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Abstract 

i t s  t ransfer   funct ion,  two dynamic output  feedback  prob 
lems can  be  posed. The f i r s t  one is tha t   o f   us ing  
dynamic-output  feedback to  assign  the  closed-loop  char- 
a c t e r i s t i c  polynomial and the  second that   of   ass igning 

with  these  problems and the i r   i n t e r - r e l a t ionsh ips .  The 
the  closed-loop  invariant  factors.  We are  concerned 

formulation is done in  the  frequency domain and the  
inves t iga t ion   car r ied   ou t  from an algebraic  point  of 
view, i n  terms of l inear  equations  over  r ings  of  poly- 
nomials.  Using the  notion  of  genericity,  we express 
several  necessary and suff ic ient   condi t ions.  

1. Introduction 

For some l inear ,   s t r ic t ly   proper   system  given by 

Two of the   cen t ra l   resu l t s   o f   l inear   sys tem  theory  
are  the  following: 
(A) Let A and B be  matrices  of dimension  n x n and n x  i 
respectively.  The p a i r  (A,B) i s  c o n t r o l l a b l e   i f  and 
only if  fo r   eve ry   syme t r i c   s e t  A of  n complex numbers, 
there  is a  matrix C such  that  A + EC has A f o r  its s e t  
of  eigenvalues; 
(B) Let A and B be  matrices  of  dimension  n x n and n x il 
respect ively  with (A,B) being  a   control lable   pair .  The 
input-s ta te   t ransfer   funct ion P is given  by P=(sI-A)-'B. 
If state feedback u =  Cx+v is used,  the  closed-loop 
t ransfer   funct ion G is given by G = P(I + CP)-'.  Let 
X I  2 X2 2 ... 2 XII 2 0 be the   cont ro l lab i l i ty   ind ices  
0% P. Let $i be  given  polynomials  such  that $4 $i-lwith 

i=l 

variant  polynomials  of G a r e   t he  $i i f  and on ly   i f  

1 e(@i) = n. 

Then, t h e r e   e x i s t s  a constant C such tha t   t he   i n -  

k k 
1 e($i) 2 1 Xi k = 1,2, .  . . a, with  equal i ty  

i=l i= 1 a t  k = II. 

Subsequently  there  has  been  considerable work t o  gen- 
e r a l i z e  (A) t o   t h e   c a s e  where s ta t ic   output   feedback 
is allowed.  For the  most r ecen t   r e su l t s  on t h i s   t o p i c ,  
see Willems and Hesselink  [14] and Brockett and Byrnes 

can  be found i n  [2,3,7,14,15]. 
[4] .  Some recent work involving dynamic output  feedback 

back case  has  been  investigated by Rosenbrock and Hay- 
Generalization  of  problem (B) to   the   ou tput   feed-  

ton  [13]. They consider   a   t ransfer   funct ion  given  in  
Rosenbrock's  system  matrix form and present   several  
i n t e re s t ing   r e su l t s .  We consider  the same problem i n  
the  following form. 
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Figure 1 

The m x  II (m2II)  matrix P is the  input-output  matrix 
of a s t r i c t ly   p rope r   p l an t  and C ( i x m )   t h a t  of some 
proper dynamic  compensator. Both P and C have  elements 
in   R(s ) ,   the   f ie ld   o f   ra t iona l   func t ions   in   the   inde ter -  
minate s over  the  reals R. The closed-loop  transfer 
function is: 

G = P(I+CP)- '  . 
The condition m >  II is not   res t r ic t ive  because  the  s i tu-  
a t ion  m 5 il c a n b e   t r e a t e d   i n  a s imi la r  manner and 
dual   resul ts   obtained.  The t ransfer   funct ion P is 
assumed t o  be  given. We are   in te res ted   in   the   fo l low-  
ing two problems. 

(The Charac te r i s t ic  Polynomial  Problem) 

sa ry  and suf f ic ien t   condi t ions   for   the   ex is tence   o f   a  
proper  compensator C,  so t h a t   i f  x is the  character-  

is a fac tor   o f  $? A va r i an t   o f   t h i s  is the   i nves t i -  
i s t i c  polynomial  of  the  closed-loop  system,  then x 
gat ion  of   the  s i tuat ion  in  which x is equal   to  $ . 

Let $ be some polynomial in   R[s ] .  What are  neces- 

(The Invariant  Factor Problem) 
Let @ be an II x a matrix  with  elements  in  R[s]. 

What are   the  necessary and suf f ic ien t   condi t ions   for  
the  existence  of  a  proper  compensator C ,  so t h a t  i f  Y 
is the  c losed-loop  invariant   factor   matr ix ,  Y is 
equ iva len t   t o  a ?  A var ian t   o f   th i s  is t o   l e t  @ =($i )  
be i n  Smith form and t o   r e q u i r e   t h a t  [Y = (JI.)]Jli 
divides $i f o r  1 5 i 5 9. , or more s p e c i f i c a h y ,  
t h a t  JIi = $i. 

I t  is c l e a r   t h a t ,  from a  mathematical  standpoint, 

mine the  deeper   s t ructure   of  a system.  If  P=C(sI A)-'B 
the   invar ian t   fac tors   o f   a   t ransfer   func t ion   de te r -  

with (A,B,C) minimal,  then A can  be  written  in compan- 
ion  form  as : 

K =  [; :z . p , = 

where Qi= det(s1-Ci)   are   the  invariant   factors   of  P. 

between the  degrees   of   the   invariant   factors  and the  
I t  is t rue   tha t   there   does   ex is t   a   re la t ionship  

c o n t r o l l a b i l i t y  or observabi l i ty   indices   of   a   cer ta in  
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class  of  systems  [9]. 

The invar ian t   fac tors   a re   c lose ly   re la ted   wi th   the  
transmission  zeros  of a p l an t  as defined by Desoer and 
Schulman. Let P be  an mx9 .  p lant   with Smith-McMillan 
form given by Mp : 

Mp = 

E 

0 

- 

0 

The $i   are   the  invariant   factors  of P and the  transmis- 
sion  zeros  of P are  associated  with  the  zeros  of  the 
polynomials E .  Suppose t h a t  E .  # 0. Then, [ B ] ,  z e C  
is a zero  of  $'of  order m i f f  'EL(-).  has a zero  of 
order m a t  z .  The s ignif icance  of   this   order ,   roughly 
speaking, is that  the  system  completely  blocks  the 
transmission  of some input  of  the form gktkexp(zt) 

k=O 

f o r a =   0 , 1 ,  ... m-1.  For u = m, there  is an input  of 
t h i s  form f o r  which the  output is non-zero  and  proport- 
i ona l   t o   exp (z t ) .   The re fo re ,   i f  two systems P and P 
- have the  same-characteristic  polynomial x = X (y= Tl.. . 
$,, x = T l . . . $ 9 .  ) but   d i f fe ren t   invar ian t   fac tors  (and 
zeros),   the  transmission-blocking  properties of t he  two 
systems would b e   d i f f e r e n t .  

