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1. In t roduct ion  

I n   t h i s   p a p e r  I would l i k e   t o   g i v e  a 
ve ry   pa r t i a l   accoun t  of i n t e g r a t i o n   t h e o r y   i n  
Hi lber t   space   and   re la ted   ques t ions   o f   abso l -  
u te   cont inui ty   which  may be  important  in  prob- 
lems of   s tochas t i c   r ea l i za t ion   t heo ry ,   l i nea r  
and   non- l inear   f i l t e r ing ,   de tec t ion   theory   and  
quantum  communication  theory.  This  theory is 
l a rge ly   t he   c r ea t ion   o f  I .E .  Segal  and  his 
former  students,  notably  Gross  and  Nelson. The 
need for   such  a theory  arose  for   the  purpose  of  
pu t t i ng  quantum f i e ld   t heo ry   on  a r igorous  
mathematical   basis .  The theory has a d i s t i n c t  
a lgebraic   character   and I be l ieve  is  par t icu-  
la r ly   su i ted   to   the   needs   o f   s tochas t ic   sys tem 
theory.  An account of t h i s   a lgeb ra i c   app roach  
may be  found i n  SEGAL-KUNZE [ l ]  , SEGAL ( [ 11 and 
the   b ib l iography  c i ted   there) .   This   theoiy  is 
d i f f e ren t   f rom  the  work  of the  Russian  school  
( c f .  GELFAND-VILENKIN) i n   t h e   s e n s e   t h a t  
essent ia l ly   Hi lber t   space   t echniques   a re   used  
and in   gene ra l   one  works  with "weak" processes  
as opposed t o   " s t r i c t "   p r o c e s s e s .  In t h i s   t h e o r y  
non-linear  functions of processes  can  be  handled 
and i n   p a r t i c u l a r   c e r t a i n   n o n - l i n e a r   f u n c t i o n a l s  
of white  noise  can  be  given  mathematical  meaning. 
The other   approach  to  some of   these  quest ions i s  
due   t o  GROSS ( c f .  GROSS [ l ] ,   [ 2 ]  and  the  bibl io-  
graphy  c i ted  therein)   where a countably  addi t ive 
"extension"  on a separable  Banach space of t h e  
finitely-additive  Gaussian  measure on a Hi lbe r t  
space is  obtained.  These  ideas  have  recently 
been  modified  and  developed by Balakrishnan 
( c f .   f o r  example BALAKRISHNAN [ l ] ,   [ 2 ] )   i n  a 
series of pape r s   r e l a t ed   t o   de t ec t ion   and   f i l t e r -  
ing  theory.  

2.  Segal-Gross  Theory  of Weak Processes  

It is a known f a c t   t h a t   t h e r e  is  no analog 
of  Lebesgue  measure ( i . e .  a countably  addi t ive 
measure  which is  t r a n s l a t i o n  and nota t ion   in -  
va r i an t )   on   an   i n f in i t e   d imens iona l   H i lbe r t  
space .   In   f ac t  no such  measure exists even when 
invar iance  is relaxed  to   quasi- invariance.   Such 
an  "invariant"  measure however e x i s t s   i f  we do 
n o t   i n s i s t  on coun tab le   add i t iv i ty .  
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* Let V be a real topological   vector   space,  
V i ts topological*dual  and l e t  <.,.> deno te   t he  
pa i r ing  of V and V . A tame set is a set C of 
the  form 

(2.1) C = {x€Vv( (<x,yl>, ... <x,y,>) E A) 

where A is a Borel set i n  Rn and y EV*, j = 1 , 2 , .  .a 
I f  K is a f in i t e   d imens iona l  j subspace  of V* 

containing yl, . . . ,y   then  C is  s a i d   t o   b e  
on K. The c o l l e c t i h  of tame sets based  on K 
is a O-ring. Let R = 8% be the   r i ng   gene ra t ed  

by (%)KcV* 

is a tame set measure i f  
A don-iegative set func t ion  p defined  on R 

1 )  P(V) = 1 * 
2) V f in i te   d imens iona l   subspace  K C V  , is 

countably  addi t ive when r e s t r i c t e d   t o   t h e  U-ring 

An equivalent   concept  is that of a weak sK. 

