
ADVANCED COMPUTER PROGRAMMING

A Case Study of a Classroom Assembly Program

F. J. Corbat6 J. W. Poduska

The M.I.T. Press
Massachusetts Institute of Technology

Cambridge, Massachusetts, 1963

J. H. Saltzer

IIIII I

Copyright@ 1963
by

The Massachusetts Institute of Technology

All Rights Reserved

Library of Congress Catalog Card Number: 63-20529

Printed in the United State s of America

PREFACE

The present book is a case study of an assembler-compiler program. It is intended to
be an advanced programming text for college students, system programmer trainees, and
anyone trying to acquire a general understanding of system programming techniques. We
feel that laboratory exercise is an important vehicle for teaching the techniques discussed
in this volume. Therefore, the translator program example used must be written in an
existing language of an existing computer. We consequently have chosen the FAP language
of the IBM 7090 computer to describe the translator program. Other reasons for this
particular choice are given in Chapter 1: Any loss of generality is partially offset by the
fact that the 7090 is currently the most widely used large - scale computer in the world and
one to which many colleges and universities have acc.ess.

The motivation for the present work began with the large gap between the usual beginning
digital computer programming course and the sophisticated system programming tech­
niques of interest in programming research and development. It was felt that too many
students were uncritically using the existing programming systems and were overawed
by the apparent complexities in such programs as the original F0R TRAN compiler.

In order to serve as an introduction to system programming and to convince the student
that the principles of translators are relatively few and basically simple, a Classroom
As sembly Program named CAP was written. It was first used in November 1960, in
the M. I. T. course 6.251, Digital Computer Programming Systems. Since then, an execu­
tion monitor program has been added for the convenience of both students and instruc­
tors.

Course 6.251, where CAP has been used, is a one-semester introductory course of
12 units (3 contact hours per week, 9 hours preparation.) The course begins with study
of an algebraic language such as F¢R TRAN or MAD. The next section covers a machine
language such as FAP. The third section is devoted to the study of the CAP as sembler­
compiler. During the semester, the course attempts to present most important contem­
porary ideas about computer programming. Many of these ideas are then illustrated in
the CAP exercise.

Specifically, CAP has been used as follows: Students after studying the translator have
been expected to make specified improvements and changes to it, using 6 to 8 computer
runs for debugging purposes. (More ambitiously, the students could have written CAP
from the specifications, but insufficient computer access prevented this for even the
better students.)

For each of the eight semesters that CAP has been taught, the student enrollment, which
has been gradually increasing, has been a cross section of the more than twenty depart­
ments at M. I. T. Thus we conclude that the average student is able to grasp and enjoy the
basic principles of a translator program when it is appropriately presented.

The reader is as sumed to be able to program in the F AP machine language suffic iently
well to know how to look up feature s of the F AP as sembler or of the 7090 computer in the

iii

IV

~:'t
IBJ..1 published reference manuals. I He is assumed also to be acquainted with the Binary
Symbolic Subroutine (BSS) linkage rtnd relocation used in the IBM F0RTRAN Monitor Sys­
tem (described in the FAP Reference Manual):::

The book is organized into two major divisions, the description of CAP (five chapters)
and the appendices containing listings of the CAP assembler. The compiler part of the
program is considered to be advanced material, and the text advises the beginni.ng reader
which parts may be safely skipped over.

The appendices include listings of both the assembler-compiler program and of the ex­
ecution monitor program. The listing of the assembler-compiler is essential to an under­
standing of the text. The execution monitor listing, while not so important, is included
for two reasons. First, an advanced student may make the execution monitor a further
case study in advanced programming techniques. Second, it is included for completeness,
for the instructor who may wish to adapt it to his needs. It should be noted that the exec­
ution monitor program does make use of a few specific features of the current M. 1. T.
F¢RTRAN Monitor System and 7090 computer.

Acknowledgment should be given to the efforts of the many teaching assistants wh'o have
labored to make the use of CAP effective. Particular mention is made of Neil Haller for
his work on the early stages of CAP and introducing the first version of the execution mon­
itor program, and of Neil Barta for his preliminary description of the UPDATE feature of
FAP, from which a major part of Chapter 5 is adapted. We also are especially apprecia­
tive of the useful comments on the present n1.anuscript made by Neil Barta and Thomas
Hastings.

The programs described in this book were developed at the M. 1. T. Computation Cen­
ter, Cambridge, Mas sachusetts.

Cambridge, Mass.
May, 1963

-'--,-

F. J. Corbat6
J. W. Poduska

J. H. Saltzer

Reference Manual, F¢RTRAN Assembly Program (FAP), IBM Publication C28-6235
(September, 1962).

t Reference Manual, IBM 7090 Data Processing System, IBM Publication A22-6528-4

(March, 1962).

CONTENTS

Chapter

1. INTRODUC TION

2. CAP USER'S REFERENCE MANUAL
2.1 The CAP Language
2.2 Card Format

Symbolic Location Field
Operation Field
Variable Field
Sequence Number Field

2.3 Pseudo- Operations
2.4 Use of CAP
2.5 Output of CAP
2.6 Restrictions and Error Indications

3. THE CAP ASSEMBLER
3.1 How Does an Assembler Work?
3.2 Pas s One, Symbolic Definitions
3.3 The Collation Tape
3.4 Pass Two, Symbolic Evaluation
3.5 VAREVL, Evaluation of the Symbolic Variable Field

How EV AL is Called
3.6 Subprogram Calling Sequences and Definitions

Primary Subroutine s
Input and Output Subroutines
Symbol Table Subroutine s
Utili ty Subroutine s

4. THE COMPILER OF C¢MP PSEUDO-OPERATIONS
4.1 Why A Compiler?
4.2 What Does a Compiler Do?
4.3 Relation of C¢MP to CAP
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Precedence
The Spread Field; C¢MP¢P
Compilation of Individual Instructions
Compilation of Simple Expressions; EXPR
Temporary Storage and Subroutine GNST¢
The Compilation of Terms; TERM
Review
Calling Sequence of Compiler Subroutines

5. CAP AS A LABORATORY EXERCISE
5.1 The CAP Laboratory

Extent of Laboratory As signment

v

Page

1

3
3
3
3
4
4
4
4
5
5
6

7

7

8
11
11
12
16
17
17
18
19
20

22
22
22
23
23
23
28
28
31
31
33
34

36
36
36

vi

5.2

5.3
5.4
5.5

How CAP is Modified
UPDATE
The Use of UPDATE
The UPDATE Pseudo-Operation
Adding and Replacing Cards
Deleting Cards from Programs on the UPDATE Input Tape
The Necessary END Card
Bypas sing As sembly of Subprograms
How CAP Is Tested
Tactics for Modifying CAP
The Instructor I s Point of View
The Execution Monitor
Miscellaneous Details About the Laboratory
Making an UPDATE Input Tape