This  paper is divided  into  f ive  sect ions.   In   sec-  
t i on  2 ,  we formulate  the  problem  in  an  algebraic manner 
using  the  not ion  of   matr ix   f ract ion  representat ion.  
This,   in a very  natural  way, w i l l  suggest a method of 
so lu t ion  and i n  doing so,  demonstrate  the  importance 
of  the  equation XD + YN = 0 , where X , Y , D , N  and 0 are  
a l l  matrices  with  elements  in  R[s].  In  section 3,  we 
will s tudy  this   equat ion as it pe r t a ins   t o   ou r  problem 
and w i l l  construct what we sha l l   c a l l   ' a ccep tab le '   so l -  
ut ions.   In   sect ions 4 and 5 ,  we discuss   the  character-  
i s t i c  polynomial  problem and the  invariant   factor   prob-  
lem. From t h i s  it will be   seen   tha t   the   resu l t s   a re  
unsa t i s f ac to ry   i n  two ways. On t he  one hand,  they  are 
only  suff ic ient   condi t ions,  and on the  other,   they  apply 
in   'a lmost   a l l '   cases .   In   sect ion 6 we show t h a t  by 
introducing  the  not ion  of   generici ty ,  more complete re- 
s u l t s  can  be  formulated. Remaining questions  are  under 
continued  investigation. Even though we do  not  spec- 
i f ica l ly   address   ourse lves   to   spec i f ic   a lgor i thms  for  
solution,  the  procedures  used  are  constructive and can 
be programmed on a d i g i t a l  computer. 

2 .  Formulation and Method of  Solution 

Assume t h a t  we have the  feedback  system  sham  in 
Fig,  1 with P being a s t r i c t ly   p rope r  m x  9. (m 19.) 
input-output   t ransfer   funct ion and C some 9 . x m  proper 
dynamic  compensator. Both P and C have  elements  in 
R[s]. The closed-loop  t ransfer   funct ion G is given by 

G = P ( I + C P ) - '  , 
where we assume t h a t  ( I  + CP)-' ex is t s .   S ince  P is a 

Vidyasagar]  as  follows: 
ra t iona l .mat r ix ,  it can  be  factored  [Desoer- 

p = BA-' D-'N 

where B,A,D, N are  polynomial  matrices. We use  the 
following  notation: 

P = BRP$i some r igh t   representa t ion   of  P 

= A L ~ B ~  some lef t   representat ion  of  P 

= N R p D i i  some r i g h t  coprime representation of P 

= D L # ~ ~  some l e f t  coprime representation  of P. 

The closed-loop  t ransfer   funct ion G can  then  be  ex- 
pressed  in   the  fol lowing ways: 

G = P(I + CP)-' . 

where N R p $  a r e   r i g h t  coprime and BLC,?i l e f t  coprime. 
From [5,7] we have t h a t  x, the   charac te r i s t ic   po ly-  
nomial  of the  closed-loop  system,  can  be  written as 
x = a de t  R, a non-zero  constant.  If  coprime  repre- 
sen ta t ions  for both  the  plant and compensator are   not  
used,  then 

% %  

a det(ALCARp + BLCBRp) 
X =  , 

d e t  K. d e t  L 

wherea#  0 i s  a constant,  K a g rea t e s t  common l e f t  
d iv i so r  of A,,B, and L a grea tes t  common r i g h t  

d iv isor  of BRP,ARp. 

I f  MG is the  Smith-McMillan form of G ,  MG=r 
we c a l l  = -.p, 1 the  invariant   factor   matr ix  

L ' 1 2  

of G ,  Jli being  the 1, invar ian t   fac tors .  As s h a m   i n  
[9], we have t h a t  R and Y are  equivalent.  

which the  c losed-loop  t ransfer   funct ion  has  been 
expressed: 

One  way t o  proceed is t o   u t i l i z e   t h e  form in  

G = NRp(ALCDRp + BENRp)-' A E  

= NRP(D,DRp + NLCNw) -IDLC 

= i!iw . 

polynomial  problem. Let 0 be some &xima t r ix   w i th  
d e t 0  = 0, where 0 is some given  polynomial.  If a 

Suppose we are   inves t iga t ing   the   charac te r i s t ic  
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polynomial  solution X,Y t o  XDRp + Y Nu = Q exis ts   with 
X-'Y exis t ing  and proper,  then C = X- 'Y  is a  proper com 
pensator making the  c losed-loop  character is t ic  polynom- 

c m o n   l e f t   d i v i s o r   o f  X and Y.  I f ,   i n   a d d i t i o n ,  X,Y 
i a l  x equal   to  x = @/q where q = det  K, K a grea tes t  

a re  left  coprime,  then x = @. In a s imi la r  manner, 
suppose we are looking a t  the   i nva r i an t   f ac to r  problem. 
Let @ = (9.) be  an I I  x a matrix  in Smith  form. I f  a 
polynomial'solution X,Y t o  XDRp + YNRp * @ exis t s   wi th  

X-'Y exis t ing  and proper, X,Q being 1 f t  coprime and 
NRp,@ being  right  coprime,  then C = X-% is a  proper 

compensator which makes the  closed-loop  invariant  fac- 
t o r s  Qi equa l   to  

plays a very  important  role  in am invest igat ion.  We 
devote   the  next   sect ion  to   the  s tudy  of   this   equat ion.  
Before  doing t h i s  we also  formulate  a t h i r d  problem, 
the Denominator  Matrix  problem. 

I t  is clear from the  above that   equat ion XD+YN= @ 

(The  Denominator  Matrix-Problem) 

Let P = NRpDg be  an m x E s t r ic t ly   p roper   t rans-  
fer   funct ion  descr ibed by the   r i gh t  coprime  representa- 
t i o n  NRp,Dw. Let Q be an a x i  matrix. What are  nec- 

essary and suf f ic ien t   condi t ions   for   the   ex is tence  of  a 
polynomial  solution X,Y of X Dw + Y Nu = Q f o r  which 

X-'Y e x i s t s  and is proper? A var i an t   o f   t h i s  would be 
to   r equ i r e   a l so   t ha t  NRp,@ a r e   r i gh t  coprime and X,Q 
l e f t  coprime. 

Remark.  The issue  of  coprimeness  has  not been expl ic i t -  
l y   dea l t   w i th  by  Rosenbrock  and Hayton 1131. 

