible, Fiacco and McCormick point out that
any violated constraint can be satisfied by ap-
plication of the method itself.6 For instance
let g (V) < O be the violated constraint, Apply
the Fiacco-McCormick method to the problem where
-8 (V) is the objective function and the penalty
terms are made up of all the satisfied constraints
This procedure is applied to each of the vicolated
constraints until all constraints are satisfied,

The process described for finding a feasible
point has been applied successfully to a power
system problem,

The Emergency State Optimizing Model

Let G = set of generator busses
I = set of interconnection busses
L = set of load busses
P = set of passive busses
Vi = voltage at bus k
Sy = complex power into bus k,keéG,I,L
Ay = MVA limit at bus k,ke€G,I
By = voltage limit at bus k,keG,I
Cy, = voltage limit at bus k,keL
D, = complex power demand at bus k,ke& L
Tij = thermal limit of branch i,]
Re(X) = real part of complex number X
Im(X) = imaginary part of complex number X

Y = admittance matrix of active busses
In the emergency operating state the opti-
mizing problem is:
find the vector V¥ which minimizes

£V = -2 Re (S, )

keL
subject to:
A - (Sl >0 VvV keég,1
Re(Sk) - Re(Dk) >0 v kel
By = Vil 20 v keg,I
[Vl - ¢G>0 v kel
Re(Sy) > O Y keG
Im(Sy) 3 0 vV keG
-Re(8,)"> 0 vV k€L
~Im(S,) 3 0 Vv k€L
Tij - | V4 - Vj‘ >0 i,j are

extremities of
given branch

Im(Sy) - Re(Sy) * Im(D)Re(D) = 0 kel



Other constraints may be added as required by
the specific network under consideration,

The complex powers appearing in the above
equations are expressed in terms of voltages at
the active busses according to the fundamental
relationship:

Sk="k‘,Z Vi

ieG,I,L

If the total number of active busses is N
then the total number of variables in our problem
is 2N since the voltages are complex numbers,

V¥ keG,I,L

A summary of the computational algorithm fol-
lowing the Fiacco~McCormick technique is as
follows:

1. Select a starting point VO which is
feasible, If initial choice is not
feasible, go to the feasibility rou-
tine which finds a feasible point by
repeated application of the method

itself,

2. Select initial value of r by the
equation:7
r; = -VEEWOT Ve v),/(Ip (VOO 2

3, Minimize F(V,rj) by Fletcher-Powell
method gor value of r = T,

4. 1f [fwEF 1y - fvDl < g, check if

[vei+ D -veEh) <g,. If not, or
if et vl - oseh) > €,
reduce r so that riy 41 =C - r;

where C is an arbitrary constant, and
go back to step 3,

Results and Counclusions

A Fortran IV program has been written for 30
active busses, The number of passive busses may
be as high as 75, This program takes up approxi-
mately 24,000 words of core memory., This program
is made up of several sub-programs,the most im~
portant of which are:

1. Routine for finding a feasible starting

point

2, Constraint calculations

3. Gradient calculations

4, Fletcher-Powell minimization
The entire program has been tried successfully for
a sample problem of seven active busses with an
initial non-feasible voltage input. The program
is being tested for the Cleveland Electric Illumi-
nating Company system which consists of 24 active
and 56 passive busses,

Non-linear programming techniques for power
system optimization problems is of great value for
electrical operation and svstem planning.
the present work is on the emergency model formu-
lation,near-future applications of the method
described in this paper are contemplated for the
following problems:

1. Economic watt and var dispatch subject

to non-linear constraints

2, Ordinary load flow program

3., Load flow for most economic dispatch

subject to constraints

Although
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Optimal load flow where certain para-
meters are to be minimized or maximized,
For example, losses may be minimized or
it may be desired to determine the maxi-
mum import from the interconnection with-
out violating constraints,
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