d i s t r i b u t i o n .  Let M = (n,A,P)  be a p robab i l i t y  
space. A weak d i s t r i b u t i o n  on is an  equival-  
ence   c l a s s ,   o f   l i nea r  maps F : . v ' +  RV(~ ,A,P) .  TWO 
such maps a r e * e q u i v a l e n t   i f   f o r  any f i n i t e  set 
yl,  ...,y, E V , t h e   j o i n t   d i s t r i b u t i o n  of 
F (y  ),...,F.  (y ) i n  En i s  t h e  same f o r  j = 1,2 .  
j 'A tame'funztion F on V is one  of  the  form 

containing  yl , .  . . ,y  then F is: sa$d to   be   based  on K. 
Let H be a rea? Hilbert   space.   For C a 

tame subset  of V based on K, de f ine  
-n - 

(2.2).  p(C) = (2s)  2 4 exp (-- 
where A is  a B o r e l   s e t   i n  K and n = dim K. It 
is  poss ib l e   t o   en l a rge  H and ob ta in  a countably 
addi t ive  measure on a l a rge r   space  which is  i n  
a sense  an  extension  of .  p .  

f in i t e   d imens iona l   p ro j ec t ion  P .   L e t  9 be   the  
r e s t r i c t i o n  of f t o  F = Range (PI. Then 4 i s  
Borel  measurable on F and-n 

(2.3) JHf (x)dp(x) = (2a) *JF 9(x)esp (- 7 ) d x  

where n = dim(F). 

func t ions  on H toge the r   w i th   t he i r   un i fo rm  l imi t s  
The integral   defined  in.   (2.3)-  can  be-  extended  to 
a l l  of A as a cont inuous  l inear   funct ional   which 

L e t   f ( x )  = f (Px)   be  a tame f u n c t i o n   f o r  some 

- 11x1 l 2  

Let A . =  algebra  of bounded  complex-valued 



we denote  by E(f ) .  A ' I q - a l g e b r a   w i t h   u n i t  
i n   t h e  supnorm  and  hence A - C(x)-for some com- 
pact  Hausdorff  space X. Let  f * f be this iso-  
morphism.  Moreover E is a con t inuous   pos i t i ve  
l i n e a r   f u n c t i o n  on A and  hence by the  Riesz  re-  
presentation  theorem 

E(f )  = f f dm , where m in t h i s   c a s e  is  x 
probabili ty  measure.  The ismor  hism f * f can  be 
extended t o  tame f u n c t i o n s   i n  L (H,P) by dens i ty  
such   tha t  (fg): = f g .  Hence i f  f = char . fn . (A),  
A a tame s e t ,  f is  cha rac t e r i s t i c   func t ion   o f  
some measurable set A and  p(A) = m(A). Using  the 
Gelfand  Transform, we can see t h a t   f o r  f E A ,  f 
is an  extension  of  f from H t o   a l l  of X. Now A 
and i n   f a c t  H is such   tha t  m(H) 0. 

ous   l i nea r   func t iona l s   on  H a r e   i n   ~ 2 ( ~ , p ) .  TO 

t he   l i nea r   func t iona l   de t e rmined  by  y t h e r e  
c r responds a measurable   F(y)( . )  on X. F : H + 

L (X,m) is  norm-preserving. It can  be shown 
(1) t h a t   t h e  y p  F completely  det_ermines  the 
ex tens ion  f ++ f ,  (2)  t h e  map f  f can  be ex- 
t e n d e d   t o   a l l  tame functions  and ( 3 )  = 
$(F(y ) ,..., F(y 1) where f ( x )  = $ 6 , ~ ~ )  ,...., 
(x,yn\). The fEnct ions  F(  ) on X are normally 
d is t r ibu ted   wi th   var iance   T ly l  1 '  and  yl, ..., yn 
are   o r thogonal ,   then   F(y l )  ,..., F(y ) are in-  
dependent. More conc re t e   r ea l i za t lons   o f  H 
and  the  measure  space (X,m) can  be  obtained,  
f o r  example 
a)  where H = k2, X = R , m the  product  measure 
corresponding  to  Gauss  measure on each  coordin- 
a t e ,  b) H = Hq0,1) ,  X = C(0, l )   wi th  m = Wiener 
measure. However it can  be  easily  proved  that  
these   var ious   ex tens ions   a re   a l l   measure   theo-  
r e t i ca l ly   i somorph ic .  

9 

Let H be   i den t i f i ed   w i th  H . The continu- 
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3 .  Abst rac t  Wiener  Spaces 
and Absolute  Continuity 

The discussion  above  could  be  formalized 
us ing   t he   i deas  of Abstract  Wiener  Space  due t o  
Gross. 