3. The Equation X Dw + Y NRP = Q 

The importance  of this equation in t h e  problems a t  
hand has  been shown i n   t h e  last sect ion.  I t  is nothing 

rat ional   funct ions R(s), 
else   but   a   set   of   l inear   equat ions  over   the  f ie ld  of 

(3.1) 

( i . e . ,  Z F = Q). As such a l l   ( ra t iona l )   so lu t ions   can  
be  writ ten as Z = Z ,  + Z, where Z ,  is a   pa r t i cu la r  solu- 
t i o n  and Z, is such t h a t  Z,F = 0. We, though, are 
interested  only i n  polynomial  solutions, and as can  be 
shown [ 9 ,  111: 
Proposition 3.1. Let U,V be a  polynomial  solution  to 
UDW + VNRp = 1. Then a l l  polynomial  solutions (X,Y) 

of X Dw + Y NW= Q can be  expressed  as: 

x @U - NNLp 

Y = QV + NDLp 

where N is a polynomial  matrix. 

Now from [12], we know tha t   s ince  NRp,Du a r e   r i g h t  
coprime,  a  polynomial  solution X,Y always e x i s t s   f o r  any 
6. This is an  algebraic  condition, Emre, i n  a recent 
paper [lo],  gives a n ice   sys tem  theore t ic   in te rpre ta t ion  
of   this ,   us ing module theory and the   rea l iza t ion   tech-  
niques  suggested by Fuhrmann. He also  suggests  an alter- 
na t e   desc r ip t ion   o f   a l l  polynomial  solutions,which ha.5 
a  system  theoretic  flavor. 

As we have  noted, we are in t e re s t ed   i n   so lu t ions  of 
X DRP + Y NW = Q, which are polynomial  but which i n  
addi t ion  have  the  property  that   (a)   det  X # 0 and (b) 
X-'Y is proper. We call such solutions  acceptable.  

Sat isfying  the  f i rs t   requirement  i s  easy, as we see 
from  [9]. 

Proposition 3 .2 .  Let Q be an (1 x E matrix with  detQ # 0. 
Then the re   ex i s t s   a  polynomial  solution X,Y t o  equation 
(3.1) f o r  which de t  X # 0. 
This next   resu l t   descr ibes  how both  requirements  are 
sat isf ied  s imultaneously,  which consequently  plays a 
c r u c i a l   r o l e   i n  our investigation  [9,13]. 

Theorem 3.3. Let P = N w D G  be proper m x (1 

ra t ional   t ransfer   funct ion  with 

with column degrees   ( con t ro l l ab i l i t y   i nd ices ) i l  2 i2 ... > 0. Let Q be an a x a non-singular  matrix 
with-  q = 8(det  0) - B(det Du) 2 0. Let X,Y be a 
polynomial  solution  of X DW + Y NRP = @ . Then X- '  Y 

e x i s t s  and is p r o p e r   i f f   t h e r e   e x i s t s  a unimodular  matrix 

M and indices  di  2 0, sa t i s fy ing  1 di=q  such  that 
a 

i= 1 

diag(smdi) M[Y,Q diag(s-%)]  is  proper. (3 .2)  

i rha tappens   in   the   s ing le- input ,   s ing le-output   ( s i so)  
Remark.  The above theorem is c l a r i f i e d  i f  we look at  

n  d  coprime, e(%) < e(dp) = a . situation.  Let  x,y  be a s o l u t i o n   t o  xd + y u  = 9, 

Necessity:   If  x-'y is proper, we nust have 

P P  
P' P 

e(xl + a = e(@) = a + q and q = @(x) 2 e(y) . 
Therefore, we must have s - q [ y , @ ~ - ~ ]   p r o p e r .  
Sufficiency: If s-q[y,4 s-'] is proper, we have t h a t  
B(y) 5 q and s ince  e(@) = q + a , we must have O(x) = q. 
otherwise 8(xd + yn ) # e(@). This means t h a t  
x-'y exis ts   an8 is P  proper. 

to   a t tempt   the  construct ion of acceptable  solutions by 
After  looking at  Theorem 3.1, it is qu i t e   na tu ra l  

making sure that  requirement (3.2) is satisfied. We 
know t h a t   a l l   s o l u t i o n s   t o  (3.1) are given by 

x =  @ U -  
Y = @V + NDLp 

NNLP 

where UDRp + VNu = I. The question is how t o  choose 
N. Let us look a t  the   s i so   s i t ua t ion   fo r   a  moment. 
Then y = @v + n , or wri t t en   d i f f e ren t ly ,  @v = -nd 
+ y. We know tha  + whatever QN is the re   ex i s t s  an  n 
such  that  B(y) < e(dp).  This is nothing else but   divi-  
sion  of #v by d  This as shown i n  [IS]  and  holds 
in   the  matr ix   case where t h e  column degrees of Y are 
s t r i c t l y   l e s s   t h a n   t h e  column degrees  of DU. If we 
then le t  [DLpNLp] be  row-proper,  the row degrees are 
the  observabi l i ty   indices   of   P and we can  construct a 
unique Y with  the e(Y)z  p1 -1, p l  the  largest   observa- 
b i l i t y  index.  Therefore,  diag  (s-(pl-l$fisproper. To 
fu l f i l l   requi rement  3.2, ca re  must be  taken  in  choosing 

a Q t h a t  makes diag(s(U1-  '))Qdiag ( s - q )  proper as well. 

Theorem 3.1  provides  a tes t   for   determining  whether  
a s p e c i f i c  polynomial  solution is actually  an  acceptable 

ular solution  could serve as a representat ive  for  a l l  
one. I t  would be  greatly  desirable,  though, if a par t ic -  

solut ions.   In   the  fol lowing  s i tuat ion,   th is   can  be 
done. 

P' 

Let P be   a   s t r ic t ly   p roper   t ransfer   func t ion   wi th  
a l l  observabi l i ty   indices   equal   to  P. Let [DLp.NLp] 
be row proper, DLP = I sU + . . . + D o .  
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Let U,V be such t h a t  UDw + WRp = I with Dw 

column proper   with  control labi l i ty   indices  

exist   unique -Fi and P such  that  

[NWI 

A , ?  A , _ > ... 2 xi 2 0. Using r igh t   d iv i s ion ,   t he re  

- 
0V = - N DLP + v 0(y) < p . 

Let TI = QU t mLP. 
Proposition 3.3.  Let P = NRpDw = DLP NLP be  as 

above.  Let 0 be a diagonal  matrix  with e ( @ . )  = 
Ai t y , y 2 0 , Then X Dw + Y NRP = 0 has d accept- 
ab le   so lu t ion   i f f  TI,V is an acceptable  solution. 

Remark: The akove does  include  the  siso  case.  

