by

G. A. Phillipsonh and S. K, Mitter
Systems Research Center
Case Western Rescrve University Cleveland, Ohio - 44106

This paper is concerned with the state identification problem for a class of linear distributed parmeter systems. Since the system in deseribed by a partial differential equation, its solution requires knowledge of initial conditions and envinorment forcing terms which include the boundary conditions. The problem studied here is the following:

Given i) inexact measurements of the initial conditions and envimonmental interactions ii) inexact and possibly incomplete measumenents of the state of the system, determine on the basis of the above data the true initial and boundary cenditions asscciated with a given partial differential equation which is in some sense optimal. with respect to the given dnta.

The hasis for selecting the estimates of the boundary and initial conditions associated with a given partial differential equation, that is, the criterion of optimality, is that of "least squares". Theoretical results as well as a computational scheme with numerical results are presented.
*Now at Shell Development Company, Houston, Texas.

STATE IDENTIFICATION OF A CLASS OF LINEAR DISTRIBUTED SYSTEMS

by
G. A. Phillipson… and S. K. Mitter
Systems Research Center Case Western Reserve University Cleveland, Onio 44106

A. Introduction

This paper is concerned with the state identification problem for a class of linean distributed pananeter systems. Since the sybtem is described by a partial differential equation, its solution requires knowledge of initial conditions and environmental forcing terms which include the boundary conditions. The problem studied here is the following:

Given i) inexact measurements of the initial conditions and environmental intenactions ii) inexact and possibly incomplete measurements of the state of the system, determine on the basis of the above data the rrue initial and boundary conditions associated with a given partial differential equation which is in some sense optimal with respect to the given data.

The basis for selecting the estimates of the boundary and initial conditions associated with a given partial differential equation, that is, the criterion of optimality, is that of "least squares". To be more precise, we mean the following:
Given:
(1). The measurement data, which we denote here by Z, and
(2) An (arbitnary) solution of the partial differential equation, denoted here by $Y(\underline{y})$, where $\underline{\mathbf{v}}$ is an arbitraxy estimate of the true initial state and boundary conditions, then
Obtain:
(1) \underline{v} which extremizes the erron functional

$$
J(\underline{v})=\left\|Z^{\circ}-Y(\underline{v})\right\|^{2},
$$

*Now at Shell Developnent Company, Houston, Texas.

Where $||\cdot||^{2}$ is some appropriate squared motric.
The identification problem, treated here is thus a variational problemwthat of chanacterizing extremals to a given functional, constrained by a partial differential equation. We obtain a charecterization of these extremals which is both necessary and sufficient, using the theony of vamiational inequalities. ${ }^{1}$ Two methods for the numerical recovery of the extremals from this cluaracterization are presented. One of these is a Ricatti-like decoupling and the other is a "direct method" involving conjugate directions of search on a quadratic error surface. Collatenal work may be found in the recent paper of Balakrishnan and Lions. ${ }^{2}$

The identification problem, as introduced, is customarily given a stochastic treatment. In that context, the error associated with the measumenent data Z is considered to be a randan vamiable, whose values are "distributed" in a known way. The state identification or filtering problem; as it is called in this context, is to detemine the a posteriori probability density of the state, given the reasurements Z.

Under special statistical hypothesis on the arror processes, namely that they be purely random with Gaussian probability densitj and in addition, are additive-..that is

$$
Z=Y(\underline{u})+E
$$

where u is the true "state of nature" and E is the error process, then if the system state evolution process is also linear, the a posteriori density of the states is also Gaussian. It can be shown that the filtered estimate (given in terms of the sufficient statistics of the Gaussian distribution of the states, the mean and variance) coincides with the "least-squares" estimate. Thus, under these special hypotheses the vamiational and stochastic approaches yield identical results.

