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PREFACE 

The present book is a case study of an assembler-compiler program. It is intended to 
be an advanced programming text for college students, system programmer trainees, and 
anyone trying to acquire a general understanding of system programming techniques. We 
feel that laboratory exercise is an important vehicle for teaching the techniques discussed 
in this volume. Therefore, the translator program example used must be written in an 
existing language of an existing computer. We consequently have chosen the FAP language 
of the IBM 7090 computer to describe the translator program. Other reasons for this 
particular choice are given in Chapter 1: Any loss of generality is partially offset by the 
fact that the 7090 is currently the most widely used large - scale computer in the world and 
one to which many colleges and universities have acc.ess. 

The motivation for the present work began with the large gap between the usual beginning 
digital computer programming course and the sophisticated system programming tech­
niques of interest in programming research and development. It was felt that too many 
students were uncritically using the existing programming systems and were overawed 
by the apparent complexities in such programs as the original F0R TRAN compiler. 

In order to serve as an introduction to system programming and to convince the student 
that the principles of translators are relatively few and basically simple, a Classroom 
As sembly Program named CAP was written. It was first used in November 1960, in 
the M. I. T. course 6.251, Digital Computer Programming Systems. Since then, an execu­
tion monitor program has been added for the convenience of both students and instruc­
tors. 

Course 6.251, where CAP has been used, is a one-semester introductory course of 
12 units (3 contact hours per week, 9 hours preparation.) The course begins with study 
of an algebraic language such as F¢R TRAN or MAD. The next section covers a machine 
language such as FAP. The third section is devoted to the study of the CAP as sembler­
compiler. During the semester, the course attempts to present most important contem­
porary ideas about computer programming. Many of these ideas are then illustrated in 
the CAP exercise. 

Specifically, CAP has been used as follows: Students after studying the translator have 
been expected to make specified improvements and changes to it, using 6 to 8 computer 
runs for debugging purposes. (More ambitiously, the students could have written CAP 
from the specifications, but insufficient computer access prevented this for even the 
better students.) 

For each of the eight semesters that CAP has been taught, the student enrollment, which 
has been gradually increasing, has been a cross section of the more than twenty depart­
ments at M. I. T. Thus we conclude that the average student is able to grasp and enjoy the 
basic principles of a translator program when it is appropriately presented. 

The reader is as sumed to be able to program in the F AP machine language suffic iently 
well to know how to look up feature s of the F AP as sembler or of the 7090 computer in the 

iii 



IV 

~:'t 
IBJ..1 published reference manuals. I He is assumed also to be acquainted with the Binary 
Symbolic Subroutine (BSS) linkage rtnd relocation used in the IBM F0RTRAN Monitor Sys­
tem (described in the FAP Reference Manual)::: 

The book is organized into two major divisions, the description of CAP (five chapters) 
and the appendices containing listings of the CAP assembler. The compiler part of the 
program is considered to be advanced material, and the text advises the beginni.ng reader 
which parts may be safely skipped over. 

The appendices include listings of both the assembler-compiler program and of the ex­
ecution monitor program. The listing of the assembler-compiler is essential to an under­
standing of the text. The execution monitor listing, while not so important, is included 
for two reasons. First, an advanced student may make the execution monitor a further 
case study in advanced programming techniques. Second, it is included for completeness, 
for the instructor who may wish to adapt it to his needs. It should be noted that the exec­
ution monitor program does make use of a few specific features of the current M. 1. T. 
F¢RTRAN Monitor System and 7090 computer. 

Acknowledgment should be given to the efforts of the many teaching assistants wh'o have 
labored to make the use of CAP effective. Particular mention is made of Neil Haller for 
his work on the early stages of CAP and introducing the first version of the execution mon­
itor program, and of Neil Barta for his preliminary description of the UPDATE feature of 
FAP, from which a major part of Chapter 5 is adapted. We also are especially apprecia­
tive of the useful comments on the present n1.anuscript made by Neil Barta and Thomas 
Hastings. 

The programs described in this book were developed at the M. 1. T. Computation Cen­
ter, Cambridge, Mas sachusetts. 

Cambridge, Mass. 
May, 1963 

-'--,-

F. J. Corbat6 
J. W. Poduska 

J. H. Saltzer 

Reference Manual, F¢RTRAN Assembly Program (FAP), IBM Publication C28-6235 
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Chapter 1 

INTRODUCTION 

In an age of increasing complexity, the reader may reasonably ask why he should want 
to learn the innermost structure of a digital computer programming system. For the day 
of the renaissance man is indeed past; the intricacies of pre'Sent-day knowledge as well 
as the limitation on time for comprehension, of nece s sity, allow a person to be a special­
ist in but a limited number of areas. The answers will vary, but it is inescapable that 
digital computers have already during their short presence become an immensely impor­
tant device in modern society. As for the future implications, the only issue of debate is 
whether or not computers are bringing a second industrial revolution as the steam engine 
heralded the first. Examples of the penetration of computers into our daily activities 
abound; to name but a few: banking, payroll processing, production and inventory con­
trol, income tax processing, satellite orbit computation and tracking, numerically con­
trolled machine tools, airline reservation systems, and military defense communication 
networks. 

Because digital computers have become important, it is inevitable that the accompa­
nying system programs will grow in importance too. For computers reach a high level 
of effectiveness only when the programming systems allow the ultimate user of the system 
to program directly-albeit often unknowingly by that name-and thereby avoid in~erme­
diary programmers. The development of these direct usage language s is presently limited 
by the ease and rapidity that suitable translation programs can be written. These trans­
lation programs, are variously named problem oriented language proces sors, compilers, 
or assembly programs, depending on the language level at which they meet the user. 
Today, more and more, a computer is incomplete without an accompanying programming 
system of considerable sophistication. 

Moreover, computer systems are still rapidly evolving in many directions: The detailed 
circuit technology is still making great strides, the logical design is changing to include 
multiconsoles and multiprocessors, and the programming systems are being enlarged to 
include larger roles such as the time-shared operation of the computer. It is important 
in this highly fluid state of affairs that others in addition to the system programming spe­
cialists have an understanding of programming systems. What is needed for the optimum 
use of computers in the future is that responsible individuals within computer-affected or­
ganizations understand the problems and general techniques of programming systems to 
the same extent that the problems and techniques of computer hardware are now under­
stood. For without knowledgeable and critical guidance there will be not only many costly 
abuses of computers but there will be little vision and few ideas for new computer appli­
cations. 

To give the reader insight into contemporary programming systems, the following chap­
ters will present a case study of the inner structure of a combination assembler-compiler 
program. The program is called CAP, an acronym for Classroom Assembly Program, 
and it contains many of the typical features of present-day translators. The case study 
technique will prove helpful since there are many interrelated .factors to consider and 
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2 Introduction 

discuss. As well as acqulrIng an inner knowledge of a translator, the reader of CAP will 
acquire three additional benefits, namely: 

1. The study of detailed programming techniques. 
2. How to read and study a large program. 
3. How to organize a large program. 

For several reasons the CAP program has been written in the FAP symbolic machine 
language of the IBM 7090 computer. A machine language representation has been specifi­
cally chosen because of its concreteness and lack of ambiguity for the reader. This rea­
son is especially pertinent when one considers that one of the principal objectives of the 
study of CAP is to remove the mystery of system programming and to establish a feet-on­
the-ground attitude in the reader. Finally, the FAP language, rather than S~S, for 
example, has been used in order to have its powerful subprogram feature which allows 
separate translation and rigid independence of program segments - a feature which greatly 
assists the initial understanding of a large program. 

CAP is weaker than the usual translators, such as FAP, in that it has only subsets and 
example s of various special feature s and does not have the machinery for separately trans-
1atable subprograms. CAP differs from FAP in style, too, in that it is more elegantly 
written (that is, in terms of simplicity, brevity, and clarity) and highly organized with 
many subprograms. The CAP style is in contrast to that of many translator programs in 
active use where extrerne short-cuts have been used in the interest of minimizing oper­
ating speed. (Often the short-cuts used are analogous to those for reducing the cost of 
commercial television receiver and frequently shortsighted from a maintenance point of 
view.) The basic techniques used in translators remain the same, however, so that CAP 
is a valid program from which to learn. One feature of CAP that merits comment is that 
although intermediate tapes are simulated, the program fits entirely in core memory and 
is independent of intermediate storage device s. Pre sent- day translation programs have 
frequently overlooked the speed advantages of remaining entirely in core memory partic­
ularly while translating short subprograms which should be the major use when a trans-
1ator allowing subprograms is utilized. 

Finally, before proceeding with the remaining chapters, discussion is in order on how to 
study CAP. Past experience with many students indicates that the following advice is useful: 

1. Obtain an understanding of what CAP does from the point of view of a user. 
2. Determine the specifications of CAP as a program. 
3. Determine the specifications of subroutines PASS!, and PASS2. 
4. Starting in PASS!, study the specifications of the successive programs in the hier­

archy of subprogram usage. (Omit the compiler.) 
5. Starting at the top of the hierarchy, study how each subprogram meets its specifi­

cations. Review steps 2 to 4 sufficiently often that you are always sure of what a pro­
gram is supposed to do before considering how it does it. 

6. Remember that all subprograms can only communicate by means of their calling 
sequences because they are separately translated. 

7. When studying, it is a great advantage to know that a program has been debugged. 
Nevertheless, there will always be sections of program which appear not to work cor­
rectly. After spending a reasonable amount of time, if no progress is made, avoid getting 
bogged down by jotting down on a pad the uncertain point for later discussion with others. 

8. The compiler can be studied easily after the basic CAP is understood. 
9. The advanced student can improve his program analysis abilities, by studying the 

execution monitor program, although it is given largely for reference purposes. 



Chapter 2 

CAP USER'S REFERENCE MANUAL 

2.1 The CAP Language 

Before we begin to study how the CAP assembly program works, we should pause to 
determine exactly what job it is intended to do. We can perhaps get the best picture of 
this job if we examine the user's reference manual for the CAP language. This reference 
manual is the subject of the present chapter. The brevity of the reference manual is at 
once an indication of the simplicity of the CAP language and of the assembly program it­
self. 

2.2 Card Format 

CAP instructions are typed one to a card as shown in Figure 2.1. Columns 1 to 6 are 
known as the symbolic location field and may contain a symbol or blanks. Columns 7 and 
12 are always blank, leaving room for a three or four letter operation code in the opera­
tion field, columns 8 to 11. The variable field begins in column 13 and terminates at the 

1 61 /8 11 12 13 72 73 80 

symbol oper- variable field Space 

ation for 

~/ ~ 
label 
and 

BLANK sequence 
numbers 

Figure 2.1. Format of CAP symbolic cards. 

first blank column, or column 73. An arbitrary comment may follow this first blank 
column. This comment will be ignored by the assembly program as will the sequence 
number field, columns 73 to 80. 

S1mbolic Location Field 

This field may contain a symbol, a string of one to six characters, at least one of which 
is nonnumeric, and none of which are the following eleven special characters: 

+ / = $ 
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4 CAP User's Reference Manual 

A symbol may be defined only by its appearance in the symbolic location field of some 
instruction card. 

Operation Field 

This field may contain a mnemonic associated either with one of thirty-four 7090 in-
structions or one of five pseudo- operations. The allowed 7090 instruction mnemonic s are 

ACL ANA CAL CHS CLA CLS C¢M FAD 

FDP FMP FSB LAC LAS LBT LDQ LGL 

LGR LXA ¢RA PBT RQL SLW ST¢ STQ 

SXA TIX TMI TPL TQP TRA TSX TZE 

XCA XCL 

The instructions LAC, LXA, SXA, and TSX are assembled with a tag of 4. The instruc­
tion TIX is assembled with a tag of 4 and a decrement of 1. 

The allowed pseudo-operation mnemonic s are 

REM INT ¢CTL C¢MP END 

The effect of these pseudo-operations is explained in a later section. 

