
Probability in the Infinite Hat Game

Submission for the 2018 MITx Philosophy Award

Pascal Bachor∗

Part I: The Prisoner’s Perspective

Let {Pi}i∈N be a set of prisoners. Each prisoner Pi will randomly, by toss of
a fair coin, be assigned a hat color αi ∈ {0, 1}, where α ∈ A and A := ZN

2 is
the set of possible hat assignments1. We will sometimes refer to α as the actual
assignment. In the infinite hat game or Bacon’s Puzzle the prisoners will be
placed on a line such that each prisoner Pi can see all prisoners {Pj | j > i}
(and their hat color). They shall now simultaneously declare (a guess of) their
own hat color. We say a prisoner wins if they correctly declare the color of their
hat, else they lose.

For a, b ∈ A we say a ∼ b iff a and b differ at at most finitely many places.
It is easy to see that ∼ is an equivalence relation. Let c : A → A be a function
that assigns to each element a unique representative from their equivalence class,
that means a ∼ b =⇒ c(a) = c(b). Let Er := {a ∈ A | a ∼ r}. Assuming
the prisoners know c, we can construct a strategy for them that assures that
at most finitely many of them will declare the wrong color: Each prisoner Pi
identifies the equivalence class Ec(α) of α and declares c(α)i (this is possible
because Pi sees all but finitely many places of α). We will refer to this strategy
as the Strategy.

In this paper we will treat the question What is the probability for a particular
prisoner to declare correctly? and what role it plays in our treatment of the
puzzle. For simplification we will refer to this probability also as the Probability.

Let us first look into how Prof. Rayo treats the Probability. At the end of the
section in which the puzzle is introduced he states the following. “I suspect [..]
one’s probability of success is best thought of ill-defined.”. The puzzle is later
revisited at the end of the chapter Non-Measurable sets2. There he assumes the
perspective of some prisoner during the game, that is after the hat colors have
been assigned but before declarations are made.

∗bachorp@informatik.uni-freiburg.de
1We use Z2 = {0, 1} to make use of the modular addition a +Z2

b := a + b mod 2.
2I would not be able to state what’s following without a precise explanation Prof. Rayo

kindly gave to me personally.
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For that, we will now fix some prisoner Pk and define Wi := {a ∈ A | ai = c(a)i},
the set of assignments for which Pi will win.

Next, he argues that the probability for Pk to win is equal to the proportion
of winning assignments inside the equivalence class of the actual assignment
Ec(α) (which Pk is able to identify); Or equivalently, the probability of the
actual assignment to be in Wk given that it is in Ec(α).

Until this point I very much agree with his line of reasoning. It is, in my
opinion, a good idea to restrict ourselves to a subset of possible assignments (in
this case Ec(α)) when trying to make sense of the Probability. And in fact we
will continue in this manner below.

Now though, he proceeds by making what he previously called a suspicion a
claim. He states “I claim that there is no good answer to what that probability
is.”. He does not give any evidence supporting this claim (nor does he pretend
to have any) so we are left with his belief.

Claim (Rayo). The probability for some prisoner to declare correctly should be
considered ill-defined.

When assuming Pk’s perspective, I think Prof. Rayo’s argumentation is not
quite followed through. Namely, the assignments that agree with the infor-
mation we are given are not Ec(α) but only Tk,α := {a ∈ A | ak+1+i =
αk+1+i for all i ∈ N}, the assignments that have the infinite tail seen by Pk.
Thus, we would investigate the probability of Wk given Tk,α.

All the k + 1 unknown places of the assignments in Tk,α are determined by
independent coin tosses. Thus, the probability for each of these assignments to
be the actual assignment should be considered equal to 1

2k+1 . As the declaration

we will make is the same for all Tk,α and exactly half of the 2k+1 assignments
have a 0 (resp. a 1) at position k, exactly 2k assignments will agree with the
declaration (s.t. we win). Using Additivity, the probability for the assignment

to be of this kind would then be considered equal to 2k

2k+1 = 1
2 .

This, to me, is a convincing argument for why the probability to win from
Pk’s perspective should be considered 50%. Therefore, I will refuse Prof. Rayo’s
claim and claim the following instead.