Let H be a Hi lber t   space   and   le t  p be   the  
tame  measure  given by ( 2 . 2 ) .  A measurable now 
on H is  a  norm I I * I 1 such   tha t  W E > 0, 3 f i n i t e  
dimensional   project ion Po such   tha t  V f i n i t e  
dimensional P A  Po, 

Let E = completion of H w i th   r e spec t   t o  
1 1 * I 1 . E is  a Banach space. The canonical  
embed$* i : H + E  is  compact.  Identifying H 
and H , we ob ta in  by d u a l i t y   t h e  embeddings 

E*-H* = H W E  
i* i 

E* can   be   ident i f ied   wi th  its image i n  H and 
H with its image i n  E.  The measure p has a 
countably  addi t ive  extension p on  the  bore1 
f i e l d s  of E. The t r i p l e   ( i , H , E )  is  c a l l e d  
Wiener s a c e  and p Wiener  measure on E.  

NO:. E* would-be  interpreted as func t ions  
on E belongizg  to  LL(E,p)  and  their  L2-norm 
e u a l s   t h e  H norm.  Hence t h e   c l o s u r e  of E* i n  
L 9 (E,p)   can  be  ident i f ied  with H*. I f  e E H*, 

-. - . . , - 

we denote  by the  corresponding random va r i ab le  
on E. Let  P be a f in i te   d imens iona l   o r thogonal  
p ro jec t ion  on H such that n 

Px = 1 <ei,x> ei, (e,) 
i=1 - 

orthonormal. i n  H, then P ='I ei de f ines  a ran- 

dom v a r i a b l e  on E wi th   va lues  in H. 

space F determines a random va r i ab le  f on E with 
v a l u e s   i n  F i f   f o r  any  sequence  of f i n i t e  dimen- 
s i o n a l   p r o j e c t i o n  P * I s t rong ly  ;n H t h e  se- 
quence  of random vaeiables   fop + f i n  measure 
p on E. 

i=l 

A func t ion  f on H wi th   va lues   in -a  Banach 

n 

Some Pre l iminar ies  

Let H be a r ea l   H i lbe r t   space   and  l e t  L(H) 
denote   the   space  of  bounded l i n e a r   o p e r a t o r s  on 
H. Let  I denote   the  Banach s ace of nuc lear  
opera tors  1 on H under   the norm T l K l  = tr[(K*KF]. 
1 is a *-ideal i n  L(H). L e t  1, denote   the Banach 
space  of  Hilbert   Schmidt  operators on H wi th  norm 

L(H) - I 1 KI I = [tr(K*K) 14. I2 is  a l s o  a *- idea l   in  

1 

I f  K & 11, t h e  Fredholm  detgrminant of 
(I+K) is  def ined by d e t  (I*) = TI (l+Xi) where 

t h e  h+ are the  e igenvalues   of  K coun ted   v i th   t he i r  
m u l t i p l i c i t i e s .   I f  K E 1 t h e  Carleman  Fredholm 
determinant  of I+K is de&ed  by  6(I+K) = 
G1 (l+i.)e-*i.  det (I+K) is  an   ana ly t i c   func t ion  
on I1 d d  &(I+K) is an   ana ly t i c   func t ion  on I,. 

i= 1 

Prel iminary Leaanes 
' 0  

The fol lowing lemmes follow  from  the work  of 
Gross  (cf . GROSS[ 1 ] ) . 
Lema 3.1 Let K-E L(H).  Then K determines a 
random va r i ab le  K on E wi th   va lues  in E. 
Lema 3.2  Let Pn be a family  of  orthogonal pro- 
jec t ions_converg lng   to  I s t rongly .  Let K E I,. 
Then IK0P ) is a Cauchy sequence i n  L2 (E ,p;H) and 
Prob(KE 4 = 1. 

Suppose K E 12. Then in genera l  <Kx,x> 
and  Tr(K)  need  not exist. However <Kx,x> - Tr(K) 
can  be  given a meaning as a real random va r i ab le  
on E v i a   s t o c h a s t i c   e x t e n s i o n .  

I n   f a c t ,   f o r   c e r t a i n   n o n - l i n e a r   o p e r a t o r s  
K : E -+ H <&,x> - trK can   be   ident i f ied  as a 
random var iab le .   In  t'he above K is continuous 
and its &derivative  (defined  below) K is  
Hilbert-Schmidt. 