Variable Field (Operations) 

The variable field specifies the address of an operation. It may contain an expression 
consisting of a string of symbols and decimal integers connected by the break and grouping 
characters: 

+ 

All multiplications must be made explicit by the use of the asterisk even if one of the 
operands is a parenthetical expression. The variable field is evaluated in signed 35 bit 
integer arithmetic. If the result is negative, it is two's complemented before the final 
step in which the answer is taken modulo 215. The result is combined with the specified 
operation code by a logical" OR" . 

Sequence Number Field 

Columns 7 3 to 80 may be used for labeling and sequence numbering and are ignored by 
the CAP as sembly program. 

2.3 Pseudo-Operations 

REM The REM pseudo-operation is used to introduce an arbitrary remark into the 
assembly listing. Card columns 1 to 80 will be printed and the card will be otherwise 
ignored by the assembler. If a symbol appears in columns 1 to 6, it will be ignored. 

INT INT is a data-generating pseudo-operation. The variable field of the INT pseudo­
op consists of signed decimal integers separated by commas and terminating at the first 
blank column. For each decimal integer, a word is assembled with the decimal integer 



Output of CAP 5 

inserted in the left half of the word. A comma with no integer following it will cause a 
word of all zeros to be assembled. A decimal integer may be preceded by a minus sign 
and must be of absolute value less than 217. A symbol, if any, appearing in the symbolic 
location field will be defined to be the location of the first integer assembled. Succeeding 
integers will be placed in succeeding locations in core storage. 

¢CTL The twelve characters in card columns 13 to 24 are taken to be octal digits and 
are used to form a 12 digit octal word in core storage in the next location to be as signed 
by the assembler. If the characters appearing in columns 13 to 24 are not octal digits, an 
incorrect word will be generated and no error indication will be made. A symbol in the 
symbolic location field will be defined to be the location of the generated word. 

C¢MP The C¢MP pseudo-op specifies that the entire variable field, columns 13 to 72, 
is taken to be an arithmetic statement which is to be compiled, in much the same manner 
as in F¢R TRAN or MAD. Blanks are ignored and commas may be used to indicate tagging. 
The arithmetic statement must consist of a symbol followed by an equal sign and followed 
by an arithmetic expression. This expression may consist of symbols connected by the 
break and grouping characters: 

+ / 

Numbers in the expression will be taken as symbols referring to memory locations. The 
indicated arithmetic expression will be compiled in floating point arithmetic" and a list of 
the instructions compiled will appear on the CAP assembly listing. If a symbol appears 
in the symbolic location field of the C¢MP card, its value will be the location of the first 
compiled instruction. 

END This pseudo-op marks the physical end of the program and defines the entry point 
to the program to be the value of the expression in the variable field. If a symbol appears 
in the symbolic location field, it is given the value of the first location not used by the 
program. 

2.4 Use. of CAP 

CAP is a package of subroutines which is called by 

TSX $CAP,4 

The AC should confain the location in core storage into which the first instruction of the 
symbolic program is to be assembled. When CAP is finished it will leave in the AC the 
entry point to the program. The sense register (SI) will be nonzero if any as sembly 
errors were noted by CAP. 

2.5 Output of CAP 

The CAP assembler has two outputs, a printed assembly listing, and a binary machine 
program. The listing consists of one or more printed lines for each instruction card in 
the symbolic input deck. This line contains the 80 columns of the original card, the 
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12 digit octal word which CAP has as sembled as well as the octal location in which the 
instruction has been placed, and pertinent coded error indications. In the case of C¢MP 
pseudo-ops, the C¢MP card will be printed and followed by a list of the instructions gen­
erated by the compiler in the format described earlier. The assembly listing is written 
on an output tape for later printing. The binary machine program is left in core storage 
beginning at the location specified by the program which called CAP. 

2.6 Restrictions and Error Indications 

1. No more than 100 symbols may be defined. If this restriction is exceeded, further 
symbols are ignored and a comment is printed at the beginning of the assembly listing, 
and SI bit 17 will be turned on. 

2. All operation code s must be among those listed earlier in this chapter. If an illegal 
operation code is encountered, it will be treated as zero, SI bit 34 will be turned on, and 
the letter I' 0" will be printed on the assembly listing next to the offending instruction. 

3. All symbols appearing in variable fields and C¢MP statements must be defined. If 
an undefined symbol is encountered, it will be given value zero, SI bit 35 will be tUrn on, 
and the letter "U" will be printed next to the offending instruction. 

4. The variable field of an INT pseudo-operation must contain only decimal integers, 
preceded by plus or minus signs and commas. If an illegal character is encountered, 
that word will be as sembled as zero, SI bit 33 will be turned on, and the letter "E" will 
be printed on the assembly listing next to the offending pseudo-oPe 

5. No more than 200 separate elements and break characters may appear in a C¢MP 
statement. If this restriction is exceeded, the C¢MP statement is skipped,. and SI bit 14 
will he turned on. 

6. No more than 125 nested parentheses may appear in an arithmetic expres sion in a 
variable field. If this restriction is exceeded, an incorrect value may be computed and 
SI bit 15 or 16 will be turned on, depending on the nature of the parentheses count. 

The following two restrictions occur when CAP is run under the Classroom Execution 
Monitor described in Chapter 5: 

7. No more than 150 cards may appear in the symbolic program. 

8. The symbolic program must not assemble into more than 256 binary machine in­
structions or require more than 300 card images to be written on the collation tape. 



Chapter 3 

THE CAP ASSEMBLER 

3.1. How Does an Assembler Work? 

In this chapter we shall examine in detail the workings of CAP and of assembly programs 
in general. While references to the exact coding of CAP are specific to this assembly pro­
gram, the general discussion and flow charts are common to most assembly programs for 
most computers. 

The purpose of any assembly program is to translate the symbolic cards describing a 
machine language program into that machine language program. For convenience, this 
translation can be considered to consist of two operations: First, the mnemonic codes 
representing machine operations must be replaced by the binary machine codes represent­
ing those same operations; and these binary codes must be assigned locations in core stor­
age. Second, the symbolic variable field of each instruction must be evaluated in terms 
of the symbols appearing in the symbolic lbcation fields of other instructions, and the re-
sulting address must be inserted in the instruction. Consider the following program, 
written in the CAP language: 

CAL BITS GET C¢UNT. 
SLW W¢RD SAVE. 

HERE TRA HERE ST¢P. 
BITS INT 6 BIT C¢UNT. 
W¢RD INT 0 ST¢RAGE F¢R BIT C¢UNT. 

In order to translate the first instruction, CAL BITS, we need to know two things. First, 
what is the binary machine code corresponding to the mnemonic CAL? Second, what is 
the value of the address part of the instruction, that is, what is the value of the symbol 
BITS? The first question can be answered by reference to a table of operation mnemonics 
and machine codes, an essential part of any assembler. The second question, however, 
requires knowledge of which symbolic card has the label BITS. This knowledge can be 
gained only be going completely through the symbolic deck once to determine the location 
value of each symbol. 

We see, then, that the assembly program must go through the symbolic cards twice. The 
first pass through the symbolic cards is required to assign each instruction to a place in 
core storage and thereby to define the value of the symbol, if any, appearing in its symbolic 
location field. Then, on the second pass through the cards, it is possible to evaluate the 
variable field of each instruction on the basis of the symbols defined on the first pass. 

We may expect, therefore, that CAP will exhibit a basic structure consisting of two 
passes through the input symbolic card deck. In fact, since CAP is coded in the form of 
independent subroutines, we shall find that this two- pass structure is handled by two sub­
routines, namec, conveniently, PASSI and PASS2. These two subroutines are called by 
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Return to caller 

Figure 3.1. Flow di­
agram of subroutine 

The CAP As sembler 

another single subroutine named CAP. (The reader should note 
that the name CAP will hereafter be used both for the entire as­
sembly program and for the subroutine which calls PASSl and 
P ASS2. The meaning of any particular usage should be clear 
from context.) Let us examine a flow diagram of the subroutine 
CAP, in Figure 3.l. 

The CAP subroutine is called by the sequence 

CAL 
TSX 

¢RG 
$CAP, 4 

CAP. in the main subprogram. (See listings of MAIN and CAP in Ap­
pendix!.) ¢RG specifies the location in core storage at which 
the machine language program assembled by CAP is to start. 

Subroutine CAP then gives this information as an argument to subroutines PASSl and 
PASS2, which perform the two passes through the symbolic card deck mentioned earlier. 

Note that subroutines PASSI and PASS2 upon encountering errors turn on bits in the 
sense register (SI); subroutine CAP therefore clears the SI before calling each subroutine, 
and saves its contents upon return. The main program, upon return from CAP, could 
determine if the assembly was successful by examining the SI, although it does not do this. 

3.2 Pass One, Symbolic Definitions 

It is stated earlier that the purpose of the first pass is to assign each instruction a 
place in core storage and thereby define all symbols appearing in location fields of the 
symbolic program. The procedure involved in doing this is, as might be expected, quite 
straightforward. Fir st, an instruction location counte r (ILC) is set to contain the loca-
tion where the first instruction is to be assembled, which is the origin of the machine lan­
guage program being gen~rated by CAP. Then, a card is read. If it is not a pseudo- op­
eration, the symbol, if any, appearing in the symbolic location field is defined, the card 
is put away in a place at which it can be found by pass two, and the lLC is incremented by 
one. The process is then repeated for the next card. If a pseudo- operation is encountered, 
some special processing may have to occur. For example, when the END card is encoun­
tered, pass one should terminate rather than continue reading cards. A flow diagram of 
pass one is shown in Figure 3.2. 

If we examine the coding of the loop in subroutine PASSl, we find that it takes very few 
instructions, primarily because the difficult jobs are relegated to subroutines. For 
example, the box labeled "Read card" is handled by a subroutine named READI. The en­
tire operation, of determining whether there is a symbol to define and defining it to be the 
value of the lLC, is handled by another subroutine SYMST¢. Similarly subroutine WCTI 
handles the problem of saving the card for the second pass. If we believe that these sub­
routines work as their calling sequences specify, the understanding of pass one is greatly 
si m plifi ed. 

In fact, the physically largest section of subroutine PASSl is devoted to processing the 
pseudo- operations, even though this processing is perhaps the least important function of 
pass one. Let us examine what must be done when pseudo-operations are encountered. 
Perhaps the simplest procedure occurs for the pseudo- operation REM. In this case the 
loop is re- entered after skipping the operations of symbol definition and increasing the 



Pass One, Symbolic Definitions 

Save card 
for pas s two. 

Increment 

Start 

no yes 

Store symbol in 
~------____________ ~.-~symbol table with 

ILC as value. 

Figure 3.2.Flow diagram of the first assembly pass. 

ILC. The only procedure of interest is saving the REM card for pass two. (See Figure 
3.3, a flow diagram including pse 1ldo- op proces sing. ) 

9 

In the case of the ¢C TL pseudo- operation during pass one, the only concern is the num­
ber of words of storage required (one in this case) and the definition of any symbol appear­
ing in its symbolic location field. Therefore, it can be handled exactly like the ordinary 
operation codes, that is, by defining the symbol and increasing the ILC by one. 

If an INT pseudo- operation appears, the same considerations apply as before. However, 
the variable field of the INT may specify that several words be generated. (See INT de­
scription in Chapter 2.) The variable field always specifies that at least one word should 
be generated. If there are to be additional words, for each extra word there will be a 
comma in the variable field. Therefore, the assembler may learn how many words will 
be generated simply by counting the number of commas in the variable field and adding 
one. Remember that the only concern of pass one is counting the number of registers 
used by the source program and defining symbols. The procedure used when an INT is 
encountered is, then, to test for and define the symbol in its symbolic location field, and 
to count the number of commas in its variable field. The subroutine C¢MMA performs 
thi s last step, and also adds one plus the number of commas to the ILC. The loop is 
then re- entered for the next card. 

The operation of the C¢MP pseudo- operation will not be explained in detail here except 
to say that the symbol, if any, in columns 1 to 6 is defined, the card is saved for pass 
two, and a subroutine C¢MP¢P is called to process the pseudo- operation variable field. 
C¢MP¢P causes the generation of the instruction sequence required to carry out the com­
putation indicated in the variable field and increases the ILC appropriately. The opera­
tion of subroutine C¢MP¢P is not essential to an understanding of pass one or the rest 
of CAP. A full discus sion of the subroutine may be found in Chapter 4. 