Claim. The probability for some prisoner to declare correctly should be consid-
ered equal to 1

2 .

Part II: The Mathematician’s Perspective

We will now take a broader perspective and consider the situation before the
game starts, that is before any hat colors have been assigned. We first determine
some properties that we would like a reasonable probability measure over A to
have and then investigate how this affects the probability of the event Wk.
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Definition. µ : P(A) → [0, 1] is a measure if for A,B ⊆ A with A ∩ B = ∅ it
holds

(i) µ(A) = 1 and

(ii) µ(A ∪B) = µ(A) + µ(B).

The reasoning behind these constraints has been discussed in the course.

Definition. For a, b ∈ A we have (a+ b) ∈ A with (a+ b)i := ai +Z2
bi for all

i ∈ N. A→d := {a+ d | a ∈ A} is the translation of A by d.

Note how this compares to the definition we have seen in the course.

Definition. µ : P(A)→ [0, 1] is uniform if for all A,B ⊆ A with B = A→d for
some d ∈ A it holds µ(A) = µ(B).

To see why this would be a reasonable property, let’s say the assignment α
is constructed using the following procedure: For each Pi we flip a fair coin Ci.
If it shows Heads we set αi = 0, else αi = 1. Because the coins are fair reversing
this rule for some of the coins (i.e. αi = 0 iff Ci shows Tails) won’t change any
of the probabilities. Let B = A→d. Suppose we reverse the rules for all coins
{Ci | di = 1}. Now, for any outcome of the coin tosses an assignment will be
in B iff it would be in A under the usual rules. Thus, the probability for an
assignment to be in A should be equal to the probability for it to be in B.

Uniformity captures, in a way, the fact that the coin tosses are fair and
independent. For example µ({a | ai = x} ∩ {a | ai+1 = 0}) = µ({a | ai =
x} ∩ {a | ai+1 = 1}). Whatever Ci shows, Ci+1 will show Heads with the same
probability as Tails.

Theorem. Let M be a uniform measure, then M(Wk) = 1
2 .

Proof. Let d ∈ A such that di = 1 :⇔ i = k and Lk := W→d
k . Note that Lk

forms the set of assignments for which Pk loses. It holds

M(Wk) = M(Lk) by uniformity, (1)

Wk ∩ Lk = ∅ and (2)

Wk ∪ Lk = A as Pk wins iff they don’t lose. (3)

Using the definition of measure it follows

M(Wk) + M(Lk)
(ii),(2)

= M(Wk ∪ Lk)
(3)
= M(A)

(i)
= 1.

With (1) follows M(Wk) = 1
2 .
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The Way Out

Finally, we want to asses our view of the puzzle in the context of what we’ve
seen in this paper. The paradoxical situation of Bacon’s puzzle boils down to
these supposedly contradictory statements3.

1. Each prisoner has a 50% chance to win.

2. All but finitely many prisoners will win in any case.

If we consider the Probability ill-defined in case the Strategy is implemented,
we can reject the first statement and escape the puzzle this way. We have argued
against that.

If the prisoners follow the Strategy, we cannot reject the second statement
and we have argued for accepting also the first. The way out is, in my opinion,
that the two statements only seem contradictory when in fact they are not.
One might be tricked into thinking that if the Probability is 50%, using the
Strategy would be comparable to each prisoner tossing a coin to decide their
declaration. The important difference is, that the declarations the prisoners
make with the Strategy are not independent of each other. Thus, the possibility
for the prisoners to coordinate in certain ways is not ruled out. Also, one might
tend to overestimate the fact that the number of losing prisoners is finite and
forget that it is in fact not bounded across multiple instances of the game. Thus,
any prisoner has almost no prospect of being part of the infinite tail of prisoners
that are guaranteed to win4.

I hope this paper has not only (I) shown the necessity of accepting both
statements but also (II) helped in making sense of how this is possible. The
latter, amongst other things, by showing how a reasonable probability measure
could look like in an environment where both statements hold5.

3As laid out in the subsection Puzzle Solved?.
4Similar observations are made by Prof. Rayo.
5A uniform measure assigns a probability of 1

2
to all events Wi, while all assignments are

part of all but finitely many of the Wi.
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