F Banach i s  H-continuous a t  x E U i f   t h e   f u n c t i o n  
g(h)  = f(x+h)  defined on (U\{xj) n H is cont in-  
uous a t   t h e   o r i g i n   i n   t h e   i n d u c e d   ( H i l b e r t )   t o p -  
ology. f is H-different iable  a t  x i f  g is Fr6ch- 
et  d i f f e r e n t i a b l e  a t  t h e   o r i g i n  in H. It can 
then  be shown (cf .  RAWER). 
Proposi t ion:  Let UC E be  open  and l e t  K : U + E 
be   such   t ha t   ( i )  K(U) c H, ( i i )   the   H-der iva t ive  
a t   x ,  K : U + L(H,E) is continuous  and  Hilbert- 
Schmidt? L e t  (en)nEN  be  an  orthonormal  basis i n  

X 

Let U C E be  open. A func t ion  f : U + F, 

n .. 
H such   tha t  e i E  E*, W i. Let Pn = 1 ei @ ei : 

E + E . Then 
* i=l 

1013 



a Cauchy sequence in L ' ( E , ~ ) .  
(ii) There exists a subsequence (q) such   tha t  
Ca (x).) converges a h s t  everywhere on u t o  

a random var iab le   on  U. Denoting t h i s  random 
v a r i a b l e  by <Kx,x> - trKxp if (%) is any 

other  sequence  for  which (a (x ) )  is Cauchy 

a.e., then a (x) * <Kx,x> - t r K  a.e. 

( i i i )  <I&,* - t r K I  does not depend  on t h e  

9 
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choice  of   basis  (eiT in H. 
i E N  

Absolute  Continuity and Computation 
of t h e  Radon-Nikodym Der iva t ive  

Case I (Trans l a t i a t )  

Theorem 3 . 1  (Segal) 
Let  ( i ,H,E)  be  an  abstract  Wiener  Space 

and l e t  p  be  s tandard Wiener preasure on E. L e t  
e E E and l e t  Te : E * E : x I+ x + e. Then the  

transformed  measure  p 1 and  p are mutually ab- 
so lu t e ly   con t inuous   i f  &d o n l y   i f  e E I. The 
R - N d e r i v a t i v e  of p l   w i t h   r e s p   c t   t o   p  is 
t h e  random v a r i a b l e  let 1 

exp (-G - 7 - 
Remark: 

I f  E = C(0,l; p ) where p denotes Wiener 
measure  then H = H1(8,1; &I., d e  Sobolev space 
with  Gaussian  measure. 

C a s e  11 (Linear  Transformation) 

Theorem 3.2 (Segal-Feldman) 

and  p  standard Wwer measure. Let q  be a &us- 
sfan n=a6ure on E with  covariance Q. Then p and 9 
are e i t h e r   m u t u a l l y   s i n g u l a r   o r   m t u a l l y  ab- 
so lu te ly   cont inous .  They are mutually  absol- 
utely  cont inuous if am& o n l y   i f   t h e r e  exists a 
K €1 s y r a e t r i c ,   s u c h   t h a t   t h e   q u a d r a t i c  
form&) on E* is of t h e  form Qix) = <(I+K)xg>. 
The R - N d e r i v a t i v e  of Q w l t h   r e s o e c t   t o  D i s  

m" 

L e t  (i,H,E)  be an a b s t r a c t  Wiener  Space 

the  random v a r i a b l e  on E 'given by 
( ~ ~ + 1 ) +  exphAi(Ai+l) -1- ei 2 1. a 

is1 

It is p o s s i b l e   t o  use Theorem 3.2 t o   p rove  
Theorem 3.3 

L e t  (i,H.E) be a b s t r a c t  Wiener Space and 
let p  be  the  s tandard Wiener  measure bn E. Let. 
T = I + K b e   a n   i n v e r t i b l e  linear transformaticn 
cm E with  K E L(E,H). Then K I H  E I2 and (K1,)- = 

K. Then t h e  R - N der iva t ive   o f  the transZormed 
measure  pf  with  respect  to p is given by 

)6(T)lexp[-(<Rx,x> - trK) - 4IKxl 1 a.e. 2 

The a f f i n e  case could ncm be  proved  using 
Theorem 3.1. There is a non-l inear   vers ion of 
Theorem 3.3.  