We come finally to the END pseudo- operation. When this card is encountered, pass 
one is complete except for certain simple terminal procedures. The subroutine END¢P 
must first'be called to finish off the work of the C¢MP¢P subroutine by making space at 
the end of the program for the temporary storage locations required by all the compiled 
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Figure 3.3. Flow diagram of subroutine PASS!. 
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instruction sequences. Then, the symbol, if any, in columns 1 to 6 of the END card is 
defined and the card saved for pass two. Since pass one is now finished the value of the 
ILC, which is now equal to the first location not used by the object program being as­
sembled, is placed in the AC, and subroutine PASSI returns to the program which called 
it. 

3.3 The Collation Tape 

It has been mentioned several times earlier that pass one must put the symbolic card 
images away in a place where pass two will be able to find and process them. While in 
principle it would be possible for pass two to backspace the input tape (or the operator to 
reload the card reader with the symbolic program), in practice it is much simpler for 
pass one to write the card images on a second tape, the collation tape. Pass one then 
ends by rewinding this collation tape, and pass two can begin again with the first card in 
the symbolic input program. 

It is worthwhile noting, also, that when small symbolic programs (say, less than 150 
cards) are being assembled, there is ho reason why a collation tape is necessary, as 
there is enough room in the core storage of a 7090 to hold all the card images at once. 

11 

A common alternate procedure for larger programs is to collect a buffer of, say, 150 
cards, then write the entire buffer on a collation tape at once. While the tape write takes 
place, the assembly program can be processing more input cards and storing them in a 
second buffer. 

Still another method uses two collation tapes, collating half the input cards on one, 
then starting a rewind so that when pass two begins there will be no wait for tape position­
ing. The second half of the program is collated on the second tape, which is rewound at 
the end of pass one, and which will be properly positioned about halfway through pass two 
when it is needed. 

1£ no collation tape is used, it is still convenient for pass one to call a subroutine to 
store the cards; the subroutine simply inserts them into a core memory buffer rather 
than writing a collation tape. Similarly, pass two uses a complementary subroutine 
which locates and transmits the core buffer rather than reading back from a collation 
tape. 

3.4 Pass Two,Symbolie Evaluation 

When all symbols have been defined by pass one, it is possible to finish the assembly 
by processing each card image in order, and determining values for its operation code and 
for its variable field. The purpose of pass two, it will be remembered, is to evaluate 
the operation code and variable field of each card, to as semble the binary machine word 
required to represent the instruction, and to print an assembly listing containing the 
original card and the octal equivalent of the machine word generated. Again, the basic 
procedure is straightforward, although pass two is a little more complicated than pass 
one. The ILC is again set to start at the origin specified by the program which called 
CAP. 

The main loop of pass two then operates as follows: First, a card is read from the 
collation tape. 1£ the card does not refer to a pseudo- operation, the operation code is 
evaluated by comparing it to entries in the operation table. The numeric code of the 
machine instruction corresponding to the given mnemonic is obtained from this table. 
Then, the variable field is evaluated. These two results are combined by a logical "OR" 
and inserted in core storage at the location specified by the ILC. (An alternate proce­
dure might be to store the instruction in an output buffer for punching.) A line is printed 
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on the assembly listing containing the card image and the octal equivalent of the word that 
was inserted in core storage. Finally, the lLC is increased, and the loop repeated for the 
next card. 

The main loop of subroutine PASS2 takes but a few instructions, as most of the difficult 
jobs are handed down to subroutines to perform. The cards are read from the collation 
tape by subroutine READ2, and the assembly listing is printed by an internal subroutine 
PRNT 1. The most difficult job, evaluation of the variable field on the basis of the sym­
bols defined in pass one, is handled by subroutine VAREVL. 

As in pass one, the physically largest section of coding in pass two is that involved in 
processes not strictly important for an understanding of how pass two works, that is, 
processing the pseudo- operations, and printing the assembly listing. The pseudo- opera­
tions are handled as special cases as they were in pass one, by performing some simple 
operations and re- entering the main loop at a strategic point. Let us examine them again, 
one at a time, to learn how they each fit into pas s two. 

The REM Pseudo-operation again is the simplest of the pseudo-ops. The REM card is 
printed on the assembly listing, and the loop re- entered at the point where the next card 
is read. (See Figure 3.4). A slightly different print subroutine is used, as no octal word 
was generated for the REM pseudo- op and nothing need be printed in the columns normally 
used for printing the octal word. 

The C¢MP pseudo- operation is handled exactly like the REM pseudo- operation in pas s 
two, since all compilation operations were finished in pass one. (See Chapter 4 for de­
tails on the C¢MP pseudo- operation. ) 

The INT pseudo- operation is taken care of very simply by calling a subroutine INT¢P 
to evaluate the variable subfields and to insert the results in core storage. The INT card 
is printed on the assembly listing along with the first machine word generated. 

The ¢CTL pseudo-operation is handled on the spot by PASS2 as an example of in-line 
coding. A BCD-binary conversion is performed, the result inserted in core storage, 
and the ¢C TL card printed on the as sembly listing. 

As a last step for each of the above pseudo- operations, the pas s two loop is re- entered 
at an appropriate place. In the case of the END pseudo- operation, however, the loop 
terminates. The variable field of the END card is evaluated by subroutine VAREVL, 
and this value is saved (and printed) as the entry point to the assembled machine program. 
Pass two is now complete. The error flags, if any, are placed in the SI, and PASS2 re­
turns to the program which called it. 

A comment on the error flags in subroutine PASS2 is in order at this point. Whenever 
an undefined symbol is encountered in a variable field by subroutine VAREVL, or an il­
legal operation code by PASS2, or an INT error by subroutine INT¢P, an appropriate 
bit in the sense indicator register is turned on. The subroutine used to print out the 
assembly listing examines the SI and prints any error flags next to the instruction being 
processed. The SI is then set to zero before the next instruction is processed. In ad­
dition, one cell is kept throughout pass two which contains "the logical combination ("0R") 
of all the error bits of individual instructions. It is this last cell that is placed in the 
SI when pass two is finished. 

3.5 VAREVL, Evaluation of the Symbolic Variable Field 

We now come to the problem of evaluating the symbolic variable field of each instruc­
tion; a problem often considered to be the essence of the assembly process. At first 
glance, given that the values of the symbols which might appear in a variable field have 
been defined during pass one, we might think that this evaluation would be quite easy. 
In fact, if we were asked to carry out such. an evaluation we would have no difficulty work­
ing out the answer in a short time. However, the algorithm needed for the evaluation is 
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surprisingly complicated, because of the existence of an implied order of operations in 
the mind of the person writing the expression. Consider, for example the following CAP 
symbolic instruction: 

X CAL ALPHA+4):~ BETA 

where ALPHA and BETA are symbols which appear in the symbolic location fields of 
cards elsewhere in the program. In evaluating the expression "ALPHA+4>:~ BETA", the 
multiplication must be carried out before the addition operation, or else an answer will 
be obtained which is different than the one intended by the writer of the expression. Al­
though this order ot precedence is a usual convention in mathematical notation, it must 
be systematically observed by the assembler when evaluating the expression. 

Let us examine a moderately complicated expression and see what sort of combinations 
of symbols may appear. After figuring out what procedure is used in each of these cases, 
a general procedure will begin to emerge which can be formalized into an algorithm for 
the evaluation procedure. 

Let us take, as an example, the symbolic expression 

and assume that ABC, ALPHA, and S are defined symbols. We first observe that a symbolic 
expression can be characterized as a string of elements (symbols or decimal integers) 
separated by break characters and terminated by a blank column. The allowed break char­
acters represent the binary operations of addition (+), subtraction (-), and multiplication 
(*), and the unary plus and minus Sign. For the moment, the ability to handle parentheti­
cal expressions will be ignored. The unary plus at the beginning of the expression, if not 
provided oy the programmer, is automatically inserted as a first step of evaluation. 

To formalize the scan of this expression, let us create three windows which can be 
moved across the expression in such a way that the center window always shows us an 
element, and the left and right windows show us the break characters on the correspond­
ing left and right sides of that element. For example, if the windows were placed on the 
above expre s sion as far to the left as po s sible, we would obtain: 

m [!] [!] ABC- ALPHA+S>:~ Z 

What does this combination of operands imply? First, the plus sign on the left signals 
that we are starting to evaluate a term. The asterisk on the right signals that there are 
mor'e things to come in this term,~he saving of the element in the center for a future 
multiplication is all we can do. The element is saved in a location named "term" ready 
for reference later. 

Now, move the windows to the right until the next element falls in the center. We obtain 

+4 m IABCI Q ALPHA+S*Z 

Again examining the left and right break character s to decide what should be done, we 
argue as follows: The asterisk on the left tells us to multiply the old value of the term 
by the value of the present element. This result may be returned to the storage location 
"term". The minus sign on the right signals that the ~erm has come to an end, and that 
the value stored away in "term" should be added into the" sum" register for thi s expres sion. 

Now, move the window to the right again. This time, we obtain 

The left window exhibits a minus sign signaling the start of a new term, a negative one 
at that. Therefore, we may store away the negative of the value of the present element 
in the location "term". The plus sign on the right again signals the end of the term, and 
that the value of the term should be added to the "sum" ~egister. 
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Moving the window once more, we obtain 

+4* ABC-ALPHA m [§] [!] 2 

This combination of operators is identical to that found at the beginning of the expression 
so that we may follow the same procedure. First, on the basis of the plus sign we store 
away the value of the present element since we are starting a new term. Second, since 
the * indicates that there is more to come in this term, we must wait until later elements 
are brought into consideration. 

Finally, with the window in its next and last position, we have 

+4* ABC-ALPHA+S [!J rn 0 

This time the situation is similar to one encountered before, except for the lack of an 
operator in the right window. The left break character again requires us to multiply the 
value of the term collected so far by the value of the present element. The blank appear­
ing in the right window tells us to add the term into the "sum" register and stop, as the 
evaluation of the symbolic expression is complete. 

Although, this procedure seems complicated, let us see if we can develop a flow dia­
gram describing the algorithm. The procedure has the following characteristics: After 
moving the window, we first examine the break character in the left window, do some­
thing about it, then examine the break character on the right. After processing on the 
basis of this right break character, we move the window and repeat the same series of 
steps. This procedure is formalized in the flow diagram in Figure 3.5. If we follow the 

Start 

~_--lL.-____ " Process item on basis of 
break character on left. 

+ 

Figure 3.5. Flow diagram of subroutine EVAL. 



16 The CAP Assembler 

flow diagram through for the expression examined previously, we see that it carries out 
each of the operations described. This flow diagram describes the operation of the sub­
routine EVAL, which is internal to the subprogram VAREVL. An important procedure 
which is implicit in this flow diagram is that of evaluating the item appearing in the cen­
ter window. If the element is a decimal integer, a decimal-to- binary conversion must be 
made. On the other hand, if the element is a symbol, its value must be looked up. This 
lookup procedure is done by the subroutine SYMGET which acts as a complement to the 
subroutine SYMST¢ used during pass one. 

How EV AL is Called 

EVAL is an internal subroutine of the subprogram VAREVL. The subprogram VAREVL 
itself simply sets up EVAL and calls it properly; when EVAL has finished evaluating the ex­
pression, VAREVL handles the operation of reducing the answer to a core memory location. 
(See Figure 3.6, a flow diagram of VAREVL. ) 

V AREVL ----i.r 

no 

Take AC 
mod 215. 

Return to 
caller with 
answer in 
AC. 

Making EV AL an internal subroutine of V AREVL 
allows EVAL to be defined recursively. That is, if 
the occasion should arise that EVAL needs to have a 
subexpression evaluated, it can call on subroutine 
EVAL to do the job. One might expect to get into dif­
ficulty with this procedure, since when EVAL is called 
recursively, it will change many registers and tempo­
rary results. We will see that this difficulty is cir­
cumscribed by picking out critical temporary results 
and saving them in a special way. 