Appendix A Listing of the Classroom Assembly Program
Index to Appendix A

Appendix B Programs to Allow Use of CAP in the Laboratory
Ind ex to A ppe ndix B

Appendix C Suggested Additions to CAP
C.l Symbols
C.2 Operation Field
C.3 Variable Field
C.4 Assembly Listing
C.5 Compiler

37
37
37
38
38
38
39
39
42
44
44
44
45
45

47
47

103
103

167
167
167
168
168
169

Chapter 1

INTRODUCTION

In an age of increasing complexity, the reader may reasonably ask why he should want
to learn the innermost structure of a digital computer programming system. For the day
of the renaissance man is indeed past; the intricacies of pre'Sent-day knowledge as well
as the limitation on time for comprehension, of nece s sity, allow a person to be a special­
ist in but a limited number of areas. The answers will vary, but it is inescapable that
digital computers have already during their short presence become an immensely impor­
tant device in modern society. As for the future implications, the only issue of debate is
whether or not computers are bringing a second industrial revolution as the steam engine
heralded the first. Examples of the penetration of computers into our daily activities
abound; to name but a few: banking, payroll processing, production and inventory con­
trol, income tax processing, satellite orbit computation and tracking, numerically con­
trolled machine tools, airline reservation systems, and military defense communication
networks.

Because digital computers have become important, it is inevitable that the accompa­
nying system programs will grow in importance too. For computers reach a high level
of effectiveness only when the programming systems allow the ultimate user of the system
to program directly-albeit often unknowingly by that name-and thereby avoid in~erme­
diary programmers. The development of these direct usage language s is presently limited
by the ease and rapidity that suitable translation programs can be written. These trans­
lation programs, are variously named problem oriented language proces sors, compilers,
or assembly programs, depending on the language level at which they meet the user.
Today, more and more, a computer is incomplete without an accompanying programming
system of considerable sophistication.

Moreover, computer systems are still rapidly evolving in many directions: The detailed
circuit technology is still making great strides, the logical design is changing to include
multiconsoles and multiprocessors, and the programming systems are being enlarged to
include larger roles such as the time-shared operation of the computer. It is important
in this highly fluid state of affairs that others in addition to the system programming spe­
cialists have an understanding of programming systems. What is needed for the optimum
use of computers in the future is that responsible individuals within computer-affected or­
ganizations understand the problems and general techniques of programming systems to
the same extent that the problems and techniques of computer hardware are now under­
stood. For without knowledgeable and critical guidance there will be not only many costly
abuses of computers but there will be little vision and few ideas for new computer appli­
cations.

To give the reader insight into contemporary programming systems, the following chap­
ters will present a case study of the inner structure of a combination assembler-compiler
program. The program is called CAP, an acronym for Classroom Assembly Program,
and it contains many of the typical features of present-day translators. The case study
technique will prove helpful since there are many interrelated .factors to consider and

1

2 Introduction

discuss. As well as acqulrIng an inner knowledge of a translator, the reader of CAP will
acquire three additional benefits, namely:

1. The study of detailed programming techniques.
2. How to read and study a large program.
3. How to organize a large program.

For several reasons the CAP program has been written in the FAP symbolic machine
language of the IBM 7090 computer. A machine language representation has been specifi­
cally chosen because of its concreteness and lack of ambiguity for the reader. This rea­
son is especially pertinent when one considers that one of the principal objectives of the
study of CAP is to remove the mystery of system programming and to establish a feet-on­
the-ground attitude in the reader. Finally, the FAP language, rather than S~S, for
example, has been used in order to have its powerful subprogram feature which allows
separate translation and rigid independence of program segments - a feature which greatly
assists the initial understanding of a large program.

CAP is weaker than the usual translators, such as FAP, in that it has only subsets and
example s of various special feature s and does not have the machinery for separately trans-
1atable subprograms. CAP differs from FAP in style, too, in that it is more elegantly
written (that is, in terms of simplicity, brevity, and clarity) and highly organized with
many subprograms. The CAP style is in contrast to that of many translator programs in
active use where extrerne short-cuts have been used in the interest of minimizing oper­
ating speed. (Often the short-cuts used are analogous to those for reducing the cost of
commercial television receiver and frequently shortsighted from a maintenance point of
view.) The basic techniques used in translators remain the same, however, so that CAP
is a valid program from which to learn. One feature of CAP that merits comment is that
although intermediate tapes are simulated, the program fits entirely in core memory and
is independent of intermediate storage device s. Pre sent- day translation programs have
frequently overlooked the speed advantages of remaining entirely in core memory partic­
ularly while translating short subprograms which should be the major use when a trans-
1ator allowing subprograms is utilized.

Finally, before proceeding with the remaining chapters, discussion is in order on how to
study CAP. Past experience with many students indicates that the following advice is useful:

1. Obtain an understanding of what CAP does from the point of view of a user.
2. Determine the specifications of CAP as a program.
3. Determine the specifications of subroutines PASS!, and PASS2.
4. Starting in PASS!, study the specifications of the successive programs in the hier­

archy of subprogram usage. (Omit the compiler.)
5. Starting at the top of the hierarchy, study how each subprogram meets its specifi­

cations. Review steps 2 to 4 sufficiently often that you are always sure of what a pro­
gram is supposed to do before considering how it does it.

6. Remember that all subprograms can only communicate by means of their calling
sequences because they are separately translated.

7. When studying, it is a great advantage to know that a program has been debugged.
Nevertheless, there will always be sections of program which appear not to work cor­
rectly. After spending a reasonable amount of time, if no progress is made, avoid getting
bogged down by jotting down on a pad the uncertain point for later discussion with others.

8. The compiler can be studied easily after the basic CAP is understood.
9. The advanced student can improve his program analysis abilities, by studying the

execution monitor program, although it is given largely for reference purposes.

Chapter 2

CAP USER'S REFERENCE MANUAL

2.1 The CAP Language

Before we begin to study how the CAP assembly program works, we should pause to
determine exactly what job it is intended to do. We can perhaps get the best picture of
this job if we examine the user's reference manual for the CAP language. This reference
manual is the subject of the present chapter. The brevity of the reference manual is at
once an indication of the simplicity of the CAP language and of the assembly program it­
self.

2.2 Card Format

CAP instructions are typed one to a card as shown in Figure 2.1. Columns 1 to 6 are
known as the symbolic location field and may contain a symbol or blanks. Columns 7 and
12 are always blank, leaving room for a three or four letter operation code in the opera­
tion field, columns 8 to 11. The variable field begins in column 13 and terminates at the

1 61 /8 11 12 13 72 73 80

symbol oper- variable field Space

ation for

~/ ~
label
and

BLANK sequence
numbers

Figure 2.1. Format of CAP symbolic cards.

first blank column, or column 73. An arbitrary comment may follow this first blank
column. This comment will be ignored by the assembly program as will the sequence
number field, columns 73 to 80.