We remark that the variational problems axising in distributed optimal control are amenable to the solution techniques suggested in the sequel. In particular, optimal boundary controllers are recovered afficiently by the "direct method" already mentioned.
B. Definitions and Mathematical Preliminairies

Let Ω be a simply connected, bounded open set in R^{n}. Paints of a are denoted by $x=\left(x_{1} x_{2} \ldots x_{r}\right) . r$ is the boundary of a. Let t denote time, $t \in(O, T]$. Define the sets:

$$
\Sigma=\operatorname{rx}(0, T] ; Q=\operatorname{mx}(0, T]
$$

We aclopt a notational convention reganding the functions f : $f(x, t)$ is a point in $R^{1},(x, t) \in Q$
$f(\cdot, t)$ is an element of a Hilbert space $K(\Omega)$
$f(\cdot, \cdot)$ is an element of the Hilbert space $\mathrm{L}^{2}(0, r ; K)$,
where $L^{2}(0, T ; K)$ is the space of finctions (equivalence classes) which are square integrable with values in K . When appropriate, we shall consider derivatives of f to be taken in the distribution sense, that is, given a function $\phi(\cdot) \in C^{2}(\Omega)$ with compact support in Ω, then for $f(\cdot) \in K(\Omega)$, the mapping

$$
\frac{\partial f(x)}{\partial x_{i}}: \phi(x)+-\int_{\Omega} f \frac{\partial \phi}{\partial x} d x ; i=1,2, \ldots r
$$

is called the distribution derivative of the function f. Higher ander derivatives are taken in an analogous way.

Define the second onder elliptic openator $A[\cdot]$:

$$
A[\psi]=-\sum_{i, j=1}^{r} \frac{\partial}{\partial x_{i}}\left[a_{i j}(x, t) \frac{\partial \psi(x, t)}{\partial x_{j}}\right]+a_{0}(x, t) \psi
$$

where $a_{i j}(x, t),(i, j=1,2 \ldots r)$ are bounded, measumable and exhibit the coercive property:

$$
\begin{aligned}
& \sum_{i, j=1}^{r} a_{i j}(x, t) \varepsilon_{i} \varepsilon_{j} \geq \alpha\left(\varepsilon_{1}^{2}+\ldots+\varepsilon_{r}^{2}\right) \text { for all } \varepsilon_{i} \in R^{1},(i=1,2 \ldots x) \\
& \alpha a_{0}(x, t) \geq a \\
& \geq 0, \quad(x, t) \in Q .
\end{aligned}
$$

By $A_{s}[\cdot]$ we mean the operator $A[\cdot]$ with an additional symmetry condition:

$$
a_{i j}(x, t)=a_{j i}(x, t) \quad(i, j=1,2 \ldots r), \text { for all }(x, t) \in Q
$$

The case where the coeficients $a_{i j}(x, t)=a_{i j}(x), a_{0}(x, t)=a_{0}(x)$ leads to the classical Sturm Liouville openator, denoted by $A_{s t}$.

We shall be cancerned with the properties of solutions to the Stumm liouville problem

$$
\begin{equation*}
A_{s t}[w]-\lambda_{p w}=0 \tag{1}
\end{equation*}
$$

with any one of the boundary conditions
(I) $w(B)=0$
Ber
(II) $\frac{\partial w(s)}{\partial v}=0$
ser
(III) $\frac{\partial w(B)}{\partial v}+B(s) w(s)=0$ ser; $\beta(s)>0$ for all ser.

Solutions to (1) with any one of (I) (II) (III) are complete in $L^{2}(\Omega)$. Of special interest are the solutions to

$$
\left.\begin{array}{rl}
\frac{\partial^{2} w}{\partial x^{2}}+\lambda w & =0 \\
w(0) & =0 \\
w(1) & =0
\end{array} \quad x \in(0,1)\right\}
$$

$$
(1)^{*}
$$

namely,

$$
\left\{\sqrt{2} \sin \sqrt{\lambda_{i}} x\right\}_{i=1,2 \ldots} ; \lambda_{i}=(i \pi)^{2}
$$

C. The Distributed Systems

We consider in detail identification problems associated with the distributed system whose evolution equation is linear, panabolic, with inhomogeneous boundary conditions of the Dirichlet type:

$$
\left.\begin{array}{rlr}
\frac{\partial y(x, t)}{\partial t}+A[y(x, t)] & =f(x, t) & (x, t) \in Q \tag{2}\\
y(s, t) & =u_{2}(s, t) & (s, t) \in \Sigma \\
y(x, 0) & =u_{2}(x) & x \in Q
\end{array}\right\}
$$

Hypothesis on $f(x, t)$ and $u_{1}(s, t), u_{2}(x)$ are:

$$
\left.\begin{array}{l}
f(\cdot, \cdot) \in L^{2}(Q) \tag{3}\\
u_{1}(\cdot, \cdot) \in L^{2}(L) \\
u_{2}(\cdot) \in L^{2}(\Omega)
\end{array}\right\}
$$