In terms of the picture described above, a paren­
thetical expression may be considered to be an ele­
ment which appears in the center window. Whenever 
the center window is determined to contain a paren­
thetical expression as an element, the element is 
evaluated by calling the subroutine most able to handle 
the evaluation of an expression, namely subroutine 
EVAL. In order to call EVAL, it is necessary to save 
away temporary results, such as the values of the 
"termlJ and "sum" registers that have been collected 
so that those registers may be used by EVAL for the 
subexpression evaluation. Then, when EVAL is fin­
ished evaluating the subexpression, the "term" and 
"sum" regis'ters are restored; the evaluation of the 
original expression continues, using for the value of 
the element in the center window the answer obtained 
by EVAL on the recursive call. Figure 3.6.Flow diagram of 

VAREVL. Since the parenthetical expression may itself con­
tain another nested parenthetical expression, EVAL 

must be very careful how it saves away its temporary results, as a second saving of 
temporary results might destroy the first set. 

To handle this problem, two subroutines named SAVE and UNSAVE are used by EVAL. 
These two subroutines manipulate a last-in, first- out storage array called a push- down 
list. Each time subroutine SAVE is called, an item or block of items is stored in the 
list. When subroutine UNSAVE is called, the last item or block stored in the list is re­
trieved. Successive calls to UNSAVE retrieve items stored by earlier calls to SAVE. 

EVAL, then, saves temporary results in the push- down list before calling itself, and 
retrieves the results later. If the expression requires repeated recursion, the pushdown 
list will save and restore the temporary variables in the proper order. 
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Figure 3.7. Flow diagram of EVAL with recursive capabilities. 

Figure 3.7 is a flow diagram of EVAL with the ability to handle parenthetical expres­
sions added. The recursive ability of EVAL is not essential to the understanding of the 
general expression evaluation procedure; it should be ignored in early study by assuming 
that no parentheses are encountered. 

3.6 Subprogram Calling Sequences and Definitions 
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In this section, the calling sequences and a thumbnail description of each of the utility 
subroutines used in CAP are described. For reference, the same information about sub­
routines CAP, PASSI, PASS2, and VAREVL is reproduced here. 

Primary Subroutines 

CAP CAP is called by 

CAL 
TSX 

¢RG 
$CAP,4 

Subroutine CAP causes the symbolic program written on cards and appearing on the in­
put tape to be assembled in core storage starting at the location specified by the address 
portion of the accumulator. 

PASSl PASSl is called by 

CAL 
TSX 

¢RG 
$PASSl, 4 
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Subroutine PASS1 performs the first pass of an assembly program over the symbolic cards 
on the input tape, writes them on a pseudo-collation tape, and defines symbols; assuming 
that the symbolic program is to start at the location specified by the addres s portion of 
the accumulator. 1£ errors are found they are noted in the S1. PASSI uses index register 
one to contain the complement of the ILC. 

PASS2 PASS2 is called by 

CAL 
TSX 

¢RG 
$PASS2, 4 

Subroutine PASS2 performs the second pass of an assembly program by reading the sym­
bolic cards appearing on the cqllation tape. The program is assembled in core storage 
starting at the location specified by the address portion of the AC, and an assembly list­
ing is prepared on the output tape. PASS2 uses index register one to contain the comple­
ment of the ILC. If errors are found they are noted in the S1. 

V AREVL subroutine VAREVL is called by 

TSX 
PZE 

$VAREVL,4 
BUFF 

where BUFF is the location of a 14 word buffer containing a symbolic card image. VAREVL 
will evaluate the variable field starting with the first character of BUFF+2 and continuing 
to the fir st blank, comma, or column 73. If any undefined symbols are encountered, SI 
bit 35 will be turned on. 

Input and Output Subroutines 

Both PASSl and PASS2 call several input- output routine s to handle tape manipulations. 
The se I/¢ subroutine s are 

READl Read Input Tape, called by 

TSX 
PZE 

BUFF BSS 

$READ1,4 
BUFF 

14 

The 80 columns of a symbolic card are read from the input tape into the fourteen word 
buffer at BUFF. Note that 80 characters do not quite completely fill the buffer; the last 
4 positions may contain arbitrary character s. 

WCTl Write Collation Tape, called by 

TSX 
PZE 

BUFF BSS 

$WCT1,4 
BUFF 

14 
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The fourteen word BCI buffer is written on the intermediate tape. 

REWIND Rewind Collation Tape, called by 

TSX $REWIND,4 

The intermediate tape is marked with an end of file and rewound. 

READ2 Read collation tape, called by 

TSX 
PZE 

BUFF BSS 

$READ2, 4 
BUFF 

14 

19 

Fourteen words of the intermediate tape are read into the buffer at BUFF. READ2 checks 
that the collation tape has been rewound. 

PRINT Write on output tape for off-line pl~inting, called by 

TSX 
PZE 

$PRINT,4 
A, 0, n 

The n word line image starting in location A is written on the output tape (tape A3). The 
first character of A (normally blank) is used for carriage control. PRINT counts the 
lines of output and stops after 300. 

Symbol Table Subroutines 

For forming and searching a symbol table a subroutine package with entries SYMST¢ 
and SYMGET is used. 

SYMST¢ The sequence 

TSX $SYMST¢,4 

will cause the BCD characters in the AC to be scanned (blanks removed), right justified, 
and inserted in a symbol table together with its value, the complement of IRl. If the sym­
bol is blank, it is ignored and no entry is made in the table. 

SYMGET The sequence 

TSX $SYMGET, 4 
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will cause the value of the symbol in the AC (assumed to be scanned and right justified) 
to be looked up in the symbol table. If the symbol is defined, t~e value is returned in the 
AC. If undefined, zero is returned in the AC and SI bit 35 is set on. 

Utility Subroutines 

CAP also uses a package of utility programs which includes SCAN, C¢MMA, SAVE, 
and UNSAVE. 

SCAN SCAN is called by 

TSX $SCAN,4 

on return, the BCD word in the AC is compressed to the right, with blanks removed and 
leading positions filled with zeros. 

C¢MMA Subroutine C¢MMA is called by 

TSX 
PZE 

$C¢MMA,4 
BUFF 

C¢MMA counts t~e number of commas plus one starting with the first character in BUFFt2 
and ending wit.h the first blank or column 73. The count is subtracted from index register 
one. SAVE and UNSAVE manipulate items in a pushdown list. 

SAVE SAVE is called by 

TSX 
PZE 

$SAVE,4 
A, 0, n 

the n words in registers, A, A t 1, .•. , A t n - 1 are placed at the top of the pushdown 
hst and the other items in the list are pushed down n places. (Note that the pushdown ef­
fect is achieved by pointers, not by actually moving all the previous entries in the list 
down in core memory.) 

UNSA VE UNSA VE is called by 

TSX 
PZE 

$UNSAVE,4 
A,O,n 

The top n items in the pushdown list are read into locations A, A t I, ..• , A t n - 1 and 
the other items in the list are pushed up n places. 

The pushdown list has a maximum depth of 500 locations. Any attempt to exceed this 
depth is ignored and SI bit 15 is set. Attempts to retrieve more items than have been 
stored are ignored and SI bit 16 is set. 
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Subroutine INT¢P is used to evaluate variable fields of the INT pseudo- op during pass 
two. 

INT0P INT0P is called by 

TSX 
PZE 

$INT¢P,4 
BUFF 

where BUFF+2 is the address of the first location of the buffer containing the variable 
field. INT¢P scans the variable field and converts each decimal subfield (as delineated 
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by commas) to a binary number; shifts the number obtained into the decrement; and stores 
it in the next location in the program being assembled, assuming that index register one 
contains the complement of the ILC. INT¢P then increments the ILC and repeats the op­
eration for the next subfield. 

Subroutine END¢P is used at the end of pass one to reserve temporary storage for 
C ¢MP ps eudo- ops. 

END¢P END¢P is called by 

TSX $END0P,4 

Control returns to the caller after END¢P changes the C(IRl) by the proper amount and 
enters the symbol TEM into the symbol table. 

¢PTBL The first word in $¢PTBL is a control word containing in its address the 
location of the fir st item in the operation table and in its decrement the length of the 
operation table; the rest of ¢PTBL consists of pairs of entries, a right- justified BCD 
mnemonic paired with the binary machine code for that mnemonic. 

Subroutine C¢MP¢P and the subroutines it calls are described in Chapter 4. 



Chapter 4 

THE COMPILER OF C¢MP PSEUDO-OPERA TIONS 

In this chapter we will examine in detail the operation of the set of subprograms which 
compile arithmetic for C¢MP pseudo-operations. The material under discussion is of 
an advanced nature and not essential to an understanding of the CAP assembly program. 
A beginning reader may skip this chapter, as the material in the sequel will not make 
reference to the compiler. The reader is assumed to be familiar with an algebraic lan­
guage such as F¢R TRAN, ALG¢L, or MAD. 

4.1 Why a Compiler? 

Compilers exist to free the programmer from worry about coding details while working 
with algebraic calculations. The compiler can take care of the coding details, and the 
programmer need only concentrate on setting up the proper equations. 

The primary reason for including a compiler in CAP is educational. We shall see the 
close similarity between the internal processes of assemblers and compilers; some of 
the mystery as to how compilers work will thereby disappear. 

Another reason for including a compiler is to provide a contrast with the macro­
operation processors found in many present-day assembly programs. A compiler is an 
often overlooked alternative and provide s a flexibility of expre s sion which the mac ro­
processor cannot obtain. 

4.2 What Does a Compiler Do? 

The point of the compiler is very simple. If the programmer writes on a card a state­
ment 

C¢MP Y = ALPHA + BETA 

the program which re sults is identical to that which would have re suIted if the program­
mer had instead given the instructions 

CLA 

FAD 

ST¢ 

ALPHA 

BETA 

Y 

We see, then, that the purpose of the compiler is to generate a program to perform the 
algebraic computation indicated by the symbols and break characters in the variable field 
of the C¢MP statement. 

zz 
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There are several algorithms available to perform the compilation. In the CAP com­
piler, a nonrecursive procedure contrasts with the recursive procedure used for evaluating 
expressions in subroutine VAREVL, discus sed in Chapter 3. We will see that the algo­
rithm is a collection of simple, straightforward ideas combined in such a way as to pro­
duce a sophisticated result. 

4.3 Relation of C0MP to CAP 

We recall that when the CAP assembler encounters a C0MP pseudo-operation during 
pass one, it calls a subroutine named C0MP0P. 

C0MP0P and the collection of subroutines which it calls compile the symbolic machine 
instructions in the CAP language required to carry out the computation called for by the 
C¢MP statement. The compiler writes these symbolic instructions on the collation tape 
in the same format as CAP language symbolic instructions which the programmer writes 
and the order in which they are to be performed. The compiler increases the ILC by 
by the number of instructions compiled, and returns control to subroutine PASS! to con­
tinue the first assembly pass. By writing symbolic cards on the collation tape during 
pass one, the compiler thereby discharges its responsibility; the symbolic instructions 
on the collation tape will be as sembled by the second as sembly pas s as would instructions 
provided by the programmer himself. 

4.4 Precedence 

rhe language available to the C0MP programmer allows the use of addition, subtrac­
tion' multiplication, and division-with parentheses as grouping characters. Since the 
programmer will wish to attach an order of precedence to these operations, the compiler 
must take that order into account when creating the symbolic program. The order of 
precedence used is the following: 

parenthetical expre s sions 

multiplication and division 

addition and subtraction 

This precedence table corresponds to the table commonly as sumed by mathematicians. 
It states, for example, that in the expression 

A + BIC 

the division is to be carried out before the addition. 