S1mbolic Location Field

This field may contain a symbol, a string of one to six characters, at least one of which
is nonnumeric, and none of which are the following eleven special characters:

+ / = $

3

4 CAP User's Reference Manual

A symbol may be defined only by its appearance in the symbolic location field of some
instruction card.

Operation Field

This field may contain a mnemonic associated either with one of thirty-four 7090 in-
structions or one of five pseudo- operations. The allowed 7090 instruction mnemonic s are

ACL ANA CAL CHS CLA CLS C¢M FAD

FDP FMP FSB LAC LAS LBT LDQ LGL

LGR LXA ¢RA PBT RQL SLW ST¢ STQ

SXA TIX TMI TPL TQP TRA TSX TZE

XCA XCL

The instructions LAC, LXA, SXA, and TSX are assembled with a tag of 4. The instruc­
tion TIX is assembled with a tag of 4 and a decrement of 1.

The allowed pseudo-operation mnemonic s are

REM INT ¢CTL C¢MP END

The effect of these pseudo-operations is explained in a later section.

Variable Field (Operations)

The variable field specifies the address of an operation. It may contain an expression
consisting of a string of symbols and decimal integers connected by the break and grouping
characters:

+

All multiplications must be made explicit by the use of the asterisk even if one of the
operands is a parenthetical expression. The variable field is evaluated in signed 35 bit
integer arithmetic. If the result is negative, it is two's complemented before the final
step in which the answer is taken modulo 215. The result is combined with the specified
operation code by a logical" OR" .

Sequence Number Field

Columns 7 3 to 80 may be used for labeling and sequence numbering and are ignored by
the CAP as sembly program.

2.3 Pseudo-Operations

REM The REM pseudo-operation is used to introduce an arbitrary remark into the
assembly listing. Card columns 1 to 80 will be printed and the card will be otherwise
ignored by the assembler. If a symbol appears in columns 1 to 6, it will be ignored.

INT INT is a data-generating pseudo-operation. The variable field of the INT pseudo­
op consists of signed decimal integers separated by commas and terminating at the first
blank column. For each decimal integer, a word is assembled with the decimal integer

Output of CAP 5

inserted in the left half of the word. A comma with no integer following it will cause a
word of all zeros to be assembled. A decimal integer may be preceded by a minus sign
and must be of absolute value less than 217. A symbol, if any, appearing in the symbolic
location field will be defined to be the location of the first integer assembled. Succeeding
integers will be placed in succeeding locations in core storage.

¢CTL The twelve characters in card columns 13 to 24 are taken to be octal digits and
are used to form a 12 digit octal word in core storage in the next location to be as signed
by the assembler. If the characters appearing in columns 13 to 24 are not octal digits, an
incorrect word will be generated and no error indication will be made. A symbol in the
symbolic location field will be defined to be the location of the generated word.

C¢MP The C¢MP pseudo-op specifies that the entire variable field, columns 13 to 72,
is taken to be an arithmetic statement which is to be compiled, in much the same manner
as in F¢R TRAN or MAD. Blanks are ignored and commas may be used to indicate tagging.
The arithmetic statement must consist of a symbol followed by an equal sign and followed
by an arithmetic expression. This expression may consist of symbols connected by the
break and grouping characters:

+ /

Numbers in the expression will be taken as symbols referring to memory locations. The
indicated arithmetic expression will be compiled in floating point arithmetic" and a list of
the instructions compiled will appear on the CAP assembly listing. If a symbol appears
in the symbolic location field of the C¢MP card, its value will be the location of the first
compiled instruction.

END This pseudo-op marks the physical end of the program and defines the entry point
to the program to be the value of the expression in the variable field. If a symbol appears
in the symbolic location field, it is given the value of the first location not used by the
program.

2.4 Use. of CAP

CAP is a package of subroutines which is called by

TSX $CAP,4

The AC should confain the location in core storage into which the first instruction of the
symbolic program is to be assembled. When CAP is finished it will leave in the AC the
entry point to the program. The sense register (SI) will be nonzero if any as sembly
errors were noted by CAP.

2.5 Output of CAP

The CAP assembler has two outputs, a printed assembly listing, and a binary machine
program. The listing consists of one or more printed lines for each instruction card in
the symbolic input deck. This line contains the 80 columns of the original card, the

6 CAP User's Reference Manual

12 digit octal word which CAP has as sembled as well as the octal location in which the
instruction has been placed, and pertinent coded error indications. In the case of C¢MP
pseudo-ops, the C¢MP card will be printed and followed by a list of the instructions gen­
erated by the compiler in the format described earlier. The assembly listing is written
on an output tape for later printing. The binary machine program is left in core storage
beginning at the location specified by the program which called CAP.

2.6 Restrictions and Error Indications

1. No more than 100 symbols may be defined. If this restriction is exceeded, further
symbols are ignored and a comment is printed at the beginning of the assembly listing,
and SI bit 17 will be turned on.

2. All operation code s must be among those listed earlier in this chapter. If an illegal
operation code is encountered, it will be treated as zero, SI bit 34 will be turned on, and
the letter I' 0" will be printed on the assembly listing next to the offending instruction.

3. All symbols appearing in variable fields and C¢MP statements must be defined. If
an undefined symbol is encountered, it will be given value zero, SI bit 35 will be tUrn on,
and the letter "U" will be printed next to the offending instruction.

4. The variable field of an INT pseudo-operation must contain only decimal integers,
preceded by plus or minus signs and commas. If an illegal character is encountered,
that word will be as sembled as zero, SI bit 33 will be turned on, and the letter "E" will
be printed on the assembly listing next to the offending pseudo-oPe

5. No more than 200 separate elements and break characters may appear in a C¢MP
statement. If this restriction is exceeded, the C¢MP statement is skipped,. and SI bit 14
will he turned on.

6. No more than 125 nested parentheses may appear in an arithmetic expres sion in a
variable field. If this restriction is exceeded, an incorrect value may be computed and
SI bit 15 or 16 will be turned on, depending on the nature of the parentheses count.

The following two restrictions occur when CAP is run under the Classroom Execution
Monitor described in Chapter 5:

7. No more than 150 cards may appear in the symbolic program.

8. The symbolic program must not assemble into more than 256 binary machine in­
structions or require more than 300 card images to be written on the collation tape.

Chapter 3

THE CAP ASSEMBLER

3.1. How Does an Assembler Work?

In this chapter we shall examine in detail the workings of CAP and of assembly programs
in general. While references to the exact coding of CAP are specific to this assembly pro­
gram, the general discussion and flow charts are common to most assembly programs for
most computers.