For the system (2) with hypothesis (3), we have the following Lemma: Lemma 1 (Lions-Magenes)

There exists one and anly one solution to (2) with (3) such that $y(\cdot, \cdot) \in L^{2}(Q)$. In addition,

$$
\frac{\partial y}{\partial x}(\cdot, \cdot) \in L^{2}(Q) .
$$

Remark All our results hold in the case where the boundary conditions on (2) are Neumann or "Mixed". Moreover, systems whose evolution equation
is of second onder hyperbolic type, nauraly:

$$
\frac{\partial^{2} y(x, t)}{\partial t^{2}}+A_{B}[y(x, t)]=f(x, t)
$$

with any of the three boundary conditions fall within the furisdiction of our results. ${ }^{3}$
D. Mathematical Statement of the Identification Problem

Given: (i) System evolution process-equation (2).

- (ii) Input measurements:

$$
\underline{z}=\left[\begin{array}{l}
z_{1}(s, t) \tag{5}\\
z_{2}(x)
\end{array}\right]=\left[\begin{array}{l}
u_{1}^{*}(s, t)+K_{1} N_{1}(t) \\
u_{2}^{*}(x)+K_{2} N_{2}(t)
\end{array}\right]
$$

where $\underline{u}^{*}=\left[u_{1}^{*}(s, t): u_{2}^{*}(x)\right]^{T}$ is the true "state of nature", and K_{1} and K_{2} are constants.
Output measurements:
(a) $z(x, t)=y\left(x, t ; \underline{u}^{*}\right)+K_{0} N_{0}(t)$
(b) $z\left(x^{i}, t\right)=y\left(x^{i}, t ; \underline{u}^{*}\right)+K_{0}^{i} N_{o}^{i}(t) ; i=1,2 \ldots v$
where $x^{i} \in U, N_{0}(t), N_{o}^{i}(t), N_{1}(t)$ and
$N_{2}(t)$ are random error processes and K_{0} is a constant.
Identification Problem: Obtain \underline{u}, a "refined estimate" of $\underline{\underline{u}}$ ", based on the data contained in the input and output measumements. The "refined estimate" is defined as that \underline{u} in an amissible set of functions V which extremizes a certain quadratic error functional $J(\underline{v})$. That is, choose \underline{u} such that

$$
J(\underline{u})=\operatorname{Inf}_{\underline{v} \in V} J(\underline{v}) ; V=L^{2}(\Sigma) \times L^{2}(\Omega)
$$

It is possible to consider a large variety of error functionals $J(\underline{)}$. This variety is inchuced by the type of measurement data available ((ii) and (iii)). Aoareless choice of functional $J(\underline{y})$ can lead to erroneous results. We postpone a discussion of "well set" functionals to Section E. Two specific error functionals considered in this study are induced by the two output measumements (iiia) and (ijib). They are:
(a) $J(\underline{v})=\int_{Q}[y(x, t ; \underline{v})-z(x, t)]^{2} d x d t+\int_{\Sigma}\left[v_{1}(s, t)-z_{1}(s, t)\right]^{2} d s d t$

$$
\begin{equation*}
+\int_{\Omega}\left[v_{2}(x)-z_{2}(x)\right]^{2} d x \tag{8}
\end{equation*}
$$

(b) $J(\underline{v})=\int_{0}^{T} \sum_{i=1}^{v}\left[y\left(x^{i}, t ; \underline{v}\right)-z\left(x^{i}, t\right)\right]^{2} d t+\int_{\Sigma}\left[v_{1}(s, t)-z_{1}(s, t)\right]^{2} d s d t$

$$
\begin{equation*}
+\int_{n}\left[v_{2}(x)-z_{2}(x)\right]^{2} d x \tag{9}
\end{equation*}
$$

Remarks The output measurement process (iiia) is physically unrealistic as it is not possible to measure the entire spatial profile. For the same reason, so is the input measurement process $z_{2}(x)$. The latter case, can be rationalized however, by asserting that $z_{2}(x)$ is obtained by computing an initial steady state profile which is in error. Although not considered in this paper, it is possible to treat other measurement processes (provided they are appropriately formulated) by using the methods of this paper.