4.5 The Spread Field; C0MP0P 

The subroutine called to compile C¢MP pseudo-operations is C¢MP¢P. C0MP0P 
operates in two passes. In the first pass, it scans the variable field of the C¢MP card, 
ignoring blanks, and separates the symbols and break characters one to a word in a buf­
fer known as the spread field. For example, if the variable field contains 

SUM = G! + G2 + G3/SIX 
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pass one of C¢MP¢P would produce a spread field containing in successive locations 

SUM 

= 
GI 

+ 

G2 

+ 

G3 

/ 

SIX 

Later scans may now search the spread field for break characters with a simple search 
loop. Symbols which are longer than six characters are permissible. They will be 
broken up and stored in successive words in the spread field. Since the comma is not 
a break character, the sequence of characters ABC, 1 will be considered to be a single 
symbol and stored appropriately. When compiled as the address of an instruction, this 
symbol could represent a tagged address. 

All scans of the spread field will ignore a zero appearing within the spread field. The 
value of this property will become clear later when we see how the spread field is modi­
fied as the expression is compiled. An alternative procedure with similar flexibility is 
to place successive items of the spread field in a string pointer list. 

Having re-expressed the arithmetic statement to be compiled in a form easier to work 
with, subroutine C¢MP¢P proceeds with the actual compilation. A scan is made for a 
parenthetical expression which is in some sense II innermost." That is, it is to contain 
no parenthetical expressions. The procedure for finding such an "innermost" expres­
sion is as follows: Scan the spread field starting at the top for left and right parenthe se s, 
leaving markers behind at the left parentheses, and stopping at the first right parenthesis. 
The last left parenthesis marker and the position of the right parenthesis define an II inner­
most II parenthetical expre s sion. A subroutine named EXPR is now called, with argu­
ments consisting of the pointers to the left and right ends of the parenthetical expression, 
and the location of the beginning of the spread field. Subroutine EXPR will compile the 
symbolic CAP language program necessary to compute the expression within the paren­
theses and will write this symbolic program on the collation tape. EXPR will then modi­
fy the spread field by replacing the left parenthe sis, the entire expre s sion within the 
parentheses, and the right parenthesis with zeros. The last instruction in the symbolic 
CAP language program generated by EXPR will be an instruction to store the result of 
the computation in a temporary storage location. The symbolic name of this temporary 
storage location is inserted directly in the spread field by EXPR in one of the locations 
formerly occupied by the parenthetical expres sion. The symbol TEM+nn will always fit 
into the space vacated by the original expression. This is one of the reasons for choosing 
to spread out the original expression into a spread field. 

At this point, the "innermost" parenthetical expression is compiled. C¢MP¢P now 
starts over again, looking for a new II innermost" parenthetical expre s sion in the modified 
spread field. Since the old expression, along with its parentheses, was replaced by a 
single symbol in the spread field, c¢MP0p can scan for a new II innermost'! parentheti­
cal expression exactly as it did before. It is now clear why zero words are ignored 
within the spread field. Whenever the compiler writes instructions on the collation tape, 
it replaces the symbols and operators within the spread field leading to the compilation 
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of these instructions by zeros. Later scans of the spread field ignore the presence of the 
zero positions, as nothing more is to be compiled from the information that was once con­
tained there. 

C¢MP0P iterates in the manner described; first locating an innermost parenthetical ex­
pression, and then calling upon EXPR to compile the expression. EXPR removes the ex­
pression from further consideration by modifying the spread field. 

Eventually, C¢MP¢P will reach a situation in which the spread field contains no paren­
thetical expressions. Instead, it will contain a simple expression preceded by a symbol 
and an equal sign. In this case, subroutine EXPR is again called with parameters indicat­
ing the beginning and end of the simple expression and with an additional parameter spec­
ifying that the program compiled is to leave its result in the AC rather than in temporary 
storage. EXPR again generates symbolic instructions, writes them on the collation tape, 
and modifies the spread field by replacing all elements compiled by zeros. Upon return­
ing to C¢MP¢P the compilation is nearly completed except for storage of the final result. 
Subroutine C¢MP¢P then generates the necessary ST¢ instruction to complete the com­
pilation. Let us follow this procedure through for a moderately complicated expression. 
Consider the following C¢MP pseudo- operation 

C¢MP Y = ((A+B)*(E-C*DL)+END}*F+Ll 

Figure 4.1 shows the spread field and instructions compiled in succeeding steps. Figure 
4.2 is a flow diagram of C¢MP0P. 

Step 1. C0MP0P plac e s the variable field in the spread field (Figure 4.1 a) and scans 
for left and right parentheses, starting at the top, ending with the first right parenthesis. 
(See Figure 4.lb.) It then calls EXPR to compile this "innermost" expression. EXPR 
will write the instructions indicated as "step one" in Figure 4.lf, on the collation tape 
and modify the spread field to that shown in Figure 4.1c. 

Step 2. C0MP¢P scans again for left and right parentheses and calls EXPR to com­
pile the expres sion found. EXPR writes on the collation tape the instructions indicated 
as "step two" in Figure 4.lf, and modifies the spread field to that shown in Figure 4.ld. 

Step 3. One more scan for parenthetical expressions results in a call to EXPR and 
compilation of instructions indicated as "step three" in Figure 4.l£. EXPR modifies the 
spread field to appear as in Figure 4.1 e. 

Step 4. The scan for parentheses fails this time. C¢MP¢P calls EXPR to compile 
the remaining simple expression and specifies that the result of the computation be left 
in the AC. EXPR compiles the instructions labeled" step four." 

Step 5. C¢MP¢P compiles an ST¢ instruction with a symbolic address consisting of 
that variable to the left of the equal sign. The compilation is now complete. 

C¢MP0P keeps track of parenthetical expressions by means of pointers to positions 
in the spread field. An alternative procedure is to push successive field items down in 
a push- down list searching for a right parenthesis. Then, the subroutine compiling the 
expression can retrieve items back to the last left parenthesis. 

Note that we have not yet learned how EXPR compiles the symbolic arithmetic instruc­
tions and places them on the collation tape. We are analyzing the compiler from the 
"outside in" and are still at a stage where the organization of the compiler is the most 
important thing to be learned. Having established the procedure by which parentheses 
are handled, we are now ready to begin studying the details of instruction creation. 
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Figure 4.2. Flow diagram of subroutine C¢MP0P. 
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4.6 Compilation of Indi vidual Instructions 

In the fifth step in the example above, subroutine C¢MP¢P had to compile the instruc­
tion ST¢ Y. To write this instruction on the collation tape, a package of subroutines is 
used which manipulate a collation tape buffer and write on the collation tape. The colla­
tion tape buffer is a 14- word buffer which is used to collect a symbolic card image. 

The first subroutine in thi s package is PIVAR. (Place ~n variable field.) Its calli ng 
sequence is 

TSX $PIVAR,4 

PIVAR takes the contents of the AC as a BCD word, and inserts that BCD word in the 
next available space in the variable field of the collation tape buffer. Columns 13 to 18 
are filled in by the fir st call to PIVAR, columns 19 to 24 on the next, etc. 

The last piece of information known' about any instruction is always the operation code. 
Subroutine GEN¢P inserts the operation code and writes the collation tape buffer on the 
collation tape. Its calling sequence is 

TSX $GEN¢P,4 
BCI 1, opr 

where "opr" is the operation mnemonic to be inserted in the operation field. GEN¢P in­
serts the instructioI). code into the operation field (colUluns 7 to 12) writes the entire col­
lation tape buffer on the collation tape, and clears out the buffer with blanks, resetting 
FIVAR to store in columns 13 to 18. Thus the sequence required to generate the ST¢ Y 
instruction in step five, above, is 

CAL 
TSX 
TSX 
BCl 

FLD,1 
$PlVAR,4 
$GEN¢P,4 
1, ST¢ 

GET SYMB¢L FR0M SPREAD FIELD. 
INSER T IN V AR FIELD. 
GENERATE ST¢ ¢P. 

When it compiles instructions, subroutine EXPR also uses the subroutines PIVAR and 
GEN¢P. 

4.7 Compilation of Simple Expr e s sions; EXPR 

Subroutine EXPR has the responsibility of compiling parentheses-free expressions. 
This responsibility includes the proper handling of precedence below the level of paren­
thetical expressions. EXPR handles precedence by making two passes over the symbolic 
expression; during the first pass, all terms (symbols connected by asterisks and slashes) 
are compiled leaving the expressiop in the form of a summation of individual elements 
(subroutine TERM compiles the terms). In the second pass over the expression, EXPR 
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compiles the necessary add and subtract instructions to complete the summation. Let 
us consider a typical spread field expression that EXPR is to compile. The expression 
comes from Step 2 of the previous example. 

E 

C 

DL 

In the first pass, EXPR locates terms containing more than one symbol o In the given 
expression, the second term falls into this category. Therefore, EXPR calls subroutine 
TERM with parameters pointing to the upper and lower boundaries of the term C~{DLo Sub­
routine TERM compiles a program which computes the value of the term and inserts the 
answer into temporary storage. In this case the program written on the collation tape is 

LDQ C 
FMP DL 
ST¢ TEM 

TERM will also modify the spread field by replacing the elements of the term with zeros, 
and inserting the name of the temporary storage location into the spread field in an ap­
propriate place. When TERM finishes, the spread field will appear as follows: 

E 

TEM 
o 
o 

Since there are no more terms in our sample expression, pass one of EXPR is complete, 
and pass two begins. In pass two, EXPR compiles and writes on the collation tape a 
program to perform the summation of the elements in the expre s sion. 

The second pass consists of the following steps, indicated in the flow diagram in Figure 
4.3. 

1. Scan the spread field from the top, looking for the end of the first symbol. If an 
initial minus sign is passed, set a switch. 

2. Compile the instruction CLA or CLS (on the basis of the switch set in Step 1) with 
a symbolic addres s consisting of the symbol obtained in Step 1, using PIVAR and 
GEN¢P. Replace the operator and the symbol in the spread field with a zero. 

3. Continue scanning the spread field for the end of the next symbol. Again, if an 
initial minus sign is passed, set a switch. 

4. Compile the instruction FAD or FSB (on the basis of the switch set in Step 3) with 
a symbolic address consisting of the symbol obtained in Step 3, using PIVAR and 
GEN¢P. Replace the symbol and the operator in the spread field with a zero. 

5. Repeat Steps 3 and 4 until the end of the expression is reached. Now, if requested, 
compile an instruction to store the result in a temporary location. The second 
pass is now complete, and the expression has been compiled. 
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Figure 4.3. Flow diagram of subroutine EXPR. 
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4.8 Temporary Storage and Subroutine GNST¢ 

The last step in subroutine EXPR was compilation of an instruction to store the AC in 
a temporary location. What symbolic address should be placed in the ST¢ instruction, 
and how can temporary storage be reserved? Subroutine GNST¢ provides this service. 
The calling sequence 

TSX $GNST¢,4 

will bring into the accumulator the symbol TEM+n where n is one less than the number 
of times GNST¢ has been called. Subroutine GNST¢ will also keep track of the total num­
ber of temporary locations used so that subroutine END¢P can reserve space at the end 
of as sembly pass one. The first call to GNST¢ brings back the symbol TEM; later calls 
produce symbols such as TEM+l, etc. The instruction 

$NST0 

resets GNST¢ so that the next call starts again with the symbol TEM. Since separate 
C¢MP statements are independent, they can use the same temporary storage locations, 
and C¢MP¢P re sets NST¢ at the beginning of each new C¢MP statement. 

The sequence used by EXPR to compile the store instruction is, then, 

TSX 
SLW 
TSX 
TSX 
BCI 

$GNST¢,4 
FLD,1 
$PIVAR,4 
$GEN¢P,4 
1, ST¢ 

4.9 The Compilation of Terms; TERM 

GET TEMP¢RARY SYMB¢L. 
INSER T IN SPREAD FIELD. 
PLACE IN VARIABLE FIELD. 
GENERATE ST¢ ¢P. 