The purpose of any assembly program is to translate the symbolic cards describing a
machine language program into that machine language program. For convenience, this
translation can be considered to consist of two operations: First, the mnemonic codes
representing machine operations must be replaced by the binary machine codes represent­
ing those same operations; and these binary codes must be assigned locations in core stor­
age. Second, the symbolic variable field of each instruction must be evaluated in terms
of the symbols appearing in the symbolic lbcation fields of other instructions, and the re-
sulting address must be inserted in the instruction. Consider the following program,
written in the CAP language:

CAL BITS GET C¢UNT.
SLW W¢RD SAVE.

HERE TRA HERE ST¢P.
BITS INT 6 BIT C¢UNT.
W¢RD INT 0 ST¢RAGE F¢R BIT C¢UNT.

In order to translate the first instruction, CAL BITS, we need to know two things. First,
what is the binary machine code corresponding to the mnemonic CAL? Second, what is
the value of the address part of the instruction, that is, what is the value of the symbol
BITS? The first question can be answered by reference to a table of operation mnemonics
and machine codes, an essential part of any assembler. The second question, however,
requires knowledge of which symbolic card has the label BITS. This knowledge can be
gained only be going completely through the symbolic deck once to determine the location
value of each symbol.

We see, then, that the assembly program must go through the symbolic cards twice. The
first pass through the symbolic cards is required to assign each instruction to a place in
core storage and thereby to define the value of the symbol, if any, appearing in its symbolic
location field. Then, on the second pass through the cards, it is possible to evaluate the
variable field of each instruction on the basis of the symbols defined on the first pass.

We may expect, therefore, that CAP will exhibit a basic structure consisting of two
passes through the input symbolic card deck. In fact, since CAP is coded in the form of
independent subroutines, we shall find that this two- pass structure is handled by two sub­
routines, namec, conveniently, PASSI and PASS2. These two subroutines are called by

7

8

Return to caller

Figure 3.1. Flow di­
agram of subroutine

The CAP As sembler

another single subroutine named CAP. (The reader should note
that the name CAP will hereafter be used both for the entire as­
sembly program and for the subroutine which calls PASSl and
P ASS2. The meaning of any particular usage should be clear
from context.) Let us examine a flow diagram of the subroutine
CAP, in Figure 3.l.

The CAP subroutine is called by the sequence

CAL
TSX

¢RG
$CAP, 4

CAP. in the main subprogram. (See listings of MAIN and CAP in Ap­
pendix!.) ¢RG specifies the location in core storage at which
the machine language program assembled by CAP is to start.

Subroutine CAP then gives this information as an argument to subroutines PASSl and
PASS2, which perform the two passes through the symbolic card deck mentioned earlier.

Note that subroutines PASSI and PASS2 upon encountering errors turn on bits in the
sense register (SI); subroutine CAP therefore clears the SI before calling each subroutine,
and saves its contents upon return. The main program, upon return from CAP, could
determine if the assembly was successful by examining the SI, although it does not do this.

3.2 Pass One, Symbolic Definitions

It is stated earlier that the purpose of the first pass is to assign each instruction a
place in core storage and thereby define all symbols appearing in location fields of the
symbolic program. The procedure involved in doing this is, as might be expected, quite
straightforward. Fir st, an instruction location counte r (ILC) is set to contain the loca-
tion where the first instruction is to be assembled, which is the origin of the machine lan­
guage program being gen~rated by CAP. Then, a card is read. If it is not a pseudo- op­
eration, the symbol, if any, appearing in the symbolic location field is defined, the card
is put away in a place at which it can be found by pass two, and the lLC is incremented by
one. The process is then repeated for the next card. If a pseudo- operation is encountered,
some special processing may have to occur. For example, when the END card is encoun­
tered, pass one should terminate rather than continue reading cards. A flow diagram of
pass one is shown in Figure 3.2.

If we examine the coding of the loop in subroutine PASSl, we find that it takes very few
instructions, primarily because the difficult jobs are relegated to subroutines. For
example, the box labeled "Read card" is handled by a subroutine named READI. The en­
tire operation, of determining whether there is a symbol to define and defining it to be the
value of the lLC, is handled by another subroutine SYMST¢. Similarly subroutine WCTI
handles the problem of saving the card for the second pass. If we believe that these sub­
routines work as their calling sequences specify, the understanding of pass one is greatly
si m plifi ed.

In fact, the physically largest section of subroutine PASSl is devoted to processing the
pseudo- operations, even though this processing is perhaps the least important function of
pass one. Let us examine what must be done when pseudo-operations are encountered.
Perhaps the simplest procedure occurs for the pseudo- operation REM. In this case the
loop is re- entered after skipping the operations of symbol definition and increasing the

Pass One, Symbolic Definitions

Save card
for pas s two.

Increment

Start

no yes

Store symbol in
~------____________ ~.-~symbol table with

ILC as value.

Figure 3.2.Flow diagram of the first assembly pass.

ILC. The only procedure of interest is saving the REM card for pass two. (See Figure
3.3, a flow diagram including pse 1ldo- op proces sing.)

9

In the case of the ¢C TL pseudo- operation during pass one, the only concern is the num­
ber of words of storage required (one in this case) and the definition of any symbol appear­
ing in its symbolic location field. Therefore, it can be handled exactly like the ordinary
operation codes, that is, by defining the symbol and increasing the ILC by one.

If an INT pseudo- operation appears, the same considerations apply as before. However,
the variable field of the INT may specify that several words be generated. (See INT de­
scription in Chapter 2.) The variable field always specifies that at least one word should
be generated. If there are to be additional words, for each extra word there will be a
comma in the variable field. Therefore, the assembler may learn how many words will
be generated simply by counting the number of commas in the variable field and adding
one. Remember that the only concern of pass one is counting the number of registers
used by the source program and defining symbols. The procedure used when an INT is
encountered is, then, to test for and define the symbol in its symbolic location field, and
to count the number of commas in its variable field. The subroutine C¢MMA performs
thi s last step, and also adds one plus the number of commas to the ILC. The loop is
then re- entered for the next card.

The operation of the C¢MP pseudo- operation will not be explained in detail here except
to say that the symbol, if any, in columns 1 to 6 is defined, the card is saved for pass
two, and a subroutine C¢MP¢P is called to process the pseudo- operation variable field.
C¢MP¢P causes the generation of the instruction sequence required to carry out the com­
putation indicated in the variable field and increases the ILC appropriately. The opera­
tion of subroutine C¢MP¢P is not essential to an understanding of pass one or the rest
of CAP. A full discus sion of the subroutine may be found in Chapter 4.

We come finally to the END pseudo- operation. When this card is encountered, pass
one is complete except for certain simple terminal procedures. The subroutine END¢P
must first'be called to finish off the work of the C¢MP¢P subroutine by making space at
the end of the program for the temporary storage locations required by all the compiled

10

~

The CAP As sembler

PASSI

!
Setup PASSl I
A(AC)-+ ILC.

~
$READI

Read card from
input tape.

~
$SCAN

Get compressed
operation field.