For notational convenience, we shall consider (in detail) the identification problem associated with (8) and report formally the results for (9). E. Charycterization of Extremais

The characterization of extremals to $J(\underline{v})$ is afforded by the results of Lions and Stampacchia. ${ }^{1}$ We first introduce the appropriate framework. Let $a(\underline{v}, \underline{w})$ be a coercive continuous bilinear form, $\underline{v}, \underline{w} \in V=L^{2}(\Sigma)$. $x^{2}(\Omega)$
$l(\underline{)}$) be a continuous linear form.
Then, if

$$
\begin{equation*}
J(\underline{v})=a(\underline{v}, \underline{v})-2 l(\underline{v})+c \tag{10}
\end{equation*}
$$

we have the following theorem:
Theorem 1 (Lions-Stampacchia): 1 There exists one and only one $u \in V$
such that

$$
J(\underline{u}) \leq J(\underline{y}) \text { for all } \underline{v} \in V
$$

and it is chanacterized by

$$
a(\underline{u}, \underline{v})-l(\underline{v})=0 \quad \text { for all } \quad \underline{y} \in V
$$

Theorern 1 is an appropriate "maximum principle" for the purposes of solving the givan identification problem. It is necessary to check whether $J(\underline{y})$ given by (8) (or (9)) has the representation (10). Uaing (8), we can define

$$
\begin{align*}
a(\underline{v}, \underline{v})= & \int_{Q}[y(x, t ; \underline{v})-y(x, t ; \underline{Q})]^{2} d x d t+\int_{\Sigma} v_{1}(s, t)^{2} d s d t \\
& +\int_{Q} v_{2}(x)^{2} d x \tag{12}\\
\ell(\underline{v})= & -1 \int_{Q}[y(x, t ; \underline{v})-y(x, t ; \underline{O})][y(x, t ; \underline{O})-z(x, t)] d x d t \\
& \left.-\int_{\Sigma} v_{2}(s, t) z_{1}(s, t) d s d t-\int_{Q} v_{2}(x) z_{2}(x) d x\right) \tag{13}\\
c= & \int_{Q}[y(x, t ; \underline{O})-z(x, t)]^{2} d x d t+\int_{\Sigma} z_{1}(s, t)^{2} d s d t \\
& +\int_{\Omega} z_{2}(x)^{2} d x \tag{14}
\end{align*}
$$

Then it is clear that $J(\underline{v})$, given by (8), can be written:

$$
J(\underline{v})=a(\underline{v}, \underline{v})-2 l(\underline{v})+c
$$

with $a(\underline{v}, \underline{v}), i(\underline{v})$ and c given by (12), (13) and (14), respectively. Moreover, the hypothesis on $a(\underline{v}, \underline{v}), l(\underline{v})$ and \underline{c} are satisfied. Hence, by Theorem 1, the refined estimate \underline{u}, which minimizes $J(\underline{v})$, is uniquely characterized by:

$$
\begin{align*}
& \int_{Q}[y(x, t ; \underline{u})-z(x, t)][y(x, t ; \underline{v})-y(x, t ; \underline{Q})] d x \cdot d t \tag{15}\\
& +\int_{\Sigma}\left[u_{1}(s, t)-z_{1}(s, t)\right]\left[v_{1}(s, t)\right] d s d t+\int_{Q}\left[u_{2}(x)-z_{2}(x)\right] v_{z}(x) d x=0
\end{align*}
$$

Equation (15) is not of imediate utility. However, by defining a system
adjoint to (2); (15) can be manipulated to yleld a more workable reault. Thus, define $p(x, t)$, the adjoint variable to $y(x, t)$, which ovolves acconding to:

$$
\left.\begin{array}{rll}
-\frac{\partial p(x, t)}{\partial t}+A[p(x, t)]=y(x, t j \mu)-z(x, t) & x, t \in Q \tag{16}\\
p(s, t)=0 & & \dot{s}, t \in \Sigma \\
p(x, T) \geq 0 & & x \in \Omega
\end{array}\right\}
$$

It can be shorm ${ }^{3}$ that (15) is equivalent to:

$$
\left.\begin{array}{rc}
-\frac{\partial p(s, t)}{\partial v}+u_{1}(s, t)-z_{1}(s, t)=0 & s, t \in \Sigma \tag{17}\\
p(x, 0)+u_{2}(x)-z_{2}(x)=0 & x \in \Omega
\end{array}\right\}
$$