4.  The Characteristic  Polynomial Problem 

- 1  - 1  

t o   t he   Cha rac t e r i s t i c  Polynomial Problem as s t a t e d   i n  
sec t ion  1. I Say 'par t ia l '   because it is only a suf- 
f ic ien t   condi t ion .  
Theorem 4.1. Let P be,an m x i s t r i c t l y   p r o p e r  trans- 
fer   func t ion  and NwDRp a r i g h t  coprime  representation 

w h e r e p i ]  is column-proper  with column degrees 

Let D L f l L p  be a l e f t  coprime  representation,  with 

[DLprtp] row-proper. Let @ be a  polynomial  of  degree 

t = f ai t L(p,-l) (p,  the   l a rges t   observabi l i ty  

index). Then t h e r e   e x i s t s  a proper  compensator C such 
t h a t   t h e   c h a r a c t e r i s t i c  polynomial x of the  closed-loop 
system is given by 

We are now i n  a pos i t ion   to   g ive  a p a r t i a l  answer 

A , '  2 - . . , 2 X i  2 0 ( con t ro l l ab i l i t y   i nd ices ) .  

i=l 

X ' L  
qxy 

where  qxy is a  polynomial  with 0 5 O(qxr)' ll(pl - 1 ) .  

?he  proof is construct ive 191, with  the compensa- 
tor being  given by C = X-'Y where X,Y i s  an  acceptable 
s o l u t i o n   t o  some equation  of  the form X DRP + Y N w  = 0. 

The polynomial qxy is nothing else but   de t  %, h e r e  
KXy i s  a grea tes t  cormpon l e f t   d i v i s o r  of X and Y. 

Remark. I t  is clear t h a t   t h i s  Theorem can be  used for 
purposes  of s t a b i l i z a t i o n .   I f +  is chosen t o  be a 
stable  polynomial,  then so will be x, the  closed-loop 

pensator may or may not  be  stable. We will inves t iga te  
characterist ic  polynomial.  We a l so   no te   t ha t   t he  com- 

t h i s   i s s u e   l a t e r   i n   t h i s   s e c t i o n .  
Remark. From a closer  examination of the  procedure we 
can  see  that ,  i n  general, one does  not have p r i o r  know- 
ledge  of what qxr is. The larger   the  degree  of  qxy 
implies a smaller   increasein  the  overal l  dynamics of 
the  system. Cne can  therefore   use  this   in   the  design 
of  compensators. 
Remark. Using a different  output  feedback  configura- 
tion,  Brasch and  Pearson [3] show tha t   the   charac te r -  
ist ic polynomial  of  the  closed-loop  system  can  be 

These resu l t s   can  be  obtained  using  the approach  out- 
assigned by only increasing  the  system dynamics  byp,-l. 

l ined   in   th i s   paper  [ 9 ] .  Even though more dynamics 
are added i n  our approach, it may be t h a t   t h e  computa- 
t i o n s  are less  cumbersome. This  issue  warrants  further 
invest igat ion.  
Remark.  The approach  taken i n  [15] suggests   that  com- 

pensation  involves  input as well as output  dynamics, 
and it a l s o   d i f f e r s  from the  present   approach  in   that  
it requires   s table ,   pole-zero  cancel la t ion and the  
presence  of  *hidden* modes. 

On the  one  hand, it is q u i t e  worthwhile t o   i n v e s t i -  
gate  compensation schemes tha t   r equ i r e  as l i t t l e  added 
dynamics as possible .  An equally  worthwhile  task is t o  
investigate  whether, by adding more dynamics than  the 
least required,  one can  achieve  other  design  objectives 
a s  well [2] .  The following Lemma and  Example deal  with 
t h i s   i s s u e .  

Lemma 4.1  Let $ be a polynomial  with e($)=  2n - 1 t k ,  
k 2 1. Let  x,,  y,  be an acceptable  solution of 

xdp + y"p = $ , ["p/d, s t r i c t ly   p rope r ,   0 (d  ) = n] . A l l  
acceptable  solutions are of  the form 

P 

x, = -9  
Y2 = Yl + "$ 

where  0(m)c k - 1. 

Example. 
Let p = and suppose t h a t  we want t o  con- 

struct a proper and s t a b l e  compensator which makes the 
c h a r a c t e r i s t i c  polynomial  of  the  closed-loop  system 
equal t o   t h e   s t a b l e  polynomial @ = s'+s3+3s t s t  1. 

1 

The compensator C, = ++ "' - 2s = 2 does   sa t i s fy   the  

requirements  except  that it is unstable .  Now, a l l  
acceptable  solutions are given by 

x, = x1 - nmp 
Y, = Y, + mdp 

x , =  S Z t S t 1  

y, = 3s2 + 2s t 2 . 
where m is a constant. Let m = - 2 .  Then, 

Clear ly ,  C, = 3s2+ 2s t 2 / 8 +  s + 1 meets a l l   t h e  
requirements. 

Remark. This  idea  can  certainly  be  extended  to  the 
multiple-input,   multiple-output  si tuation. 

5. The Invariant  Factor Problem 

Let P be  an m x 11 s t r i c t ly   p rope r   t r ans fe r   func -  
t i o n  and 5 = (4.) an L x 11 diagonal  matrix  in Smith 
form. I f  P = N>$ is some r i g h t  coprime  representa- 
t i o n   f o r  which there   ex is t s   an   acceptab le   so lu t ion   to  
the  equation X Dw + Y Nw = 0, where @ and m are  equiv- 
alent,   with  (a) X and 0 l e f t  coprime and (b) Nw,6 

making the   invar ian t  factor matrix I = (Jli)  of G equal 
r i g h t  coprime,  then C = X-'Y i s  a proper  compensator 

t o  5 . If   conditions  (a) and (b)  are  not met, then [6] 
we have Jld Qi. We a l s o  know [13] t h a t   i f  P with  control- 
l b i l i t y   i n d i c e s  A ,  2 X, 2. .. A 2 0 and observabi l i ty  
indices  plL p, 2. .  . > 0 an% F= (Qi) ,   a l so   sa t i s -  
fies prn - 

k k 
1 2 1 + p l  - 1) k = 1 , 2 , . . .  with 

i=l i= 1 equal i ty  at k = 11, 
t h e i   t h e r e   e x i s t s  a matrix 0 equivalent   to  5 such t h a t  

S' - lim [diag(s+l- ')@  diag ( ~ - ~ i )  3 = 1. 

Theorem 5.1. Let P,F , 0 be as above,  with  the $i sat- 
i s fy ing  

k k 
1 0 ( $ i )  2 1 a i  + p, - 1) k = 1.2,  ...e with 

i=l  i=l e q u a l i t y   a t  k = E. 
Then t h e r e   e x i s t s  a proper  compensator C = X-'Y with 
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X Dw + Y NRP = 0 and such t h a t  i f  Y i s  the  closed-loop 
invariant   factor   matr ix ,   then qi1 $i. 