~ REM

pseudo-op J Which I~INT
Check for pseudo-ops.~ PI ? ~¢CTL

l
one. ::---... C¢MP

op ~END
$SYMST¢

As sign value to
04---¢CTL

symbol in location field.

~ $SYMST¢

As sign value
Advance ILC.I. INT ----.

to symbol.

~
$WCTI

Write card on ... REM
collation tape.

~

I...

$SYMST¢ $WCTI

C¢MP -.
As sign value to

~
Write card on

---symbol in loc: field. collation tape.

$END¢P $WCTI

END ~
Assign temporary

~
Write card on

---storage for C¢MR collation tape.

$C¢MMA

Count fields ..
P

advance ILC.

$C¢MP¢P

Compile
arithmetic. r--

$SYMST¢

Assign value to
symbol in loco field.

~
$REWIND

Rewind collation
tape.

+ Return to CAP with
first location not
used in A(AC).

Figure 3.3. Flow diagram of subroutine PASS!.

Pas s Two, Symbolic Evaluation

instruction sequences. Then, the symbol, if any, in columns 1 to 6 of the END card is
defined and the card saved for pass two. Since pass one is now finished the value of the
ILC, which is now equal to the first location not used by the object program being as­
sembled, is placed in the AC, and subroutine PASSI returns to the program which called
it.

3.3 The Collation Tape

It has been mentioned several times earlier that pass one must put the symbolic card
images away in a place where pass two will be able to find and process them. While in
principle it would be possible for pass two to backspace the input tape (or the operator to
reload the card reader with the symbolic program), in practice it is much simpler for
pass one to write the card images on a second tape, the collation tape. Pass one then
ends by rewinding this collation tape, and pass two can begin again with the first card in
the symbolic input program.

It is worthwhile noting, also, that when small symbolic programs (say, less than 150
cards) are being assembled, there is ho reason why a collation tape is necessary, as
there is enough room in the core storage of a 7090 to hold all the card images at once.

11

A common alternate procedure for larger programs is to collect a buffer of, say, 150
cards, then write the entire buffer on a collation tape at once. While the tape write takes
place, the assembly program can be processing more input cards and storing them in a
second buffer.

Still another method uses two collation tapes, collating half the input cards on one,
then starting a rewind so that when pass two begins there will be no wait for tape position­
ing. The second half of the program is collated on the second tape, which is rewound at
the end of pass one, and which will be properly positioned about halfway through pass two
when it is needed.

1£ no collation tape is used, it is still convenient for pass one to call a subroutine to
store the cards; the subroutine simply inserts them into a core memory buffer rather
than writing a collation tape. Similarly, pass two uses a complementary subroutine
which locates and transmits the core buffer rather than reading back from a collation
tape.

3.4 Pass Two,Symbolie Evaluation

When all symbols have been defined by pass one, it is possible to finish the assembly
by processing each card image in order, and determining values for its operation code and
for its variable field. The purpose of pass two, it will be remembered, is to evaluate
the operation code and variable field of each card, to as semble the binary machine word
required to represent the instruction, and to print an assembly listing containing the
original card and the octal equivalent of the machine word generated. Again, the basic
procedure is straightforward, although pass two is a little more complicated than pass
one. The ILC is again set to start at the origin specified by the program which called
CAP.

The main loop of pass two then operates as follows: First, a card is read from the
collation tape. 1£ the card does not refer to a pseudo- operation, the operation code is
evaluated by comparing it to entries in the operation table. The numeric code of the
machine instruction corresponding to the given mnemonic is obtained from this table.
Then, the variable field is evaluated. These two results are combined by a logical "OR"
and inserted in core storage at the location specified by the ILC. (An alternate proce­
dure might be to store the instruction in an output buffer for punching.) A line is printed

12 The Cap Assembler

on the assembly listing containing the card image and the octal equivalent of the word that
was inserted in core storage. Finally, the lLC is increased, and the loop repeated for the
next card.

The main loop of subroutine PASS2 takes but a few instructions, as most of the difficult
jobs are handed down to subroutines to perform. The cards are read from the collation
tape by subroutine READ2, and the assembly listing is printed by an internal subroutine
PRNT 1. The most difficult job, evaluation of the variable field on the basis of the sym­
bols defined in pass one, is handled by subroutine VAREVL.

As in pass one, the physically largest section of coding in pass two is that involved in
processes not strictly important for an understanding of how pass two works, that is,
processing the pseudo- operations, and printing the assembly listing. The pseudo- opera­
tions are handled as special cases as they were in pass one, by performing some simple
operations and re- entering the main loop at a strategic point. Let us examine them again,
one at a time, to learn how they each fit into pas s two.

The REM Pseudo-operation again is the simplest of the pseudo-ops. The REM card is
printed on the assembly listing, and the loop re- entered at the point where the next card
is read. (See Figure 3.4). A slightly different print subroutine is used, as no octal word
was generated for the REM pseudo- op and nothing need be printed in the columns normally
used for printing the octal word.

The C¢MP pseudo- operation is handled exactly like the REM pseudo- operation in pas s
two, since all compilation operations were finished in pass one. (See Chapter 4 for de­
tails on the C¢MP pseudo- operation.)

The INT pseudo- operation is taken care of very simply by calling a subroutine INT¢P
to evaluate the variable subfields and to insert the results in core storage. The INT card
is printed on the assembly listing along with the first machine word generated.

The ¢CTL pseudo-operation is handled on the spot by PASS2 as an example of in-line
coding. A BCD-binary conversion is performed, the result inserted in core storage,
and the ¢C TL card printed on the as sembly listing.

As a last step for each of the above pseudo- operations, the pas s two loop is re- entered
at an appropriate place. In the case of the END pseudo- operation, however, the loop
terminates. The variable field of the END card is evaluated by subroutine VAREVL,
and this value is saved (and printed) as the entry point to the assembled machine program.
Pass two is now complete. The error flags, if any, are placed in the SI, and PASS2 re­
turns to the program which called it.

A comment on the error flags in subroutine PASS2 is in order at this point. Whenever
an undefined symbol is encountered in a variable field by subroutine VAREVL, or an il­
legal operation code by PASS2, or an INT error by subroutine INT¢P, an appropriate
bit in the sense indicator register is turned on. The subroutine used to print out the
assembly listing examines the SI and prints any error flags next to the instruction being
processed. The SI is then set to zero before the next instruction is processed. In ad­
dition, one cell is kept throughout pass two which contains "the logical combination ("0R")
of all the error bits of individual instructions. It is this last cell that is placed in the
SI when pass two is finished.