Theorem 3.4 (Ramer) 
L e t  (i,H,E) b e   a n   a b s t r a c t  Wiener Space  and 

p  be  s tandard Wiener  measure on E. L e t  U C  E be  
open  and let  T : I + K : U -P E be a continuous 
non-l inear   t ransformation  such that 
(i) T is a homeomorphism  of U onto  an open 
subset  of E. 
( i i )  K(U)C E and K : U + H is continuous. 
( i i i )  For  each  x E U p  t he   I -de r iva t ive  of K at  
x, K exists, is Hilbert-Schmidt  and Kx : U + I 2  
is continuous  and I + K is i n v e r t i b l e .  

X 

H x  
Then p  and  the  transformed  measure pT are 

mutually  absolutely  continuous as measures on U. 
The R - N der iva t ive   o f  pT w i t h   r e s p e c t   t o   p  is 
given by 

Remarks : 
(i) As mentioned earlier <Kx,x> - tr(Kx) is a 
random va r i ab le .  It is i n t r i g u i n g   t o  see t h e  
appearance of the   t e rm  t r (K ) which bea r s  a 
s t r iking  resemblance  to   the%ong-Zakai   correct ion 
term r e l a t i n g   t h e   I t o  and  Stratanovich  integral .  
( t i )  .Consider  the Kah F i l t e r i n g  problem 

dxt = Fxtdt + Gdw, 
dyt = €lxtdt + dqt , where w and P are t t 

standard Wiener processes  assumed to   be  inde-  
pendent. 

s e n t a t i o n  
Then  by passing  to   the  Innovat ions  Repre-  

dyt = Gtdt .+ dv 
t 

w h e p  gg E<xt]F>  and vt is the  Innovat ions 

Process (which is a. s tandard Wiener process) 
and no t ing   t ha t  

Xt =&K(t,s)dvs,   with 

K(. , .)  E L ( I O , ~ I X [ O , ~ I ;   L ( R P ; F P J ) . , - ~ ~  are in 

p r e s a t a i o n  f- :the R - N der iva t ive   could  be 
o b t a i w d  by  invoking  the Krein Fac to r i za t ion  
Theorem in conjunction  with Theorem 3.3, Xef .  
HITSUDA where the   reverse   p rocess  %E 8 6 1 1 m d J .  

4. The Free Quantum Fleld  and Kalman F i l t e r i n g  

2 

t h e   s i t - t h n  .of Theomm 3.3. A "causal" re- 

IU the   p rev ious   sec t ion  we have  indicated 
hov s t a r t i n g  from a H i l b e r t   s p a c e   H s i t h  Gauss 
measure of un i t   va r i ance   n  on i t  we can. C u n s t m C t '  
a Banach space  E and a measure-p  which is count- 
ab ly   addi t ive  on the   bo re1   s e t so f  E such LI is an 
extene2on of n   i n  a c e r r a i n  precise sense.  In- 
t e g r a t i o n  of funct ions 011 B and quest ions of  ab- 
so lu t e   con t imdq   can   be   answered  by passing-  
.CQ &e Banach space by a n   a p p r o p r i a t e   s t o c b s t i c  
a t e n s i o n .  There is a  purely  HilberL-space 
po in t  of  view  due to  Segal  which may t u r n  Out t o  
be more important for the  needs  of  System  Theory. 
D~~ t o   b & - o f  space we  do not  give a d e t a i l e d  
-mi t ion   o f   t h i s   t heo ry   he re .   Th i s   t heo ry  



needed  to  show  the  equivalence  of  various  repre- 
sentations  of  the  free  quantum  f  ieldl  viz. 
(i)  The  particle  representation  which  involves 
the  syaretric  tensor  products  of  a  complex  Eil- 
bert  space  H  with  itself,  (ii)  the  wave  repre- 
sentation  (functional  integration)  in  the  space 
L2(H')  of a  real  part  of  H  and  (iii)  the  complex- 
wave  representation  in  which  a  space  K  of  entire 
anti-holowrphic  functions  on  H  are  involved. 
The  intertwining  operators  between  the  various 
representations  requires  absolute  continuity  con- 
siderations  and  the  use  of  the  Fourier-Wiener 
Transform.  Mathematically,  the  field is diag- 
onalized  in  the  functional  integration  repre- 
sentation  whereas  the  particle  numbers  are  diag- 
onalized in.the tensor  product  representation. 
In the  complex  wave  representation  the  creation 
operators  achieve  a  kind  of  diagonalization. 