We will only  have $I. = @. i f  X and 0 a r e   l e f t  co- 
prime and Nw and 0 a re   l i gh t '  coprime. 
Remark. In e a r l i e r  work Rosenbrock  [12]  gave  a  neces- 
sa ry  and suf f ic ien t   condi t ion   in   the   case   o f   s ta te   feed-  
back.  That result   can  be  obtained  using  the  theory 
developed  in  this  approach [ 9 ] .  In   t ha t   s i t ua t ion ,   t he  
invar ian t   fac tors  are ass igned   exac t ly   for   a l l   cases .  
Here,  as we see,   the  conditions are merely  sufficient 
and apply  to  'some' ca ses ;   t h i s   war ran t s   fu r the r   c l a r i -  
f i ca t ion .  

Remark.  The fac t   tha t   in   the   s ta te   feedback   the   sys tem 
t r a s fe r   func t ion  can take  the form P = (sI-A)-'B simp- 
l i f i e s   t h e  problem, and using  the  procedure  suggested 
here ,   Rosenbrock 's   ear l ier   resul t  can  be  proved. 

The r e s u l t s  we have  discussed so far a re   unsa t i s -  
fac tory   in  two respects.  We have  seen that  degree con- 
s t r a i n t s  on @ or 0 a re   no t  enough t o   e n s u r e   t h a t   t h e  
closed-loop  transfer  function G will have  the  desired 
cha rac t e r i s t i c s .  If X, @ , and l e f t  coprime and N ~ p , 0  
a r e   r i g h t  coprime, t h i s  will be  true.  However, they 
are only  sufficient  conditions.  I t  is the re fo re   qu i t e  
na tu ra l   t o   a sk  whether  degree  constraints  are  solely 
suff ic ient   in   'a lmost   a l l '   cases  and  whether  these  are 
necessary  in  'almost a l l '  s i t ua t ions  as well. We will 
show i n  the   nex t   s ec t ion   t ha t   i n  some cases   t h i s  is 
indeed  true. 
6. Generic  Results 

Let  q  be some posi t ive  integer .  We def ine   the  
Zariski  topology on Rq t h i s  way. Let  be  an  ideal  in 
R[x,, ... x 3 .  A l l  points   x  = ( x  , ... xp) x2 i n  0 such 
t h a t  f (x)=Oqfor a l l  f i n  form $he var ie ty   o f  E. I f  
c l o s e d   s e t s   i n  V4 a re   de f ined   t o  be the   va r i e t i e s   o f  09 
[16],  then  aq becomes a  topological  space  with  the 
Zariski  topology.  Let R4 have the  subspace  topology. 

Definit ion.  A s e t  S CRq is ca l l ed   ' gene r i c '   i f  it con- 
t a ins   a  non-empty Zar i sk i  open se t   o f  Rq. Roughly 
speaking,  a  set is generic if  it contains  almost a l l  of 
Rq, ( i t s  complement is contained i n  a   s e t  of  Lebesque 
measure  zero). The way in  which we use  the  notion of 
gener ic i ty  i s  t o  first take a s e t   o f  Rq and then  define 
a  property which is v a l i d   f o r   a l l   p o i n t s   i n  S cRq. We 

ef fec t ,   tha t   the   p roper ty  i s  va l id  on almost a l l  of Rq. 
then  attempt  to show t h a t  S i s  generic.  This means, i n  

We now g ive   exp l i c i t   de f in i t i ons .  
Definit ion.  An m x 9 .  s t r ic t ly   p roper   t ransfer   func t ion  P 

t e r i s t i c  polynomial  assignabili ty propert- 
of  order  n,  given by P = ti&)$ has  the  eneric  charac- 

polynomials  $ER''=~ for which there   ex is t s   a   p roper  
compensator C making the  c losed-loop  character is t ic  
polynomial  equal t o  $I is a  generic  subset  of Rn*S . 
Definit ion.  An m X 9 .  s t r i c t ly   q rope r   t r ans fe r   func t ion  
P of  order  n  given by P = N p D i p  has  the  generic denom- 
inator   matr ix   ass ignabi l i ty   property  i f   the   LxLmatr ices  
@ sRC for  which t h e r e   e x i s t s  an  acceptable  solution 
X , Y  t o  X DRp + . Y  NRP = 0 with N 0 right  foprime and 
X,@ l e f t  coprlme 1s a  generic  s ,Riet   of R'+ . 

In what follows, we f ind  that   looking at  the  equa- 

tageous.   If  
t i on  X %p+ Y Nw= @as an operator is grea t ly  advan- 

x = ~ - l s k - '  + Xk-2sk-2 + ... + x. 
Y = Yk-lsk-l + .... 

+ yo 

Dw = Dtst + ... + Do 

Np = Ntst + ... + No 
then 

where h - - 
Dt Dt-l Do 0 0 .... 0 

Nt  .... N o  0 0 .... 0 

0 D t  ... 
0 Nt  ... 

DO 

NO 

I 

Dt ... 
Nt ... 

DO 

NO - - ~ 

This [l] we imedia te ly   recognize  as the  generalized 
Sylvester  Resultant  of Dw and N of  order  k [ i t  is a 
k(m +9.)x 9.(t+k)  matrix  with reap en t r i e s . ]  

The following two Lemata taken from [ l ]   g ive   the  
rank  of Sk(D,N) f o r  some t ransfer   funct ion ND-' i n  terms 
of  the  dual dynamical ind ices   (observabi l i ty   ind ices   i f  
ND-' proper) of ND-' and relate  coprimeness  of N,D with 
the  rank of some %'(D,N).  These are   general izat ions  of  
s i s o   r e s u l t s .  
Lemma 6.1.  Let ND-'  m x k be proper  with Ai observabil- 
i ty   ind ices   o f  ND-'. Then 

rank %(D,N) = (k + m)k - 1 (k -pi ) . 
Lema  6.2.  Let ND-' m x 9. be proper and q   the   l eas t  
i n t ege r   fo r  which rank S +1 (D,N) - rank Sk(D,N) 5 k. 
Then, fo r   n  > q, N , D  areqr lght  coprime i f f   s ~ ( D , N )  = 
9.n + 8(det D) . 
0 as an operator is: 
Pr os i t i on  6.3.  Let P= N DRb be an m X R s t r i c t l y  
p r T e r   t r a n s f e r   f u n c t i o n  w i #  con t ro l l ab i l i t y   i nd ices  
A = A = ... = A t  = A and observabi l i ty   indices  p = p = . :. ='p = p and DRp,NRp of t e form DRP = IsA+' 2 ,x-1 