3.5 VAREVL, Evaluation of the Symbolic Variable Field

We now come to the problem of evaluating the symbolic variable field of each instruc­
tion; a problem often considered to be the essence of the assembly process. At first
glance, given that the values of the symbols which might appear in a variable field have
been defined during pass one, we might think that this evaluation would be quite easy.
In fact, if we were asked to carry out such. an evaluation we would have no difficulty work­
ing out the answer in a short time. However, the algorithm needed for the evaluation is

Pas s Two, Symbolic Evaluation

PASS2

~
Setup P ASS21
A{AC}- ILC.

~
$READ2 .. Read card from
collation tape.

t
$SCAN

Get compressed
operation field.

~ REM

Who hj?C¢MP ..
pseudo-op

Check for pseudo- op.! .. l~ ---+ ¢C TL

1
one. ~INT-

op END

Look up in $¢PTBL.l
not found

•
~. found r Set error flag

Use zerO opcode.
Get opcode.1

~
Insert opcode in L
assembled program.,

• $VAREVL

Evaluate variable
field. ,.

+ $INT¢P ¢CTL

OR value of variable Evaluate variable sub- Form octal word
field into assembled fields and insert in and insert in
program. assembled program. assembled program.

+ ~
PRNTI PRNTI

Print assembly Print assembly
listing. listing.

~
Advance ILC by 1.

L. ---

$VAREVL $PRINT

END --+ Evaluate variable
~

Print listing
field for entry point. of this card

... -..

+
PRNTI

Print assembly
listing.

+
Advance ILC by l.J

~

Return with error
flags in SI and the
entry point in
A{AC).

Figure 3.4.Flow diagram of subroutine PASS2.

,
PRNT2

Print assembly
listing.

13

14 The CAP Assembler

surprisingly complicated, because of the existence of an implied order of operations in
the mind of the person writing the expression. Consider, for example the following CAP
symbolic instruction:

X CAL ALPHA+4):~ BETA

where ALPHA and BETA are symbols which appear in the symbolic location fields of
cards elsewhere in the program. In evaluating the expression "ALPHA+4>:~ BETA", the
multiplication must be carried out before the addition operation, or else an answer will
be obtained which is different than the one intended by the writer of the expression. Al­
though this order ot precedence is a usual convention in mathematical notation, it must
be systematically observed by the assembler when evaluating the expression.

Let us examine a moderately complicated expression and see what sort of combinations
of symbols may appear. After figuring out what procedure is used in each of these cases,
a general procedure will begin to emerge which can be formalized into an algorithm for
the evaluation procedure.

Let us take, as an example, the symbolic expression

and assume that ABC, ALPHA, and S are defined symbols. We first observe that a symbolic
expression can be characterized as a string of elements (symbols or decimal integers)
separated by break characters and terminated by a blank column. The allowed break char­
acters represent the binary operations of addition (+), subtraction (-), and multiplication
(*), and the unary plus and minus Sign. For the moment, the ability to handle parentheti­
cal expressions will be ignored. The unary plus at the beginning of the expression, if not
provided oy the programmer, is automatically inserted as a first step of evaluation.

To formalize the scan of this expression, let us create three windows which can be
moved across the expression in such a way that the center window always shows us an
element, and the left and right windows show us the break characters on the correspond­
ing left and right sides of that element. For example, if the windows were placed on the
above expre s sion as far to the left as po s sible, we would obtain:

m [!] [!] ABC- ALPHA+S>:~ Z

What does this combination of operands imply? First, the plus sign on the left signals
that we are starting to evaluate a term. The asterisk on the right signals that there are
mor'e things to come in this term,~he saving of the element in the center for a future
multiplication is all we can do. The element is saved in a location named "term" ready
for reference later.

Now, move the windows to the right until the next element falls in the center. We obtain

+4 m IABCI Q ALPHA+S*Z

Again examining the left and right break character s to decide what should be done, we
argue as follows: The asterisk on the left tells us to multiply the old value of the term
by the value of the present element. This result may be returned to the storage location
"term". The minus sign on the right signals that the ~erm has come to an end, and that
the value stored away in "term" should be added into the" sum" register for thi s expres sion.

Now, move the window to the right again. This time, we obtain

The left window exhibits a minus sign signaling the start of a new term, a negative one
at that. Therefore, we may store away the negative of the value of the present element
in the location "term". The plus sign on the right again signals the end of the term, and
that the value of the term should be added to the "sum" ~egister.

V AREVL, Evaluation of the Symbolic Variable Field 15

Moving the window once more, we obtain

+4* ABC-ALPHA m [§] [!] 2

This combination of operators is identical to that found at the beginning of the expression
so that we may follow the same procedure. First, on the basis of the plus sign we store
away the value of the present element since we are starting a new term. Second, since
the * indicates that there is more to come in this term, we must wait until later elements
are brought into consideration.

Finally, with the window in its next and last position, we have

+4* ABC-ALPHA+S [!J rn 0

This time the situation is similar to one encountered before, except for the lack of an
operator in the right window. The left break character again requires us to multiply the
value of the term collected so far by the value of the present element. The blank appear­
ing in the right window tells us to add the term into the "sum" register and stop, as the
evaluation of the symbolic expression is complete.

Although, this procedure seems complicated, let us see if we can develop a flow dia­
gram describing the algorithm. The procedure has the following characteristics: After
moving the window, we first examine the break character in the left window, do some­
thing about it, then examine the break character on the right. After processing on the
basis of this right break character, we move the window and repeat the same series of
steps. This procedure is formalized in the flow diagram in Figure 3.5. If we follow the

Start

~_--lL.-____ " Process item on basis of
break character on left.

+

Figure 3.5. Flow diagram of subroutine EVAL.

16 The CAP Assembler

flow diagram through for the expression examined previously, we see that it carries out
each of the operations described. This flow diagram describes the operation of the sub­
routine EVAL, which is internal to the subprogram VAREVL. An important procedure
which is implicit in this flow diagram is that of evaluating the item appearing in the cen­
ter window. If the element is a decimal integer, a decimal-to- binary conversion must be
made. On the other hand, if the element is a symbol, its value must be looked up. This
lookup procedure is done by the subroutine SYMGET which acts as a complement to the
subroutine SYMST¢ used during pass one.

How EV AL is Called

EVAL is an internal subroutine of the subprogram VAREVL. The subprogram VAREVL
itself simply sets up EVAL and calls it properly; when EVAL has finished evaluating the ex­
pression, VAREVL handles the operation of reducing the answer to a core memory location.
(See Figure 3.6, a flow diagram of VAREVL.)

V AREVL ----i.r

no

Take AC
mod 215.

Return to
caller with
answer in
AC.

Making EV AL an internal subroutine of V AREVL
allows EVAL to be defined recursively. That is, if
the occasion should arise that EVAL needs to have a
subexpression evaluated, it can call on subroutine
EVAL to do the job. One might expect to get into dif­
ficulty with this procedure, since when EVAL is called
recursively, it will change many registers and tempo­
rary results. We will see that this difficulty is cir­
cumscribed by picking out critical temporary results
and saving them in a special way.