Brockett  (cf. BROCKElT) has  recently  shown 
that  the  group  with 4 generators 8, P, Q, E with 
the  coamutation  relations 

[H,P]  -Q , [H,Q]  P  ,[P,Q] = E  with 
the  rest  zero  plays  an  important  role  in Kalman 
Filtering  theory.  This  group  has  been  called 
the  Harmonic  Oscillator  Group (cf. STREATW). 
The  group  generated  by P, Q, E,  the  Heisenberg 
group,  is  a  subgroup  of  the  oscillator  group. 
The  oscillator  group  is  not  nilpotent  but  solu- 
able.  Streater  has  obtained  all  the  continuous 
unitary  irreducible  representations  of  the  Har- 
monic  Oscillator  group.  He  shows  that  if  complex 
Lie  algebras  are  allowed  then  one  can  obtain  the 
Bargmann-Segal  representation  of  the  harmonic 
oscillator  by  holomorphic  functions  using  the 
technique  of  Kirilov. In this  representation  the 
creation  operator C(z) 'is multiplication  by z 
and  the  annhilation  operator a 

C * ( Z )  is z . 
Segal  (cf. S E W  [ 2 ] ) has  explicitly  given  the 
intertwining  operators  between  the  holomorphic 
and  real  representations. It would  thus  appear 
that  the  Zakai  equations  for the unnormalized 
conditional  density  corresponding  to  the Kalman 
filtering  prablem.defines  a  "field"  which  is  an- 
alogous 'tu the  "free  quantum  field". 
Definition: 

A  concrete  free  Boson  field  over  a  niven 
complex  Hilbert  space  H,  denoted  as  @(a) I s  a 
quadruple (K,W,T,V) consisting  of 

(i)  a  complex  Hilbert  space K,  
(ii) A continuous  mapping z W(z) : H + U(K), 
the  space  of  unitary  operators  on  K  satisfying 
the  Weyl  relations 

i 
2 W(z)W(z') = e-(- Im<z,z'>W(z+z'), VZ,Z'EH, 

(iii) A continuous  representation i- from 
U(H) + U(K) satisfying 

r(u)w(z)r(u)-l = w(uz) ,vu E u(H), z E E 

1. The  free  quantum  field  is  an  infinite  assem- 
bly  of  non-interacting  harmonic  oscillators. 

(iv)  A  unit  vector  v E K having  the  properties 
that  r(U)v = v VU E U(H)  and  W(z)v, z E H 
span  K  topologically 
(v)  is  positive  in  the  sense  that  if  A is 
any  positive  self-adjoint  operator on H, then 
dr(A)  is  positive  where  for  any  positive  self- 
adjoint  A  in 4 dr(A)  is  the  self-adjoint  generator 
of  the  one-parameter  unitary  group [~(~itA) 1 tER1 

Let H'  be  a  real  Hilbert  space  and  let  g  de- 
note  the  centred  Gaussian  weak  distribution  on  H' 
with  variance 1. We  define  a  positive  linear 
functional E (expectation)  on  the  algebra A H') 
of  all  bounded  tame  functions  on HI. Let  L 1 (H',g) 
be  the  completion  of  A(H')  with  respect  to  the 
inner  product  <f  ,f'> = E(ff'). Let 6, denote  the 
canonical  homomorphism  of A(H')  into  L2  (HI  ,g) . 
the  structure  of  a  real  Hilbert  space  with  inner 
product  equal  to  the  real  part  of  the  complex 
inner  product  in2H. In this  way,  we  can  define  g 
on  H  and  hence  L  (H,g).  From  the  work  of  Segal, 
we  know  L2(H,g)  can  be  regarded  as  the  completion 
of the  algebra  Pt(H)  of  functions  of  the  form 

'111 

If  H  is  a  complex  Hilbert  space,  it  has  also 

f (x) = p(Re<x,el>, . . . ,Re<x,e >) n 
p a  real  polynomial  and  the  e  are  orthonormal. 

algebra of functions 
In  addition  to P', one  can  also  consider  the j 

f(x) = p(<x,el>,...,<x,en>) , p a 
polynomial  function  on Cn and  complex  conjugates 
of the  above.  Let  P(H)  denote  the  last  mentioned 
algebra. 