Thus the simultaneous solution of (2), (16) and (17) defines the defined eatimate \underline{u} and yelds the refined estimate of the state, $y(x, t ; \underline{u})$.
Remark The extremal to the functional $J(v)$ given by (9) is given by solving (2) and (17) simultaneously with an equation for $p(x, t)$ given by
$\left.\begin{array}{ccc}\left.-\frac{\partial p(x, t)}{\partial t}+A[p(x, t)]=\sum_{i=1}^{V} y(x, t ; \underline{u})-z(x, t)\right] \delta\left(x-x^{i}\right) & (i=1,2 \ldots u) \\ p(0, t)=0 & \vdots \\ p(x, T)=0 & \vdots\end{array}\right\}$
It can be shown, that (16) and (18) have solutions such that $\frac{\partial \mathrm{p}}{\partial v^{\prime}}(\cdot, \cdot)$ e $L^{2}(\Sigma)$, so that (17) makes sense.

We remarked in Section D that it was possible to construct functionals $J(\underline{v})$ which were not "well set": By well set, we mean that a representation for $J(\underline{v})$ given by (10) is possible. As an example of a non well set problem, consider

$$
\begin{align*}
J(\underline{v})= & \int_{\mathfrak{f}}[y(x, T ; \underline{v})-z(x, T)]^{2} d x+\int_{\Sigma}\left[\dot{v}_{1}(s, t)-z_{1}(s, t)\right]^{2} d s d t \\
& \quad \int_{\mathfrak{R}}\left[v_{2}(x)-z_{2}(x)\right]^{2} d x \tag{19}
\end{align*}
$$

As before, we can define

$$
\begin{align*}
f(\underline{v}, \underline{v})= & \int_{n}[y(x, T ; \underline{v})-y(x, T ; Q)]^{2} d x+\int_{\Sigma} v_{1}(s, t)^{2} d s d t \\
& +\int_{\Omega} v_{2}(x)^{2} d x
\end{align*}
$$

Now, $a(\underline{v}, \underline{v})$ is not continuous. ${ }^{3}$ and the representation fails. It is possible to construct several such ill-posed problems. 2,3 Appropriate reconstruction can, however, relieve these difficulties. ${ }^{2,3}$
F. Recovery of the Extremals

As we announced in Section A, two methods for the recovery of extremals from the chamacterization given by (2), (16) or (18) and (17) can be proposed. Consider first a Ricatti-like Decoupling.

F. 1 Ricatti-like. Decoupling

We note that (2), (16) or (18) and (17) consititutes a two point (time) boundary-value problem. That is, the "initial" conditions on $y_{i}(x, t)$ and $p(x, t)$ are split. It is possible to determine an equation for $y(x, T)$, with which the system of equations (2), (16) or (18) and (17) can be soived (in principle) as an initial value problem. However, $y(x, T)$--that is, $y(x, T ; \underline{u})$ is the refined state estimate at the terminal time T, which is fixed, but arbitrary. Thus we shall consider the identification problem to be solved once having obtained an equation for $y(x, T ; u)$. We give the result as a theorem:
Theorem 2 Given the system of Equations (2), (16) and (17), then if $P(x, \xi, t)$ satisfies
(a) $\frac{\partial P(x, \xi, t)}{\partial t}-A_{\xi}[P(x, \xi, t)]-A_{x}[P(x, \xi, t) f-\delta(\xi-x)$
$+\int_{\Gamma_{s}} \frac{\partial P(x, s, t)}{\partial v^{k}} \frac{\partial P(s, \xi, t)}{\partial v^{t}} d s=0,(x, \xi, t) \in \Omega \operatorname{RxCOX}(0, T]$

$$
\begin{align*}
& P(x, s, t)=P(s, \xi, t)=0 \tag{22}\\
& P(x, \xi, 0)=\delta(x-\xi) . \tag{23}
\end{align*}
$$

(b) $P(\cdot, \cdot, t) \in H^{2}(\Omega \times \infty), \frac{\partial P}{\partial t}(\cdot, \cdot, t) \in L^{2}($ ($0 \times \infty), t \in(0, T]$,
$\left(\mathrm{H}^{2}(\Omega \times 8)\right.$ is the second Sabolev space) then:
(i) There exists one and only one $\hat{y}(\cdot, \cdot)$ e $L^{2}(Q)$ such that

$$
\begin{equation*}
y(x, T ; u)=\hat{y}(x, T) \tag{24}
\end{equation*}
$$

where $\hat{y}(x, t)$ is the unique solution of the following linear integral equation of the second kind
$\int_{\Omega} P(x, \xi, t)\left(\frac{\partial \hat{y}(\xi, t)}{\partial t}+A[\hat{y}(\xi, t)]-f\left(\xi^{\prime}, t\right)\right] d \xi=z(x, t)-\hat{y}(x, t)$
The conditions satisfied by $\hat{y}(x, t)$ on the closure of Q ara:

$$
\left.\begin{array}{lr}
\dot{y}(s, t)=z_{1}(s, t) & (s, t) e \Sigma \tag{26}\\
\hat{y}(x, 0)=z_{2}(x) & x \in \AA
\end{array}\right\}
$$