In terms of the picture described above, a paren­
thetical expression may be considered to be an ele­
ment which appears in the center window. Whenever
the center window is determined to contain a paren­
thetical expression as an element, the element is
evaluated by calling the subroutine most able to handle
the evaluation of an expression, namely subroutine
EVAL. In order to call EVAL, it is necessary to save
away temporary results, such as the values of the
"termlJ and "sum" registers that have been collected
so that those registers may be used by EVAL for the
subexpression evaluation. Then, when EVAL is fin­
ished evaluating the subexpression, the "term" and
"sum" regis'ters are restored; the evaluation of the
original expression continues, using for the value of
the element in the center window the answer obtained
by EVAL on the recursive call. Figure 3.6.Flow diagram of

VAREVL. Since the parenthetical expression may itself con­
tain another nested parenthetical expression, EVAL

must be very careful how it saves away its temporary results, as a second saving of
temporary results might destroy the first set.

To handle this problem, two subroutines named SAVE and UNSAVE are used by EVAL.
These two subroutines manipulate a last-in, first- out storage array called a push- down
list. Each time subroutine SAVE is called, an item or block of items is stored in the
list. When subroutine UNSAVE is called, the last item or block stored in the list is re­
trieved. Successive calls to UNSAVE retrieve items stored by earlier calls to SAVE.

EVAL, then, saves temporary results in the push- down list before calling itself, and
retrieves the results later. If the expression requires repeated recursion, the pushdown
list will save and restore the temporary variables in the proper order.

Subprogram Calling Sequence s and Definitions

break Evaluate saved
character element.

character

Process element on basis of
break character on left.

+

Call this
item a
"term!'

Multiply term
by value of
element.

Process element on basis of
break character on right.

+or- * blank or
comma or)

Figure 3.7. Flow diagram of EVAL with recursive capabilities.

Figure 3.7 is a flow diagram of EVAL with the ability to handle parenthetical expres­
sions added. The recursive ability of EVAL is not essential to the understanding of the
general expression evaluation procedure; it should be ignored in early study by assuming
that no parentheses are encountered.

3.6 Subprogram Calling Sequences and Definitions

17

In this section, the calling sequences and a thumbnail description of each of the utility
subroutines used in CAP are described. For reference, the same information about sub­
routines CAP, PASSI, PASS2, and VAREVL is reproduced here.

Primary Subroutines

CAP CAP is called by

CAL
TSX

¢RG
$CAP,4

Subroutine CAP causes the symbolic program written on cards and appearing on the in­
put tape to be assembled in core storage starting at the location specified by the address
portion of the accumulator.

PASSl PASSl is called by

CAL
TSX

¢RG
$PASSl, 4

18 The CAP Assembler

Subroutine PASS1 performs the first pass of an assembly program over the symbolic cards
on the input tape, writes them on a pseudo-collation tape, and defines symbols; assuming
that the symbolic program is to start at the location specified by the addres s portion of
the accumulator. 1£ errors are found they are noted in the S1. PASSI uses index register
one to contain the complement of the ILC.

PASS2 PASS2 is called by

CAL
TSX

¢RG
$PASS2, 4

Subroutine PASS2 performs the second pass of an assembly program by reading the sym­
bolic cards appearing on the cqllation tape. The program is assembled in core storage
starting at the location specified by the address portion of the AC, and an assembly list­
ing is prepared on the output tape. PASS2 uses index register one to contain the comple­
ment of the ILC. If errors are found they are noted in the S1.

V AREVL subroutine VAREVL is called by

TSX
PZE

$VAREVL,4
BUFF

where BUFF is the location of a 14 word buffer containing a symbolic card image. VAREVL
will evaluate the variable field starting with the first character of BUFF+2 and continuing
to the fir st blank, comma, or column 73. If any undefined symbols are encountered, SI
bit 35 will be turned on.

Input and Output Subroutines

Both PASSl and PASS2 call several input- output routine s to handle tape manipulations.
The se I/¢ subroutine s are

READl Read Input Tape, called by

TSX
PZE

BUFF BSS

$READ1,4
BUFF

14

The 80 columns of a symbolic card are read from the input tape into the fourteen word
buffer at BUFF. Note that 80 characters do not quite completely fill the buffer; the last
4 positions may contain arbitrary character s.

WCTl Write Collation Tape, called by

TSX
PZE

BUFF BSS

$WCT1,4
BUFF

14

Subprogram Calling Sequences and Definitions

The fourteen word BCI buffer is written on the intermediate tape.

REWIND Rewind Collation Tape, called by

TSX $REWIND,4

The intermediate tape is marked with an end of file and rewound.

READ2 Read collation tape, called by

TSX
PZE

BUFF BSS

$READ2, 4
BUFF

14

19

Fourteen words of the intermediate tape are read into the buffer at BUFF. READ2 checks
that the collation tape has been rewound.

PRINT Write on output tape for off-line pl~inting, called by

TSX
PZE

$PRINT,4
A, 0, n

The n word line image starting in location A is written on the output tape (tape A3). The
first character of A (normally blank) is used for carriage control. PRINT counts the
lines of output and stops after 300.

Symbol Table Subroutines

For forming and searching a symbol table a subroutine package with entries SYMST¢
and SYMGET is used.

SYMST¢ The sequence

TSX $SYMST¢,4

will cause the BCD characters in the AC to be scanned (blanks removed), right justified,
and inserted in a symbol table together with its value, the complement of IRl. If the sym­
bol is blank, it is ignored and no entry is made in the table.

SYMGET The sequence

TSX $SYMGET, 4

20 The CAP As sembler

will cause the value of the symbol in the AC (assumed to be scanned and right justified)
to be looked up in the symbol table. If the symbol is defined, t~e value is returned in the
AC. If undefined, zero is returned in the AC and SI bit 35 is set on.

Utility Subroutines

CAP also uses a package of utility programs which includes SCAN, C¢MMA, SAVE,
and UNSAVE.

SCAN SCAN is called by

TSX $SCAN,4

on return, the BCD word in the AC is compressed to the right, with blanks removed and
leading positions filled with zeros.

C¢MMA Subroutine C¢MMA is called by

TSX
PZE

$C¢MMA,4
BUFF

C¢MMA counts t~e number of commas plus one starting with the first character in BUFFt2
and ending wit.h the first blank or column 73. The count is subtracted from index register
one. SAVE and UNSAVE manipulate items in a pushdown list.

SAVE SAVE is called by

TSX
PZE

$SAVE,4
A, 0, n

the n words in registers, A, A t 1, .•. , A t n - 1 are placed at the top of the pushdown
hst and the other items in the list are pushed down n places. (Note that the pushdown ef­
fect is achieved by pointers, not by actually moving all the previous entries in the list
down in core memory.)