Rt be   t he   s e t   o f  9.x 9. majrices  of  the form 

i : p .  < k 

A consequence  of  viewing the  equation X DRP + Y N R p =  

+ ... +?lo and NRp = NA s A -9 + ... + N O .  Let 

0 = 1 sA+q + @A+q-l A+q-1 + ... + 0, . 
Let Q = I(X,Y) I X = ~~q + X sq-'+ X,, Y=Y sq+ ...+ yo) 

A necessary and suf f ic ien t   condi t ion   for   the   ex is tence  
of   a   solut ion  to  X D + Y NRp = 0 i n   t h e   c l a s s  Q f o r  
generic 0 is q 2 u - P' 
Proof: 

(necessity).  

posed  can  be m i K e n  as 

q-1  q 

Equation X D + Y Nw = 0 with  the  conditions i m -  

[ I  yq Yq-1 -. . xOyO1~q+l= [I @q+A-l' ..ao I .  

sq+ 1 . 

S can  be  thought  of as a function 

q+l (q+l)- R('+q+') a . 
From Lema  6.1 we have t h a t  Sk [a k(9.+m)x (A+k)9. matrix] 
has  rank 

rank $ = (9.+m)k - 1 (k-pi) 
i :pi<  k  

which,under  the  special  circumstances, becomes: 

rank % = (9.+n)k i f  15 k L p  
= (L+m)k-m(k-u) i f  p < k . 

By observing  dimensions, we see   tha t :  
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s , ,  s , ,  . . . s are  not  onto 
).I-1 

b) S is both one-one and onto 

c) Sp+l,  Sp+* . .. are onto. 
?J 

Assume  now t h a t  q < ).I-1 and t h a t  X DRP + Y NRP = O has 
a so lu t ion   i n  Q for   gener ic  O . Show a cont rad ic t ion .  
I f  we think  of (X,Y) as an element i n  R Il(Il+m)q+Ilm and 

O as  an element i n  RL(Aq)', we s e e   t h a t   t h e  O that   can 
be  reached from elements  in Q a r e  a s e t  of  dimenions 
less than L(q+X)L, which impl i e s   t ha t   t he   s e t   o f  0 which 
can  be  reached  does  not  contain a non-empty Zar i sk i  open 
se t .   This  is a contradict ion;   therefore ,  q L ).I-1. 
(Sufficiency).  

Suppose t h a t  q 2. p-1 (or equivalent ly ,   q=p-l+k,  
k 2 0).  We want t o  show t h a t   t h e  set @E Rt , 
[t = L(X+p+k)Il -e2] f o r  which a so lu t ion   i n  Q e x i s t s ,  
is a generic  subset  of R t .  We already know t h a t  S 
is an  (Il+m)(p+k)  x(A+p+k)Il matrix  with u+k 

rank S = (Il+m)u + Lk . u+k 
This means tha t   the   opera tor  

is onto. We want t o  show t h a t  S (9) = Rt .  For O E  Rt 
t he re   ex i s t s  some  (X,Y) of  the p+k form 

x = 'u+k-l 
S).I+k-l + ... 

= 'p+k-l Sp+k-l + . . . yo 

such t h a t  

For t h i s  we must have X - I ,  which implies   that  
(X,Y) E Q. This compleYZ$-'  ;he proof. 

cerning  the  generic   character is t ic   polynomial   ass ign-  
ab i l i ty   p roper ty .  
Theorem 6.4.  Let P = n d -' be a s i s o ,   s t r i c t l y  prop- 
er   t ransfer   funct ion  oPoFder  n [0(d )=n] ,  d monic. 

A necessary and suff ic ient   condi t ion  for   generic   char-  
a c t e r i s t i c  polynomial  assignabili ty is q 2 n-1. 

Proof. 

We a re  now i n  a pos i t i on   t o   g ive  two r e s u l t s  con- 

P P 

Since $ E  Rn'q is t o  be  the  character is t ic   poly-  
nomial  of  the  closed  system,  the  compensator accomp- 
l i s h i n g   t h i s  must be  of  order  q. From Proposition  6.3 
we then  have  that a necessary  condition i s  q ,p - 1. 

For suf f ic iency ,  assume t h a t  q 2 1.1-1. Let t = n q  
and define 

For  which the re   ex i s t s  

t i on   x ,y  xd + yn = 9 
and x,y  coprime. 

(+o, . . . + t - l ) ~  R~ an  acceptable  solu- 

P P  

We need t o  show t h a t  S contains a non-empty Zar i sk i  

Theorem 3 . 3  can be  used t o  show t h a t   t h e   s o l u t i o n  z,? open s e t   ( i . e . ,  it is generic).  Since q'u -1, 

which is formed by l e t t i n g  -n ( in  y = $v + iid , x = 
+u - iii-~ ) be the unique  quotient  of  the  divisio; 
d /$v, !s an acceptable  solution.  Let g =   R e s ( x , y ) ( i e . ,  
t#e resu l tan t   o f  x and y) . Since  0(x) = q,  we musthave 
tha t   x ,y   a re  coprime i f f  g # 0.  

Let f b e   i n  R[s], with 0 ( f )  = q and fd  monic. 
Define $ = f d  + n P 

P P' 
.+ $V = (fv-u)dp + 1. 

S ince   fo r   t h i s   pa r t i cu la r  $, the  corresponding is 
equal-to 1, we must have ?,y being  coprime.  Therefore, 
S (  = V  ) contains a non-empty Zar i sk i  open set making 
it gengric.  This  completes  the  proof. 

In a s imi la r  manner, we can a l so  show [9 ] :  

Theorem 6.5. Let P = N,d$ ; . z i l /d i l )  be an m x l  
s t r i c t l y   p r o p e r   t r a n s f e r  unc 1 
i # j coprime. A su f f i c i en t   cond i t ion   fo r  

with  di l ,   d . .  

q 2 ).I - 1 (pi the   largest   observabi l i ty   index of P). 
generic   character is t ic   polynomial   ass ignabi l i ty  is 

In  the'event  that a l l  observabili ty  indices  are  equal 
t o  ).I, then   th i s   condi t ion  is necessary  as well. 
Remark. In   proving  these  resul ts ,  we make use  of  the 
generalized  Sylvester  resultants.  The r e s u l t s   a r e  con- 
f ined   to   the   case  when the  denominator  matrix (X DRP + 
Y NRP = O ) i s  j u s t  a polynomial.  For  the  general 
mxIl case, a closer  examination  of  the  structure  of 
the   resu l tan t   mat r ices  i s  needed. 