For a proof of this theorem, see Phillipson, ${ }^{3}$ The numerical solution. of equations (21) through (26) is not trivial. However an approximate solution is possible, using an eigenvalue expansion.? With the definitions

$$
\begin{aligned}
& P(x, \xi, t) \stackrel{1 \cdot i \cdot m}{=} P_{m}(x, \xi, t) ; P_{m}(x, \xi, t)=\sum_{i, j=1}^{m} P_{i j}(t) w_{i}(x) w_{j}(\xi) \\
& \hat{y}(x, t){ }^{1 \cdot i \cdot m} \hat{y}_{m}(x, t) ; \hat{y}_{m}(x, t): \sum_{i=1}^{m} \hat{y}_{i}(t) w_{i}(x)
\end{aligned}
$$

where $w_{i}(x)$ and $w_{j}(x)$ satisfy (1), it can be shown ${ }^{3}$ that (21) through (26) yield the familiar "lumped" results:

$$
\begin{gather*}
\frac{d}{d t}\left(P^{-1}(t)\right)+P^{-1}(t) A+A P^{-1}(t)+P^{-1}(t) I P^{-1}(t)-W W^{T}=0 \tag{27}\\
P^{-1}(0)=I \tag{28}
\end{gather*}
$$

$$
\begin{align*}
\frac{d \hat{y}(t)}{d t}+A \hat{y}(t)-f(t)+z_{1}(t) & =P^{-1}(t)[z(t)-\hat{y}(t)] \tag{29}\\
\hat{y}(0) & =z_{2} \tag{30}
\end{align*}
$$

where

$$
\begin{aligned}
P(t) & =\left\{P_{i j}(t)\right\}_{i, j}=1,2 \ldots \mathrm{~m} \\
\hat{y}(t) & =\left\{\hat{y}_{i}(t)\right\}_{i=1,2 \ldots \mathrm{~m}} \\
A & =\operatorname{diag}\left(\lambda_{i}\right\}_{i=1,2 \ldots \mathrm{~m}}
\end{aligned}
$$

$$
\begin{aligned}
& 44 \\
& \text {. } W W^{T}=\int_{r} \frac{\partial w^{*}}{\partial v^{\frac{\partial}{2}}} \frac{\partial v}{\partial v} d s ; \frac{\partial w}{\partial v}=\left\{\frac{\partial w_{1}}{\partial v^{W}}\right\}_{1 \leq 1,2,0 m} \\
& z_{1}(t)=\left\{z_{i j}(t)\right)_{i=1,2, . m} ; z_{\mu i}=\int_{i} z_{1}(s, t) \frac{\partial w i}{\partial v} d s \\
& z_{2}=\left\{z_{21}\right\}_{d=1,2,0 m} ; z_{21}=\int_{a} z_{2}(x) w_{1}(x) d x \\
& f(t)=\left\{f_{i}(t)\right\}_{i=1,2 \ldots m} f_{i}(t)=\int_{\Omega} f(x, t) w_{i}(x) d x \text {. }
\end{aligned}
$$

In Section G, wa report results using the suggested decoupling and subsequent approximation, for a simulated example. There, we alopo give results pertaining to the "discrete measumement" case induced by the functional (9).
F12 A Dinect Variational Method
To recapitulate, the problem is to select $u \in V$ such that

$$
\begin{equation*}
J(\underline{u})=\operatorname{Inf}_{\underline{v} \in V} J(\underline{v}): \tag{31}
\end{equation*}
$$

As we have, ${ }^{\text {eeen }}$, there is a unique $\underline{u} \in V$ with the property (31) and it is characterized by

$$
\begin{equation*}
a(\underline{u}, \underline{v})-l(\underline{v})=0 \tag{32}
\end{equation*}
$$