When EXPR encounters a term consisting 'of symbols connected by asterisks and slashes, 
it calls subroutine TERM to compile instructions which compute the value of the term and 
leave the result in temporary storage. Subroutine TERM performs this compilation by 
scanning the term in much the same manner as subroutine VAREVL (see Chapter 3) noting 
for each symbol the break character on its left and on its right. The break character on 
the left may be the beginning of the term, an asterisk, or a slash. The one on the right 
may be the end of the term, an asterisk or a slash. Thus a symbol may have one of nine 
pairs of break characters associated with it. Since the instructions compiled in each of 
the nine cases is different, a nine-way branch must be made for each symbol. The flow di­
agram in Figure 4.4 illustrates this nine- way branch. The scan of the term begins at 
the left (or top, in terms of the spread field). 

Let us consider a simple term, and follow the operation of TERM through the flow dia­
gram. Suppose TERM is to compile the following spread field: 

C 

D 

E 

/ 
F 
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Figure 4.4. Flow diagram of subroutine TERM. 
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Upon scanning for the fir st symbol, we find that the left break is the beginning of the term, 
the right break an asterisk. Following the flow diagram, we see that the instruction 
LDQ C is compiled in preparation for the multiply operation. We may note that in this 
case, the compilation leaves the result in the proper register so that the next instruction 
FMP will operate correctly. If the right break character had been a slash, the instruc­
tion CLA C would have been compiled instead. We will see that the algorithm leaves 
the result in the proper register in all cases. 



Review 33 

The scan now resumes. The next symbol has an asterisk on the left and an asterisk on 
the right. The asterisk on the left signals that we should compile the instruction FMP D; 
the asterisk on the right warns of a coming multiplication, so the result must be returned 
to the MQ with an XCA instruction. 

Resuming the scan once more, we find that the third symbol has on the left an aster isk, 
on the right a slash. Again, the asterisk on the left signals that the instruction FMP should 
be compiled; however, the slash on the right indicates that the next operation will be divi­
sion. Therefore, the result is left in the AC in proper position for the FDP instruction. 

Returning to the scan for the fourth and final time, we find the symbol F surrounded by 
a slash on the left and the end of the term on the right. The slash calls for a division op­
eration, so the instruction FDP F is compiled. The end-of-term break indicates that we 
are almost finished. A temporary storage location is generated by GNST¢ and the instruc­
tion STQ TEM is compiled. Note that if the last operation had been a multiplication, the 
last instruction would have been ST¢ TEM instead. 

Now, compilation of the term is finished. Although it has not been mentioned before, 
the spread field was reset to zero during the scan, and, at the end, symbol TEM was placed 
back into the spread field. The final result of the compilation by TERM is as follows: 

Spread field Collation tape 

TEM LDQ C 
0 FMP D 
0 XCA 
0 FMP E 
0 FDP F 
0 STQ TEM 

4.10 Review 

With the study of subroutine TERM, we have completed our examination of the compiler. 
A brief review of the essential points covered may help place those points in the proper 
perspective. 

The compiler operates during the first assembly pass of CAP. The compiler places 
the instructions generated on the collation tape for processing by the second assembly 
pass just as though the programmer had provided them. 

Subroutine C¢MP¢P coordinates the compilation. C¢MP¢P goes over the symbolic 
expression in two passes. During the first pass, it places the symbolic expression i~ the 
spread field - one symbol or break character to a memory location. 

In the second pass it evaluates the expression from the innermost set of parentheses 
outward with the help of subroutine EXPR. Subroutine EXPR also operates in two passes. 
In the first pass, EXPR reduces the expression to a summation by calling on subroutine 
TERM to compile the instructions to compute the individual terms. The second pass of 
EXPR compiles the instructions needed to compute the resulting summation. 

During all phases of the compilation, the compiler modifies the spread field as it gen­
erates instructions and places them on the collation tape. Subroutines GEN¢P, PIVAR, 
GNST¢, and ERASE help put together symbolic instructions and write them on the colla­
tion tape. 

When the compilation is finished, control returns to CAP to continue assembly pass 
one. 
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4.11 Calling Sequence of Compiler Subroutines 

This section describes the calling sequences of each of the subroutines of the compiler 
and presents for easy reference a thumbnail sketch of the external characteristics of each 
subroutine. 

C¢MP¢P Subroutine C¢MP¢P is called by 

TSX 
PZE 

$C¢MP¢P,4 
BUFF 

where BUFF is the first location of a 14-word buffer containing the symbolic C¢MP card. 
C¢MP¢P compiles the instructions necessary to perform the arithmetic specified by the 
variable field of the card in the buffer, writes these instructions on the collation tape, and 
increases the value of the ILC (assumed to be stored in complement form in index register 
one) by the number of instructions compiled. 

EXPR Subroutine EXPR is called by 

TSX 
PZE 
PZE 

$EXPR,4 
LI, T, RI 
FLD 

where FLD- LI is the address of the left break and FLD- RI is the address of the right 
break. EXPR take s a string of symbols connected by + - ~:~ or / and compile s the re sult 
in floating point. If T = 0, the result is placed in temporary storage. Otherwise, the 
result is in the AC. The spread field is modified accordingly. 

TERM Subroutine TERM is called by 

TSX 
PZE 
PZE 

$TERM,4 
LI, 0, RI 
FLD 

where FLD- LI is the address of the left break, and FLD- RI is the address of the right 
break. TERM take s a string of symbols connected by ~:~ or / and compile s the re sult 

in floating point. The compiled program places its result in temporary storage, and 
TERM modifies the spread field accordingly. 

The following subroutine s are used to form symbolic instructions: 

PIVAR Subroutine PIVAR (place in variable field) is called by 

TSX SPIV AR,4 

PIVAR takes the C(AC)p, 1""35 as a BCD word and stores that word in the next available 
location in the collation tape buffer. On the first call to PIVAR, the next available loca­
tion is the first word in the variable field position of the buffer. 

ERASE Subroutine ERASE is called by 

TSX $ERASE,4 

Subroutine ERASE clears the collation tape buffer, replacing all words with blanks, and 
resetting PIVAR so that on the next call it will start at the beginning of the variable field. 
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GEN¢P Subroutine GEN¢P is called by 

TSX $GEN¢P,4 
BCl 1, opr 

where the letters "opr" are the symbolic operation code desired. GEN¢P will take the symbolic operation code in location 1,4 and insert it into the operation field of the colla­tion tape buffer. It will then write the buffer on the collation tape and call subroutine ERASE to clear the buffer so that it may be used again. 

GNST¢ Subroutine GNST¢ is called by 

TSX $GNST¢,4 

Subroutine GNST¢ returns to the caller after placing in the AC p, 1 -35 a symbol of the form TEM+n where mis one less than the number of times that GNST¢ has been called. Entry point NST¢ will contain this number; and if NST¢ is reset to zero, n will be reset to zero for the next call to GNST¢. GNST¢ keeps track of the largest n ever encountered and leaves it in a location where it is accessible to subroutine END¢P for purposes of as­signing temporary storage at the end ·of the first assembly pass of CAP. 



Chapter 5 

CAP AS A LABORA TOR Y EXERCISE 

CAP finds application both in the classroom and in the laboratory. In the laboratory the 
student modifies or improves the assembler, for example, by adding pseudo-operations to 
make the CAP language more flexible or by improving the internal operations of the assem­
bler. Appendix C contains a list of suggested modifications. 

This chapter is divided into two parts to correspond, roughly, to material of greater 
interest to the student and to his instructor, respectively. No clear line can be drawn 
between these interests, of course, as the instructor will wish to read the entire chapter 
and an advanced student will find much of interest in the second part. 

501 The CAP Laboratory 

The CAP assembly program was written with expansion in mind. Thus, although there 
might be simpler ways to perform some of the operations called for in the original CAP 
language, extension of these operations might be difficult if a simpler, less general, ap­
proach had been used in the original coding. There are also several examples throughout 
CAP of points onto which additional coding may be easily attached. An analogy would be 
the complicated highway interchange with one blocked exit at a point where a new highway 
is to be built someday. 

The suggested modifications represent changes which are at once useful, educational, 
and not too difficult, when the operation of the original assembler is well understood. 

When CAP is used in the laboratory, the main program which calls CAP is replaced by 
an execution monitor program to aid in debugging the modifications. This execution mon­
itor provides aid in case the modified assembly program gets into a loop or comes to a 
stop, and it provides a postmortem when the CAP assembly is finished. 

Also, in the laboratory, the input- output subroutines are replaced with an II ¢ simula­
tor package to speed up testing; this simulator provides as CAP input a symbolic test 
program for assembly and simulates the collation tape with a core buffer. 

Extent of Laboratory Assignment 

A typical laboratory assignment might be the following: The instructor selects a set 
of modifications totaling in value about 200 "points" as required modifications. (See Ap­
pendix C for point values.) The student then selects additional modifications worth about 
100 points. The student is permitted eight or nine computer "runs" to attempt to get all 
300 points of modifications working correctly. 

Evaluation of the student's work is done on the basis of a brief written report describing 
the modifications attempted and the degree of success in achieving modification. Printed 
computer output should accompany the report as evidence of correct operation of the 
modified assembly program. 

36 
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How CAP Is Modified 

Two different procedures have been used to allow the modification of CAP. In the first 
and simpler procedure, the student makes a copy of the symbolic decks of all the subrou­
tines basic to the assembler and, if desired, the compiler. He then makes changes to this 
deck of 1000 to 2000 cards and submits it for as sembly by F AP and te sting under the ex­
ecution monitor. 

If this procedure is used, the reader may wish to skip the next sections and proceed 
immediately with the discussion of testing of the modified assembly program (Section 5.3). 

5.2 UPDATE 

If a large class uses CAP as a laboratory exercise, the above procedure can lead to the 
processing of a very large number of cards. An alternate procedure involving the UPDATE 
feature of FAP can significantly cut down on the number of cards used. Under this proce­
dure, the unmodified CAP subprograms are placed in symbolic form on a single UPDATE 
input tape for all students, and each student need only submit cards corresponding to the 
changes he wishes to make in the subprograms. The UPDATE pseudo-operations of the 
FAP language control the merging of the student's changes with the original symbolic pro­
grams and the assembly of the merged programs. 

The UPDATE procedure has the di sadvantage that the student must learn the UPDATE 
language in order to modify CAP. However, the advantages of a small input deck are 
significant both in time saved preparing input tapes for the computer and in added relia­
bility of a smaller deck of cards. 

All features of the UPDATE language necessary for the successful modification of CAP 
will be discussed here. The FAP Reference Manual contains additional information. * 

The Use of UPDATE 

Images of the cards submitted for a run are written ahead of run time on the System 
Input Tape by off-line card-to-tape equipment. When programs are assembled normally 
on the 7090 (without UPDATE), FAP reads the card images from the System Input Tape 
and processes them one at a time. When UPDATE is used, two more tapes are involved: 
the UPDA TE Input Tape and the UPDATE Output Tape. In CAP, only the UPDATE Input 
Tape is used. 

The UPDATE Input Tape contains the unaltered symbolic ver sions of the CAP subrou­
tines as shown in the listings in Appendix A. The serialization in columns 73 to 80 on the 
lists is also on the UPDATE Input Tape and is used by FAP to determine the order of 
processing card images from the System Input Tape and the UPDATE Input Tape. 

Because the UPDATE facility is a part of F AP the fir st card of any deck submitted 
using UPDATE must be 

~c FAP 

This card causes control to be transferred to FAP. FAP retains control until an END 
card is processed. It is important to keep in mind that the program assembled begins 
at the * FAP card on the System Input Tape and terminates with the first END card proc­
essed; this END card may be on either the System Input Tape or the UPDATE Input Tape. 
Assembly of another subprogram requires another * FAP card. 

* Reference Manual, F¢R TRAN As sembly Program (F AP), IBM Publication C28- 62 35 
(September, 1962). 
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The use of four UPDATE pseudo- operations (UPDATE, DELETE, DELET E THlZU, 

and SKIPT¢) will be described. UPDATE operations are FAP pseudo- operations and, 
as such, begin in column 8 of the card. 