Remark. Results similar t o   t h e s e  proved i n  a d i f f e ren t  
way can a l so  be  found i n  a recent  paper  of Willems and 
Hesselink  [14]. 

3 1' 

The generalized  Sylvester  resultants  can  be used 
more e f fec t ive ly   to   t rea t   the   gener ic   denominator   mat r ix  
a s s ignab i l i t y  problem. As expected  for  the  single-input,  
single-output  case,  we have 
Theorem 6.6. Let P = n d -' be a s i s o   s t r i c t l y   p r o p e r  
transfer  function  of  oae?  n.   Let $ be  a monic poly- 
nomial  with e(+) = n + q ($ E R n q  ) . A necessary and 
sufficient  condition  for  generic  denominator  assigna- 
b i l i t y  is q 1 n-1. 

Theorem 6.4. The multiple-input,   multiple-output  si tu- 
a t ion  is much more challenging. For t h i s ,  we in t e rp re t  
Lemma 6.2 in   the   fo l lowing  way:  The matrices N , D  a re  
r i g h t  coprime i f f  at l ea s t  one Iln + 0(det D)X  Iln + 0(det D) 
minor of Sn(D,N) is not  zero. Denote these  minors by 
mi(D,N). By symmetry, t he  argument  can a l so  be made f o r  
l e f t  coprimeness. We can now s t a t e  [9]. 
Proposition  6.7.  Let P = NRpD$ be an m x  Il s t r i c t l y  

proper  transfer  function  with N~~ column proper, and 

column degrees A I  2 h2 2 . . . 2 XIl 0.  Let D & L ~  be 

such t h a t  e(DLp) = PI, the   largest   observabi l i ty   index.  
Let Rt denote   the   se t  of Ilx Il diagonal  matrices 0 = (+i) ,  

L$i manic with = hi + ti, t = 1 (Ai+ t i ) .  Let 

mi (O, N R ~ )  , n j  (O, sc) be the  appropriate 

minors  for 0 ,  N R ~ ,  and O , X ,  r e g e c t i v e l y ,  (?T,v ob- 
tained by r igh t   d iv i s ion  OV = - N DLP + y ) .  

The proof  proceeds  in a s imi l a r  manner as tha t   o f  

r R P 1  

Il 

i=l 
- 

I f  ti 2. pl- 1 and a t   l e a s t  one mi(O,NRp) # 0 
and a t  l e a s t  one n. (0,r) # 0 , then P has  the denomina- 
to r   ma t r ix   a s s ignah l i ty   p rope r ty .  
Remark. For th i s   r e su l t   a s   we l l  we see  that   degree 
cons t ra in ts   a re   no t  enough and that   'undesirable '  
addi t ional   condi t ions  are   present .  

On the   o ther  hand, t h i s  is merely a su f f i c i en t  

we have [9]. 
condition.  For  the  special   case of  diagonal  systems, 

Proposition  6.8. Let P be an mx Il s t r i c t ly   p rope r  
transfer  function  of  the form 

I t  i s  c l e a r   t h a t  S 2 T We need t o  show t h a t  # 0. 
g' g 
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p=r 0 

0 =I 0 0 

. O  
'It 

0 

DRP 
II 

L _I L- 
J -  

NRP 

with  ni,di  coprime,  di monic ( t h i s  means t h a t   t h e  con- 

t r o l l a b i l i t y   i n d i c e s  Ai a r e   e q u a l   t o   e ( $ i ) l I  i < !L 
and the  observabi l i ty   indices  pi a r e  equal t o  
8(di)  1 i 5 !L with pa+1 = .. . = pm = 0.) 

Let Rt denote   the  set  of a x  !L diagonal  matrices 
@ = (oi), $i monic with  9($i)= Ai  + ti, 

t = 1 (Ai + t i )  . A suf f ic ien t   condi t ion   for  gen- 

e r i c  denominator  matrix  assignability is ti 2 1 . 1 ~  - 1. 

In  the  event  that  m = II and A 1  = A, ... = Ai= A and 
p l  = pz = ... = 1.1~ = A  = 1.1 , then ti, p - 1  i s  a neces- 
sary  condition  as  well .  

Remark. Under the  assumptions  of  Proposition  6.7, we 
have t h a t  a sufficient  condition  for  generic  denominator 
mat r ix   ass ignabi l i ty  is 

a 
i= 1 

a) ti> 1.1,- 1 

b) at l e a s t  one  mi(@, Nw) # 0 and 

a t   l e a s t  one ni(@, x) # 0. 

I t  is desirable   to   e l iminate   condt ion  (b) .  To 
accomplish t h i s  it has t o  be shown t h a t   f o r  some @, E Rt  
we have  mi(@,, Nw) # 0 and n j (@, ,  4,  ) # 0. 
Proposition  6.8  suggests a way i n  which t h i s  may be 
achieved.  Instead of looking a t  some specific system 
and some space  of 0, look a t  the  space  T X @, where 
T i s  an appropriate  space  of  systems (which includes 
diagonal  systems). Then a t tempt   to  show t h a t   f o r  some 
t (a  diagonal  system)and some Q 0  , mi(NRp,t,@O ) # 0 
and n . (@ , o, Xto@, ) # 0. This way  we will, ~IL e f fec t ,  
have  proved that  'almost a l l '  systems i n  T have t h e  
generic  denominator  matrix  assignabili ty  property,  i f  
ti 2 l.Il - 1. 

Theorem 6.9 
Let N , D  be  LXk  matrices and def ine  W ,  Z,S as 

follows: 

w = j(N,D)ERzAa2(D= IS A + ~ ~ , ~ s  X-1, ... + D, , 

N =  N A - l S  + ... + N o )  

Z ={@E R(h+q)k/@  di%,@=IsA+q+@ A*q-ls A+q;l ... + Ool 

s = {(N,D,@)ER  2AaZxR(A*q)k For  which t h e r e   e x i s t s  an 
acceptable  solution X,Y 
of XD+YN = @, with 
N , @  r i g h t  coprime, 
X,@ lef t  coprime. I 

A necessary  condition  for S t o   b e  a generic  subset  of 

R zxL2 x R('q)' is q 2 A - 1. 

Proof: 

non-empty Zar i sk i  open se t )  and l e t  q < A - 1. Shm  a 
contradiction. 

(N,D) a r e   r i g h t  coprime and ND-' has  observabi l i ty   in-  
d ices   equal   to  p(=A). ( I f  N , D  a r e   r i g h t  coprime, the  
control labi l i ty   indices   of  ND-' a r e   a l l  equal t o  A ) .  
We have t h a t  M is generic  because of the  following: 

- 
Suppose t h a t  S i s  generic   ( i .e . ,  it contains  a 

Let M be the  subset  of R2'" x R'(A+q)afor which 

The s e t  F c R2Aa2 x R(A+q)a  for which 
rank Si(D,N) = 2 i L  1 5 II 5 X 

and rank SA+1 = i A L  + II 
is generic.  This means tha t   for   every  (N,D,@) E F we 
have tha t :  

1) N , D  a r e   r i g h t  coprime  (Lema  6.2) 
2) Since ND-' is proper ,   the   observabi l i ty   indices   of  

ND-' a r e   a l l  equal t o  A (Lemma 6.1). 