sentation  space  K  is  the  closure  of P(H)  in 
L2  (H,g).  Segal  has  shown  that  the  elements  of K 
can  be  identified as functions  well  defined  at 
every  point  of  H  and  which  satisfy  an  L2-bounded- 
ness  condition.  We  do  not go into  the  details 
of  the  construction  of W and r of  the  Weyl  System 
here.  It  can  be  shown  that  there  exists  a  unique 
(upto  unitary  equivalence)  Weyl  System.  It  is 
however  worthwhile  stating  explicitly  the  form of 
the  '!creation"  and  "annhilation"  operators. 
Definition: 

For  any  representation @ = (K,W,r,v)  of  the 
free  Boson  field  over  the  given  Hilbert  space  H 
and  for  given  vector z E H, the  creation  operator 
for z denoted  by C(z> is  defined  as  the  operator 
- (dW(z) - idW(iz)),  where  dW(z)  denotes  the  self 1 
Gdjoint generator of the  one-parameter  group 
{W(tz)ltER).  The  annhilation  operator  for  the 
vector z, denoted  by C * ( z )  is  defined  as  the 
operator 1 (dW(z) + idW(iz.1 
Theorem  (Segal) 

The  operators C(z) and C * ( z )  are  closed, 
densely  defined  and  mutually  adjoint. In the  com- 

has  domain  consisting of all FEK such  that 
plex-wave  (anti-holomrphic)  representation, C(z) 

<z,'>F(*) E K. C ( z )  is  the  mapping 
F ( - ) P ~  <z,->F(*), C * ( z )  has  domain  consist- 
ing of all F E  K suchthat  Fz€K  where  FZ = 

lim F(u+Ez) - F(u) . C * ( z )  is  the  mapping 

In the  complex-wave  representation  the  repre- 

\/2 

1 

€4 E 



The  Particle  Representation 

Let H' be  a  real  Hilbert  space  and  let 
H  be  its  complexification.  Let  be  fhe  n-fold 
symmetric  tensor  product  of H with  itself.  We 
give  the  inner  product 

<sym gp.. a n ,  SYg fp..QDfn> - 
where TI is a  permutation  of  (1,2, ... n) and S p  
is the  symmetrization  operator 

sym fp.. . 
Let  F  be  the  weak  centred  Gaussian  dis- 

tribution  of  unit  variance  on H'. Associated 
with  H'is  a  probability  space (n, B& 1, where 8 
is generated  by  F(f), fs H and  if  f ,..., f 
are  orthonormal  in H'  and $I is a Bade func?ion 
on  Rn,  then 

Let  L  (HI)  denote  L (fi ,8,p) 
Let  S-(H')  be  the  closed  linear  span  in 

L2(H')  of  all elbents of  the  form  F(fl) ... F(fm) 
m < n  and  let S (HI)  be  the  orthogonal  comple- 
men%  of  s-(H') i!' s-(E')n. For  fl,. . . ,f 
orthogonal  projectdn  of  Pkl). . .P(fn) on 
in  Hi  Define : F(f  )...F( ) : to  be  the 

Then  it  is  easy  to  see  that 

2 
. .  

2 

n-1 n 

: F(fl) ... F(f,) : H S y m  fl@...@fn 

extends  uniquely  to  a  unitary  mapping  from S(H'), 
onto H& . We  identify S(H1) with  via  this 
mapping.  Segal  showed  that  S?an  span  L2(d). - 
Hence  L  (H' ) = ip . This is fock  space. 2 

n=O- 

Let  r(H)  denote 2 . r(H)  is  intrinsically 
attached  to  the  structure  of  H  as  a  real  Hilbert 
space.  Hence  if U : H' -+ K' is  an  orthogonal 
mapping  of  one  real  Hilbert  space  into  another 
it  induces  a  unitary  mapping r ( U )  : r (H) -+ r(K). 
On s(H)n, r(U) is  U@. . .@U (n-factors).  The 
ideas  of  Fock  space  are  important  in  filtering 
theory anqelated to  Wiener's  homogeneous  chaos 
For  a  recent  application  see  MARCUS-MITTER-OCONE. 

5.  Conclusions 

n=o 

theory  may  have  applications  to  modelling  of 
stochastic  systems  and  filtering  theory. In 
this  paper I have  cmcentrated  on  ideas  sur- 
rounding  the  free  quantum  field.  I  believe 

The  mathematics  used  in  quantum  field 

ideas  of  non-linear  quantum  field  theory,  for 
example,  those  developed in SEGAL [3 ] have  ap- 
plications  in  non-linear  filtering  theory.  But 
this  we  have to leave  for  the  future. 
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