The UPDATE Pseudo-Operation 

The UPDATE pseudo-operation specifies the use of the UPDATE feature of FAP. A 
card with UPDATE punched in the operation field follows the ,:~ F AP card. The variable 
field, beginning in column 16, specifies the details of the UPDATE run. The first sub­
field contains the logical tape number of the tape unit on which the UPDATE Input Tape 
has been mounted. In the following examples we will as sume that tne UPDATE Input 
Tape is mounted on logical tape drive 11. The other subfields of the UPDATE card spec­
ify features not used in CAP and should be left blank. Hence the first two cards in each 
CAP UPDATE assembly are 

Adding and Replacing Cards 

,:~ F AP 

UPDATE 11 

Assembly, initiated by the >:~ FAP and UPDATE cards, continues as card images of 
F AP instructions are read from the normal System Input Tape and the UPDATE Input 
Tape one at a time in serial order. A serialized card image on the System Input Tape 
is assembled before a card of equal or higher serialization but after a card of lower 
serialization on the UPDATE Input Tape. Whenever F AP encounter s card image s of 
equal serialization on the two tapes, the card image on the System Input Tape is assem­
bled in place of the card image on the UPDATE Input Tape. If there is no serialization 
on the card image on the System Input Tape, the card image is immediately assembled. 
(See Figure 5.1, a flow diagram of UPDATE.) 

More than nine cards can be inserted between two consecutive cards already on the 
UPDATE Input Tape by giving the first card to be inserted a serial number between the 
two cards on the UPDATE Input Tape. The remaining cards to be inserted at this point 
in the subprogram are not serialized. 

Changes can be made in increasing order of serialization only. 

Deleting Cards from Programs on the UPDATE Input Tape 

To remove a card from a program on the UPDATE Input Tape, the DELETE pseudo­
operation is used. When FAP reads a card from the System Input Tape that has DELETE 
in its operation field, cards are assembled from the UPDATE Input Tape until a card 
image with serialization equal to that of the DELETE card is found. F AP does not as­
semble this card image from the UPDATE Input Tape; normal updating and assembly con­
tinue with the next card from each tape. 

If many consecutive cards are to be deleted from programs on the UPDATE Input Tape, 
the DELETE THRU pseudo- operation may be used. When FAP reads a card that has 
DELETE in its. operation field and the letters THRU in the variable field, no more card 
images from the UPDATE Input Tape are assembled until a card of serialization higher 
than that of the DELETE THRU card is found on the UPDATE Input Tape. >!~ FAP will 
then resume normal updating and assembly. 

,:~ As of May, 1962, the M.1. T. version of F AP requires THRU in columns 15 to 18; 
this differs from the FAP Reference Manual description of DELETE THRU. 
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To delete a block of cards from the middle of a program: First, insert a DELETE 
card with serialization of the first card in the block. This DELETE card should be fol­
lowed by a DELETE THRU with serialization equal to the serial number of the last card 
to be deleted. DELETE THRU will delete a card of equal but not higher serialization. 
The input tape s should never be moved backward while updating a program. 

The Necessary END Card. 

To insure proper operation of UPDATE, the last card of the input deck for each sub­
program updated must be a serialized END card. The serialization of the END card in 
the input deck must be identical to that of the END card on the UPDATE Input Tape for 
the subprogram being updated. 

Bypassing Assembly of Subprograms 

The UPDATE Input Tape will be rewound before the job starts and we may assume that 
it is properly positioned to begin assembly of the first subprogram on the tape. The order 
of subprograms on the UPDATE Input Tape is specified in Figure 5.2. The order is the 
same as on the CAP listings. 

The fir st 

,:c FAP 

UPDATE 11 

would therefore, start assembly of subprogram CAP. At the end of this assembly the 
UPDATE Input Tape would be positioned ready to start assembly of the second subpro­
gram. The next 

* FAP 

UPDATE 11 

would start assembly of PASSl, and so forth. 
Most of the suggested alterations to CAP require changes to only a few of the subpro­

grams. Therefore, it would be wasteful of machine time to assemble all of the CAP sub­
programs during each run. Assembly of subprograms not being modified on the UPDATE 
Input Tape may be omitted by proper use of the SKIPT¢ pseudo- operations. 

When FAP reads a card image from the System Input Tape with SKIPT¢ in its opera­
tion field, assembly is suspended and the UPDATE Input Tape is read until a card image 
of serialization identical to the serialization of the SKIPT¢ card is found. Normal up­
dating and assembly commence with the card of identical serialization on the UPDATE 
Input Tape. A card of serialization higher than that of the SKIPT¢ card will not terminate 
the SKIPT¢ operation; the serializations must be identical. Thus, assembly of a sub­
program can be avoided by using a SKIPT¢ card serialized with the serial number of 
the first card in the next subprogram to be updated. Subprograms must be updated and 
assembled in the order that they appear on the UPDATE Input Tape; SKIPT¢ cannot be 
used to move the UPDATE Input Tape backward. 

It is good practice to include a SKIPT¢ card in the input deck for every subprogram to 
be updated. If the UPDATE Input Tape is positioned ~eady to read the card specified by 
the SKIPT¢ card, F AP will begin as sembly with that card. Inclusion of the SKIPT¢ 
cards in all input decks makes each subprogram independent of all others. The input 
cards for a particular subprogram may be removed from the complete input deck without 
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UPDATE 

.... -~ D (from next page) 

Read one card from UDINT. 

Read one card from SYSINT. 

What is operation field of card 

from SYSINT? 

DELETE DELETE SKIPT¢ 

THRU 

A B c 

SYSINT< UDINT 

SYSINT - System Input Tape 

UDINT - UPDATE Input Tape 

other 

CAP As a Laboratory Exercise 

SYSINT> UDINT 

UDINT. 

SYSINT=UDINT - Serialization on card from SYSINT equals serialization on card 

from UDINT. 

SYSINT< UDINT - Serialization on card from SYSINT isles s than serialization on 

card from UDINT. 

SYSINT> UDINT - Serialization on card from SYSINT is greater than serialization on 

card from UDINT. 

Figure 5.la. UPDATE flow diagram. 
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~ 
DELETE 

DELETE>UDINT DELETE<UDINT 

Process card from UDINT. DELETE=UDINT 

Read card from UDINT. 

D 

(to previous page) 

~ 
DELETE THRU 

UDINT<DELETE THRU UPDATE>DELETE THRU 

UDINT=DELETE THRU 

Read card from UDINT. 

(to previous page) 

~ 
SKIPT¢ 

UDINT =I- SKIPT¢ 

UDINT=SKIPT¢ 

Process card from UDINT. Read card from UDINT. 

(to previous page) 

Figure 5.lh. UPDATE flow diagram. 
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Se riali zation Serialization 
Subprogram of first card of END card 

CAP CAPOOOIO CAPOO320 

PASSI PASIOOIO PASI0790 

PASS2 PAS20010 PAS22210 

VAREVL VEVLOOIO VEVL2220 

¢PTBL ¢PTBOOIO ¢PTB0790 

INT¢P INTPOOIO INTP0990 

UTILITIES UTILOOIO UTILl140 

SYMST¢ SYMSOOIO SYMS0540 

END¢P ENDPOOlO ENDPI020 

C¢MP¢P C¢MPOOlO C¢MP1860 

EXPR EXPROOIO EXPR17l0 

TERM TERMOOIO TERM1350 

Figure 5.2. Order of subprograms on CAP UPDATE Input Tape. 

the need to add a SKIPT¢ card in the deck for the following subprogram. The first three 
cards for each subprogram to be updated should be 

* FAP 

UPDATE 

SKIPT¢ 

11 

Column 73 

~ 
SUBROOIO -------

(

Serial number Of) 
the fir st card in ----
the subprogram 
to be updated. 

Remember that the UPDATE Input Tape contains the unaltered, symbolic version of 
the CAP subprograms as contai.ned in the listing in Appendix A. When we submit a deck 
to update a CAP subprogram, it is the combination of that symbolic input deck and the 
unaltered symbolic program on the UPDATE Input Tape that is assembled. When new 
changes are made to a subprogram all previous desired changes to that subprogram must 
be included in the input deck. 

5.3 How CAP Is Tested 

If the modified version of CAP assembles successfully, it may be tested on the same 
computer run. To simplify this testing a special library tape is used with the F¢R TRAN 
Monitor System. This library tape contains the execution monitor program and all of the 
subroutines of the CAP assembler in an unmodified, binary form. The student need only 
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assemble those subprograms of CAP for which changes are desired, and the library will 
provide the rest of the subroutines needed to complete CAP. The student must also pro­
vide a main program which calls the execution monitor program. 

Once a subprogram has been modified, assembled, and checked out, it may be sub­
mitted on later runs in binary form; it need not be reassembled if no changes are to be 
made to it. 

Let us suppose that a student has made a change to one subprogram, V AREVL, in his 
attempt to add division to the variable field operations. 1£ he submits an assembly and a 
main program as an FMS job, the following steps will be carried out: 

1. The F AP assembly will take place. 

2. If the assembly is successful, the main program and the program just assembled, 
VAREVL, will be loaded into core memory. 

3. The library will be searched for the rest of the CAP assembler and the execution 
moni tor, and they will be loaded into core memory. 

4. The CAP assembler, as modified, is then run under the execution monitor program. 
The input- output simulator will provide a symbolic test program for CAP to assemble. 
A typical symbolic program used to test CAP is shown in Appendix B. 

5. When CAP finishes its assembly of the test program (or gets into a loop or stops 
because of the modifications), control of the computer returns to the execution monitor 
which prints out for debugging and comparison purposes, the following: 

a. The symbolic test program CAP worked on. 

b. The collation tape, if anything was written on it by subroutine WCT1. The col­
lation tape is printed out in BCD. 

c. An octal postmortem of all programs which were submitted (in this case, only 
V AREVL and the main program). 

d. An octal postmortem of the region in core storage in which CAP was to have 
placed the assembled program. 

In the case of the VAREVL test, it will be noted that the symbolic test program in 
Appendix B has in it several variable field division signs. Examination of the addresses 
assembled for these instructions will tell whether or not the modification worked cor­
rectly. 

In case of difficulty, such as a program stop or loop, the collation tape dump is often 
most helpful if the stop occurred in pass one, since the tape will contain the las t instruc­
tion proce s sed correctly. Similarly, pas s two loops or stops may be diagno sed by ob­
serving which instruction was the la§t processed and printed on the CAP assembly list­
ing. For example, if the first instruction which does not appear on the CAP output 
listing is the first instruction in which division appears in the variable field, one might 
suspect the new V AREVL modification. 

In connection with item five, listed earlier in this section, the execution monitor as­
sumes CAP to be in an endless loop if it takes longer than five seconds to complete its 
assembly. The postmortem indicates the instruction location where the program was 
stopped. Adding one to this location will give the instruction which was next to be ex­
ecuted. A normal CAP assembly takes about one second on the IBM 7090 and the most 
complicated interaction of modifications should not extend this time by more than three 
seconds. 

A typical CAP execution run is shown in Appendix B following assembly listings of the 
execution monitor subprograms. The format of the CAP assembly output and of the 
postmortem outputs can be seen there. 
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5.4 Tactics for Modifying CAP 

Experience has shown that the following tactics can be helpful in making maximum use 
of the limited number of computer runs available for debugging modifications to CAP. 

1. Some modifications are closely related to others; making the first modification al­
lows the second to follow with but a few instructions. 

2. All anticipated modifications should be submitted before the fourth or fifth run (if 
eight runs are availa1;>le) to allow sufficient time for debugging. 

3. Leave the addition of pseudo- operations which change the ILC (such as BSS) until 
later runs; debugging the simpler modifications in early runs. (If one of these pseudo­
operations fails, the result is usually catastrophic.) 

4. Observe that the point values attached to modifications are an indication of their 
relative difficulty. In particular, modifications to the compiler require an understanding 
of advanced material in Chapter 4 and should be avoided by the beginner. 

,5.5 The Instructor's Point of View 

The material discussed in this section is of an advanced nature and may be skipped by 
the reader not interested in teaching CAP to a class. 