This  implies  that  (Fc M) M is generic. 

t h a t  S n M is non-empty. Let (Nl,D,,al) E S nM. This 
means t h a t   f o r  N , ,  D l  and almost a l l  EZ we have  that  
an acceptable  solution X,Y of XD + YN = @ ex i s t s .  
Since X , Y  is acceptable,  we must have  (Corollary 2 ,  p. 
548,  Rosenbrock-Hayton), B(Y) 5 q. This means t h a t  
(X,Y)EQ  of  Proposition  6.3. But then  q 2 A - 1, which 

q 2 A - 1. This completes  the  proof  of Theorem 6.9. 
cont rad ic t s  our assumption  that  q < A -1. Therefore, 

Proposition 6.10 With W,Z,S,M a s   i n  Theorem 6.9,  a 
suf f ic ien t   condi t ion   for  S t o  be  generic is q = A - 1. 

Proof: 

e r i c .  For  any (N,D,@) in  M we have  that  SP(D,N) i s  one- 
one and onto ,   therefore   inver t ib le .  This means t h a t   f o r  
any @ E  Z t h e r e   e x i s t s  a unique (X,Y) such t h a t  X D +  YN = 
@, and X,Y i s  an  acceptable  solution. I t  is c l e a r   t h a t  
N,@ are r i g h t  coprime for  almost a l l  (N,D,@). The 
question  then  remains as t o  whether X,@ a re  lef t  co- 
prime. ( i , e . ,  @ , X '  right  coprime). 

@ E  Z f o r  which X and @ are coprime  [call   the  point 
e x i s t s  some diagonal  system N D-' and some diagonal 

(N,D,F) e W X  Z,a]. This means (Lemma 6.1) t h a t  

rank Si(Qa, XIa) = i - 2 k  1 < i < 2A- 1 

and rank S (aa, XIa)  = 2A.211- L . 
This implies t h a t   t h e  above also  hold for generic a . 
Using Lemma 6.2 we then  have  that X,@ a r e  left  coprime 
for   gener ic  a. This means t h a t  S is a generic  subset 

of R 
Remark. In Theorem 6.9 we see   tha t   q  2 A - 1  is a neces- 
sary  condition so t h a t   f o r  almost a l l  systems  of  order, 
Xk and equal   observabi l i ty   indices  A ,  t h e r e   e x i s t s  an 
acceptable   solut ion X,Y of XD + YN = @ with N,@ r i g h t  
coprime, X @ left  coprime for  almost a l l  0 i n  Z .  In 
Proposition 6.10 we have tha t   q  = A -1 is a   s u f f i c i e n t  
condition. We conjecture   that   q  2 A -  1 is ac tua l ly  a 
sufficient  condition,  thus  completing Theorem 6.9. 

We wish t o  thank  Professors  Chris  Byrnes and 
Bernard L&y f o r  many helpful   discussions.  

Since we have assumed S to   be   gener ic ,  we must have 

= A - 1 .  From above we already have t h a t  M is gen- 

From Proposition  6.8 we already know t h a t   t h e r e  

ZA 

2Aa2 x R(A+X-l)k 

References 

1. 

2 .  

R.R. BITMEAD. S-Y KUNG. B.D.O. ANDERSON. T. KAILATH. 
Greatest C k o n  Divisois  via  Generalized  Sylvester 

NO. 6, Dec. 1978. 
and Bezout  Matrices, IEEE Trans. on AC, Vol. AC-23, 

J.J. BONGIORNO, D.C. YCULA, CYI t he  Design of Single- 
h o p  Single-Input-Cutput Feedback Control  Systems 
i n   t h e  Complex Frequency Domain, IEEE Trans. on AC, 
Tune 1977. 

764 



3.  F.M. BRASCH, J.B. PEARSON, Pole  Placement  Using 
Dynamic Compensators, IEEE Trans. on A C ,  vol .  AC-15, 
No. I, Feb. 1970. 

4. R.W. BRWKETT, C.I. BYRNES, An Algebraic-Geometric 
Analysis  of  the  Pole  Placement Map: Some New Re- 
s u l t s  on Output  Feedback  Problems,  This  conference. 

5.  C.T. CHEN,  C.H. HSU, A Proof   of   the   Stabi l i ty   of  
Multivariable Feedback  Systems,  Proc. IEEE ( l l ) ,  
2061-2062, 1968. 

6.  W.A. COPPEL, Bulletin  Australian  Mathematical  Soc- 
iety, 1974. 

7. C.A.  DESOER, M. VIDYASAGAR, Feedback  Systems: Input- 
Output Properties,  Academic Press, New York, 1975. 

8. C.A. DESOER, J.D. SCHULMAN, Zeros  and  Poles  of 
Matrix  Transfer  Functions and Their Dynamical In t e r -  
p re t a t ion ,  IEEE Trans. on CAS. vol.  CAS-21, No. 1, 
Jan. 1974. 

9. T.E. DJAFERIS, General  Pole  Assignment  by  Output 
Feedback and Solution  of  Linear  Matrix  Equations 
from an Algebraic  Viewpoint, Ph.D. Thesis, M.I.T., 
June 1979. 

10. E. EMRE, Dynamic Feedback: A System Theoretic 

11. L.  PERNEBO, Algebraic  Control  Theory  for  Linear 
Approach, March 1979. 

Multivariable Systems,  Tekn. Dr. Thesis,  May 1975. 

12 .  H. H. ROSENBROCK, S t a t e  Space and Multivariable 
Theory, J. Wiley 6 Sons, New York,  1970. 

13. H. H. ROSENBRWK, G.E. HAYTON, The General  Problem 
of  Pole  Assignment,  Int. J. Control,  vol.  27, No. 6, 
1978. 

14. J .C .  WILLEM, W.H. HESSELINK, Generic  Properties of 
the  Pole  Placement  Problem,  presented at  the  1978 
IFAC Congress,  Helsinki,  Finland. 

15. W.A. WOLOVICH, Linear  Multivariable  Systems,  Applied 
Mathematical  Sciences,  vol. 11, Springer-Verlag, 
New York 1974. 

16. 0. ZARISKI, P. SAWEL, Commutative Algebra,  vol. I ,  
van  Nostrand,  Princeton 1958. 

765 