Equation (32) is the derivative of the functional $J(\underline{v})$ evaluated at \underline{u}. In terms of the gradient $\underline{G}(\underline{u})$, (32) is equivalent to:

$$
(\underline{G}(\underline{u}), \underline{v})_{V}=0
$$

with-G(u) given by (17). The direct method for determining $\underline{\mathbf{u}}$ involves searching on the quadratic sumface $J(\underline{v})$ along directions $\underline{E}^{k}(\underline{G})$ which lead eventually to $\underline{\mu}$. That is,

$$
\begin{equation*}
\underline{u}^{k+1}=\underline{u}^{k}+a^{k} \underline{\underline{s}}^{k}(\underline{G}) \tag{33}
\end{equation*}
$$

Because of the dennonstrated efficiency of conjugate directions of search, we shall enploy them here. The algorithm is as follows:
(i) Select $\underline{u}^{0} \in V$ (Initial guess)
(ii) Evaluate $G\left(\underline{u}^{0}\right)$ via (17). If $G\left(\underline{u}^{0}\right)=0$, then by (32), \underline{u}^{0} is the solution. If $G\left(u^{0}\right) \neq 0$, then for the $(i+1)_{\text {at }}$ iteration, ($1 \times 0,1, \ldots$,) proceed as follows:
(iii) $\underline{u}^{1+1}=\underline{u}^{1}+a^{j} \underline{a}^{1} \underline{B}^{0}-\underline{G}\left(\underline{u}^{0}\right)$.
$\underline{g}^{i+1}=-\underline{G}\left(\underline{u}^{i+1}\right)+\beta^{1} \underline{g}^{1}$
$\beta^{1}=\frac{\left(\underline{G}\left(\underline{u}^{i+1}\right), G\left(\underline{u}^{i+1}\right)\right)_{v}}{\left(\underline{G}\left(u^{1}\right), G\left(\underline{u}^{i}\right)\right)_{v}}$
in addition, a^{1}. is chosen so that

$$
J\left(\underline{u}^{i+2}\right)=\operatorname{Inf}_{r^{i} \in R^{2}} J\left(\underline{u}^{i}+r^{i} \underline{s}^{i}\right)
$$

It is possible to obtain an explicit expression for a^{1} :

$$
a^{1}=-\frac{a\left(\underline{s}^{1}, \underline{u}^{i}\right)-\ell\left(\underline{s}^{i}\right)}{a\left(\underline{a}^{i}, \underline{\theta}^{i}\right)}=\frac{\left(G\left(\underline{u}^{i}\right), \underline{G}\left(\underline{u}^{i}\right)\right) v}{a\left(\underline{g}^{i}, s^{i}\right)}
$$

He review some properties of the algorithm in the following theorems: Theorem 3 If $G\left(u^{i}\right) \neq 0, J\left(\underline{u}^{i+1}\right)<J\left(u^{i}\right)$
Corollary! The sequence of real numbers J ($\left.\underline{u}^{i}\right)$ is monotone decreasing and has a limit in the extended reals:

$$
\lim _{1+\infty} v\left(\underline{u}^{i}\right)=J_{\infty}=\operatorname{Inf}_{\underline{v a} V} J(\underline{v})
$$

Theorem 4 The sequence (\underline{u}^{i}) converges weakly to a unique $\underline{u} \in V$ and the limit \underline{u} ' has the property that

$$
J(\underline{u})=\operatorname{Inf}_{\underline{v} \mathbb{V}} J(\underline{v})
$$

that is,

$$
\begin{aligned}
& \lim _{i \rightarrow \infty} u^{i} \text { weakly } u \in v \text { (unique) } \\
& \text { and } J(\underline{u})=J_{\infty} \because
\end{aligned}
$$

We remark that at each iteration, the evaluation of $\underline{G}\left(\underline{u}^{\underline{i}}\right)$ involves the numerical solution of (2) forwards in time, then (16) backwards in time, which are the (numerically) stable directions of solution.