The Execution Monitor 

The execution monitor is a package of library subroutines called by a main program. 
The calling sequence to this monitor is 

TSX $ TESTS,4 

The main program listed in Appendix B, which contains the above instruction, may be 
assembled and given to the student in binary form for submission along with his modifica­
tions. The main program also contains three words of octal 7' s which prevent the student 
from duplicating the binary cards on an IBM 026 keypunch. Without the octal 7' s the 026 
may duplicate the cards incorrectly but the 7' s prevent all duplication, and thus they in­
sure against the possibility of an incorrect binary main program. Note also that the ex­
ecution monitor does not return to the main program which called it, it exits to the 
F¢R TRAN Monitor System when finished testing CAP. 

The execution monitor first prints a subprogram storage map of all binary and sym­
bolic programs submitted by the student. This is done by reference to subroutine M¢VIE) 
inserted at the time of loading by the BSS loader. * The storage map lists all subprograms 
found in M¢VIE) from the beginning of core storage up to the subroutine TESTS, which 
is the first subprogram loaded from the library. 

Depending on the status of sense switch one, either a core storage clock or a magnetic 
tape on channel B of the 7090 in combination with a data channel trap is used as a five­
second timer. In the latter case, a scratch tape (tape B3 as the program is shown in 
Appendix B) is write selected and a sequence of data channel commands with a word count 
of 50000 and terminating with an I¢CT command is given to channel B. 

):' Subroutine M¢VIE) is a copy of the BSS loader table which has been moved to a position 
following the last subprogram loaded and given an entry point name by the BSS loader be­
fore beginning execution. This loader table consists of entry name and entry point pairs 
and permits a selective storage map and postmortem to be given. 



The Instructor's Point of View 45 

Since the, word transmission rate of a 729 mod IV magnetic tape is about 10,000 words 
per second, the data channel trap will occur in about 5 seconds if CAP has not completed 
its assembly and returned to the monitor by that time. This trap will restart the com­
puter if it is at a program stop. 

Other trap returns are also set by the execution moni tor. A standard floating point trap 
interpreter is provided which changes underflow to zero and terminates the run on over­
flow. The select trap return is set up and the select trap enabled before calling CAP. 

After these traps have been enabled, the execution monitor places in the AC the origin 
of the symbolic program that CAP is to as semble (50000

8
) and calls CAP. 

An 1/ ¢ simulator package handles all calls for input and output from CAP. The input 
tape is simulated by a core storage buffer containing strings of card images. Subprogram 
PR¢G is used as a buffer to hold these strings. The collation tape is also simulated using 
a core buffer. 

Control eventually returns to the execution monitor; it returns either via the expected 
return from CAP, or via timer or select traps. The execution monitor prints an appro­
priate comment and gives a postmortem of relevant information. It then returns to the 
F0R TRAN Monitor System with a standard system load sequence. 

Miscellaneous Details About the Laboratory 

If a student has made a modification which is not tested in the symbolic test program 
contained in subprogram PR¢G, a special input/output package is used which reads card 
images from the System Input Tape after the student' s ~:~ DA TA card. All other 1/0 opera­
tions are handled in exactly the same way as in the usual II¢> simulator package. 

Each student must have the UPDATE Input Tape rewound at the beginning of his job. 
This rewind may be accomplished in one of several ways; perhaps the simplest is the 
temporary modification of the F~R TRAN Monitor System to rewind the tape between jobs. ~~ 
An alternative might be to require that each student use the REWIND pseudo- operation 
.in his first FAP assembly. 

Making an UPDATE Input Tape 

The UPDATE Input Tape used for CAP may be made with the aid of the FAP UPDATE 
facility. In the following discussion, since the tape is being written, it will be referred 
to as an UPDATE Output Tape. When making an UPDATE tape from a card deck, only 
an output tape is specified on the UPDATE card. For example, if the tape being written 
is on logical drive 11, the F AP control card would be 

UPDATE ,11"D 

The D in the fourth subfield specifies that assembly is deleted, permitting the entire tape, 
including all subroutines, to be written with only one loading of FAP. 

Since the third subfield is void, the output tape will be in blocked format. This blocked 
format is preferable to unblocked, as Ie ss time will be required to move the UPDATE tape 
when it is used later by a class. (F AP writes blocked records 16 cards to a block.) 

Since assembly is deleted by the fourth subfield, regular END cards (in the subroutines 
being placed on the UPDATE Output Tape) will not stop FAP: the pseudo-operation END UP 
will. Following the last subprogram being placed on the UPDA TE Output Tape, the 
UPDATE pseudo- operations ENDFIL and REWIND may be used to complete the tape. 

If a student should attempt to SKIPT¢ a serial number not on the UPDATE tape, F AP 
will stop with a comment and print the last card on the UPDATE tape. For this reason, 
a card with a distinctive comment such as "SKIPT¢ ERR¢R" may be inserted after the 
last subprogram written on the UPDATE tape. 

>'r: J. H. Saltzer, M.1. T. Computation Center Memo CC-204 (February, 1963). 





Appendix A 

LISTING OF THE CLASSROOM ASSEMBLY PROGRAM 

This appendix consists of FAP listings of the complete Classroom Assembly Program. 
At the end of these listings is an assembly output produced by CAP, of a sample CAP lan­
guage program. Certain conventions have been observed in these listings. The double 
asterisk e:~~:~) has been used as a zero element in the variable field of those instructions 
subject to program modification. Each subroutine begins with the pseudo-operation PCC 
to insure that all cards in the original subprogram appear on the listing. Since the listings 
are to be usec-1 as references for UPDATE modifications, the position of all control cards 
must be known. 

Index to Appendix A 

Main program 

CAP 

PASS1 

PASS2 

VAREVL 

¢PTBL 

INT¢P 

C¢MMA, 

SYMST¢, 

END¢P, PIVAR, GEN¢P, GNST¢, ERASE 

C¢MP¢P 

EXPR 

TERM 

READ!, PRINT, WCT1, REWIND, READ2 

47 

48 

50 

52 

55 

61 

67 

69 

72 

76 

78 

81 

86 

91 

95 

















































































































































































































































Appendix C 

SUGGESTED ADDITIONS TO CAP 

This appendix contains a list of sugge sted modifications to CAP which a student may attempt to make when using CAP as a laboratory exercise. With each modification is given a "point" value which is an indication of the relative difficulty of modification. The descriptions of many of these additions make reference to similar facilities in FAP (F¢RTRAN Assembly Program). Detailed information on the operation of the FAP facilities can be obtained from the F AP reference manual.~:< 

C.l Symbols 

1. Add a test for multiply defined symbols and have CAP indicate with an M 40 points every operation involving a multiply defined symbol. 

2. Sort the symbol table after PASS 1. Beware, this is a difficult modifica­
tion. If it fails, nothing else in CAP will work properly. 

a. Interchange sort. 
40 points b. Radix sort or any sort which take s a time comparable to N log N. 75 points 

3. Use an exponential table lookup of the sorted symbol table for SYMGET. 75 points 
4. Add the pseudo-op EQU which is to operate as in FAP. Check for phase 50 points error s, and indicate with a P. 

5. Add a test to flag the eleven illegal characters in the location field. In­dicate with an S. 

C.2 Operation Field 

35 points 

1. Add the three -letter prefix code s to CAP as in F AP (that is, P ZE, M ZE, 25 points P¢N, etc., and blank field). 

2. Add the pseudo- op ¢C T which accepts octal input in the same format as 50 points INT. Er ror s should be indicated with an E. 

3. Add the pseudo - op BSS as in F AP. Check for phase error s and indicate 40 points with a P. 

4. Add the pseudo-op H¢L which accepts a card in the format of that in 50 points Figure C.l. n is a digit from 1 to 9, or if blank or a it is assumed to be 10. 

~:CReference Manual, F¢RTRAN Assembly Program (FAP), IBM Publication C28-6235 (September, 1962). 
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H¢L should then use n words of storage for BCl words as the F AP pseudo-op 

BCl does. 

1 6r718 1 1 12 13 72 

Symbol H¢L n n 6-character words of BCl 

Figure C .1. Format for H¢L pseudo-operations. 

5. Add the pseudo -op CALL as in F AP except that: 

a. No transfer vector is formed. 

b. No error words are generated. 

6. Allow for indirect addressing of operators with an asterisk. 

7. Use an exponential table lookup for the op-table. (Only 25 points if you 

did this for the symbol table also.) 

8. Improve the REM pseudo-op so that blanks replace the letters REM in 

the assembly listing. 

C.3 Variable Field 

1. Modify V AREVL to accept a "/,, as a break character for division. Be 

careful of signs. 

50 points 

25 points 

75 points 

25 points 

25 points 

2. Modify CAP to consider" $" as a symbol (in the variable field) meaning 40 points 

"this location" as does the IP:'" in FAP. 

3. Add decimal integer literals. 75 points 

4. Modify CAP to accept a tag field and remove the present tags in ¢PTBL. 25 points 

5. Extend 4 so that CAP will also accepta decrement field and remove 15 points 

the present decrement in ¢PTBL. 

CA Assembly Listing 

1. After the assembly listing, print a listing of symbols defined and their 

values. 

2. Bonus for literals: After the symbol table, print a listing of literals. 

40 points 

40 points 

3. Bonus for multiply defined symbols: Before the as sembI y listing, print 40 points 

a list of multiply defined symbols and their multiple values. 

4. Bonus for symbol table: Form a table of undefined symbols and print 25 points 

after the assembly listing. 



5. Print ¢C T, INT, and CALL in detail mode. 

6. Consider a ~~ in column 1 to indicate a remark as in F AP. 
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25 points 

25 points 

7. Improve the assembly listing by separating the fields of the octal words, 65 points 
that is, CLA 64 should print as follows: 

0500 00 0 00100 

While TXL 1,1,1 should print 

-3 00001 1 00001 

and INT -32 should print 

-000040 000000 

while H¢L 1 AB should print (if you have added H¢L) 

602122606060 

8. Print the nonerror indications A, T, and D where applicable. For ex- 40 points 
ample, the letter A means either "an instruction normally written with an ad-
dress does not have one" or "an instruction normally written without an address 
has one." Similarly for T (tag) and D (decrement). 

9. Add the nonerror indication"s F and Q. F means "a nonindirectly ad- -50 points 
dressable instruction has an indirect address." Q means "the instruction ST¢ 
(instead of the probable STQ) follows a divide instruction." 

N. B.: In connection with these last three suggestions (and others) you may 
note that all operation codes are completely specified by the first four and the 
last four octal digits. Thus the middle four may be used in ¢PTBL for A, T, 
D, and F information and for controlling printing of instructions. The se middle 
four digits may be masked out of the opcode before inserting in the assembled 
program. 

C.5 Compiler 

1. Add diagnostics to C¢MP including 
a. Nonzero reduction level. 
b. Illegal grammar, that is, 

multiple "-II signs 

A = C(B} 

A = C} + (B 

A = C + r:~C) 

75 points 

2. Let column 7 be used for continuation cards in the same way that column 50 points 
6 is in F¢R TRAN, or column 11 is in MAD. 

3. Add the operator ~:~~:~ to C¢MP in such a way that A~:~~:~B would be com- 75 points 
piled as 

CLA A 

LDQ B 

TSX EXP3,4 

and the result from EXP3 is left in the AC. The operator ~:~~:~ should be given 
proper precedence. 
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4. Modify the compiler to accept integer and floating pOInt constants and 
form these into a table, say,' LIT+OO to LIT+99 at the end of the progranl after 
TEM. To convert an integer of magnitude less than 227 to floating point, the 
following sequence of 7090 instructions will work: 

CLA ~NT C(AC) = address integer 

0RA :=: 0233000000000 Put in exponent 

FAD :=: 0233000000000 Normalize 

ST0 FLT C(FLT) = floating point equiva-
lent of the integer INT 

puints 

5. Improve the efficiency of the compiler by reducing the number of \50 - lOO points 
combinations 

and replacing the cOITlbinations 

and 

with 

ST0 TEM+n 

CLA TEM+n 

STQ TEM+n 

CLA TEM+n 

ST¢ TEMtn 

LDQ TEM+n 

XCA 
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