As before, the numeriaid solution requires an approximation of the
solutions to a set of partial differential equations. Again, we use the eigenfunctions of (1) to achieve this approximation. We discuss the results in the next section.
G. Numerical Results

The system chosen was the following:

$$
\begin{array}{ll}
\frac{\partial y(x, t)}{\partial t}-\frac{\partial^{2} y(x, t)}{\partial x^{2}}=212 & (x, t) \in(0,1) x(0, T] \tag{34}\\
y(0, t)=u_{1}(0, t) & t \in(0, T] \\
y(1, t)=u_{1}(1, t) & t \in(0, T] \\
y(x, 0)=u_{2}(x) & x \in(0,1)
\end{array}
$$

Input Measurements

$$
\begin{aligned}
& z_{1}(0, t)=u_{1}^{*}(0, t)+k_{1} N_{1}(t) ; u_{1}^{*}(0, t)=70+10 \sin 2 \pi t \\
& z_{1}(1, t)=u_{1}^{*}(1, t)+k_{2} N_{2}(t) ; u_{2}^{*}(1, t)=54.5 \\
& z_{2}(x)=u_{2}^{*}(x)+k_{3} ; u_{2}^{*}=70 e^{-0.25 x} \\
& k_{1}=4.2, k_{2}=0, k_{3}=2.8 ; \\
& N_{1}(t) \text { purely random function with amplitude } \pm 1.0 .
\end{aligned}
$$

Output Measurements
(a) $z(x, t)=y\left(x, t ; \underline{\mu}^{*}\right)+k_{0} N_{0}(t)$
(b) $z\left(x^{i}, t\right)=y\left(x^{i}, t ; \underline{u}^{*}\right)+k_{0}^{i} N_{0}^{i}(t) ;\left(x^{i}=0.2,0.4,0.6,0.8\right)$.
$k_{0}^{i}=8.0, N_{0}, N_{0}^{i}$ are random telegraph signals with amplitude ± 1.0.
The eigenfunctions appropriate to the suggested approximations are those given by (1)

The results obtained for our example using the method of Section F.l are shown in Figures 1, 2 and 3. An eight term expansion was adopted, and several selected variables are shown. It should be stated that the integration step size necessary to obtain a numerically stable solution for the $\left\{P_{i j}(t)\right\}$ was small (0.001) and this resulted in a large computational effort. The total time for solution was of the onder of tluee minutes. On the other hand, using the direct method of Section F.2, three iterations, (sufficient to recover \underline{u} such that $G(\underline{u})=0$) were • acoomplished in only 75 seconds. Some selected results are shown in
we use the ss the
(34)

Figunes 4, 5, 6, 7, and 8. Note that $J(\underline{y})$ is minimizod rapidly (Figure 9) and observe that $J(v)_{\text {measurenent (a) }}<J(v)_{\text {measurement (b) }}$

We remark that $G\left(\underline{u}^{i}\right)$ given by (17) was approximated by $G_{m}\left(\underline{u}^{i}\right)$:

$$
\begin{aligned}
G_{m}\left(u^{i}\right)= & \sum_{i=1}^{4} p_{i}(t) \frac{\partial w_{i}(s)}{\partial v^{*}}+u_{i}^{i}(s, t)-z_{1}(s, t) \\
& \sum_{i=1}^{4} p_{i}(0) w_{i}(x)+u_{2}^{i}(x)-z_{2}(x) .
\end{aligned}
$$

We observed that for the example chosen, the last three terms in the summation were identically zeno, that is,

$$
G_{m}(\underline{u})=G(\underline{u})
$$

Howèver in genenal, it is not clear in what sense $G_{m}(\underline{u})+G(\underline{u})$, and we are attempting to establish an appropriate result.

H. Summary and Conciusions

A special variational phnasing of a distributed identification

 problem resulted in a framework in which solutions were characterized using the theory of variational inequalities. Numerical techniques were suggested for recovering extrenalis to the variational problem, ane of which, the direct method, yielded promising results. This direct method is also applicable to the problem of deternining optimal boindary controls for certain diestributed optimal control problems.
References

1. Lions, J.L.; Stampacchia, G., "Vaniational Inequalities", to appear in the Corm. Pure and Applied Math. Vol. XX, No.3, August 1967, 493-519.
2. Balakrishnan, A.V.; Lions, J.L., "State Estimation for InfiniteDimensional Systems", J. Comp. and System Sciences, Vol. 1, (1967) pp. 391-403.
3. Phillipson, G.A., "The State Identification of a class of Distributed Systens", Ph.D. Thesis, Case फ̈estern Reserve Uhiversity, June 1967.
4. Lions, J.L., Magenes, E., "Renanques sur les Problemes aux Limites poum openateurs Paraboliques", C.R. Acar. Sc., Paris, Vol. 25, (1960) pp. 2118-2120.

(
0.60 .0

FIGURE 9