UNSA VE UNSA VE is called by

TSX
PZE

$UNSAVE,4
A,O,n

The top n items in the pushdown list are read into locations A, A t I, ..• , A t n - 1 and
the other items in the list are pushed up n places.

The pushdown list has a maximum depth of 500 locations. Any attempt to exceed this
depth is ignored and SI bit 15 is set. Attempts to retrieve more items than have been
stored are ignored and SI bit 16 is set.

Subprogram Calling Sequences and Definitions

Subroutine INT¢P is used to evaluate variable fields of the INT pseudo- op during pass
two.

INT0P INT0P is called by

TSX
PZE

$INT¢P,4
BUFF

where BUFF+2 is the address of the first location of the buffer containing the variable
field. INT¢P scans the variable field and converts each decimal subfield (as delineated

21

by commas) to a binary number; shifts the number obtained into the decrement; and stores
it in the next location in the program being assembled, assuming that index register one
contains the complement of the ILC. INT¢P then increments the ILC and repeats the op­
eration for the next subfield.

Subroutine END¢P is used at the end of pass one to reserve temporary storage for
C ¢MP ps eudo- ops.

END¢P END¢P is called by

TSX $END0P,4

Control returns to the caller after END¢P changes the C(IRl) by the proper amount and
enters the symbol TEM into the symbol table.

¢PTBL The first word in $¢PTBL is a control word containing in its address the
location of the fir st item in the operation table and in its decrement the length of the
operation table; the rest of ¢PTBL consists of pairs of entries, a right- justified BCD
mnemonic paired with the binary machine code for that mnemonic.

Subroutine C¢MP¢P and the subroutines it calls are described in Chapter 4.

Chapter 4

THE COMPILER OF C¢MP PSEUDO-OPERA TIONS

In this chapter we will examine in detail the operation of the set of subprograms which
compile arithmetic for C¢MP pseudo-operations. The material under discussion is of
an advanced nature and not essential to an understanding of the CAP assembly program.
A beginning reader may skip this chapter, as the material in the sequel will not make
reference to the compiler. The reader is assumed to be familiar with an algebraic lan­
guage such as F¢R TRAN, ALG¢L, or MAD.

4.1 Why a Compiler?

Compilers exist to free the programmer from worry about coding details while working
with algebraic calculations. The compiler can take care of the coding details, and the
programmer need only concentrate on setting up the proper equations.

The primary reason for including a compiler in CAP is educational. We shall see the
close similarity between the internal processes of assemblers and compilers; some of
the mystery as to how compilers work will thereby disappear.

Another reason for including a compiler is to provide a contrast with the macro­
operation processors found in many present-day assembly programs. A compiler is an
often overlooked alternative and provide s a flexibility of expre s sion which the mac ro­
processor cannot obtain.

4.2 What Does a Compiler Do?

The point of the compiler is very simple. If the programmer writes on a card a state­
ment

C¢MP Y = ALPHA + BETA

the program which re sults is identical to that which would have re suIted if the program­
mer had instead given the instructions

CLA

FAD

ST¢

ALPHA

BETA

Y

We see, then, that the purpose of the compiler is to generate a program to perform the
algebraic computation indicated by the symbols and break characters in the variable field
of the C¢MP statement.

zz

The Spread Field; C¢MP0P 23

There are several algorithms available to perform the compilation. In the CAP com­
piler, a nonrecursive procedure contrasts with the recursive procedure used for evaluating
expressions in subroutine VAREVL, discus sed in Chapter 3. We will see that the algo­
rithm is a collection of simple, straightforward ideas combined in such a way as to pro­
duce a sophisticated result.

4.3 Relation of C0MP to CAP

We recall that when the CAP assembler encounters a C0MP pseudo-operation during
pass one, it calls a subroutine named C0MP0P.

C0MP0P and the collection of subroutines which it calls compile the symbolic machine
instructions in the CAP language required to carry out the computation called for by the
C¢MP statement. The compiler writes these symbolic instructions on the collation tape
in the same format as CAP language symbolic instructions which the programmer writes
and the order in which they are to be performed. The compiler increases the ILC by
by the number of instructions compiled, and returns control to subroutine PASS! to con­
tinue the first assembly pass. By writing symbolic cards on the collation tape during
pass one, the compiler thereby discharges its responsibility; the symbolic instructions
on the collation tape will be as sembled by the second as sembly pas s as would instructions
provided by the programmer himself.

4.4 Precedence

rhe language available to the C0MP programmer allows the use of addition, subtrac­
tion' multiplication, and division-with parentheses as grouping characters. Since the
programmer will wish to attach an order of precedence to these operations, the compiler
must take that order into account when creating the symbolic program. The order of
precedence used is the following:

parenthetical expre s sions

multiplication and division

addition and subtraction

This precedence table corresponds to the table commonly as sumed by mathematicians.
It states, for example, that in the expression

A + BIC

the division is to be carried out before the addition.

4.5 The Spread Field; C0MP0P

The subroutine called to compile C¢MP pseudo-operations is C¢MP¢P. C0MP0P
operates in two passes. In the first pass, it scans the variable field of the C¢MP card,
ignoring blanks, and separates the symbols and break characters one to a word in a buf­
fer known as the spread field. For example, if the variable field contains

SUM = G! + G2 + G3/SIX

24 The Compiler of C¢MP Pseudo- Operations

pass one of C¢MP¢P would produce a spread field containing in successive locations

SUM

=
GI

+

G2

+

G3

/

SIX

Later scans may now search the spread field for break characters with a simple search
loop. Symbols which are longer than six characters are permissible. They will be
broken up and stored in successive words in the spread field. Since the comma is not
a break character, the sequence of characters ABC, 1 will be considered to be a single
symbol and stored appropriately. When compiled as the address of an instruction, this
symbol could represent a tagged address.

All scans of the spread field will ignore a zero appearing within the spread field. The
value of this property will become clear later when we see how the spread field is modi­
fied as the expression is compiled. An alternative procedure with similar flexibility is
to place successive items of the spread field in a string pointer list.

Having re-expressed the arithmetic statement to be compiled in a form easier to work
with, subroutine C¢MP¢P proceeds with the actual compilation. A scan is made for a
parenthetical expression which is in some sense II innermost." That is, it is to contain
no parenthetical expressions. The procedure for finding such an "innermost" expres­
sion is as follows: Scan the spread field starting at the top for left and right parenthe se s,
leaving markers behind at the left parentheses, and stopping at the first right parenthesis.
The last left parenthesis marker and the position of the right parenthesis define an II inner­
most II parenthetical expre s sion. A subroutine named EXPR is now called, with argu­
ments consisting of the pointers to the left and right ends of the parenthetical expression,
and the location of the beginning of the spread field. Subroutine EXPR will compile the
symbolic CAP language program necessary to compute the expression within the paren­
theses and will write this symbolic program on the collation tape. EXPR will then modi­
fy the spread field by replacing the left parenthe sis, the entire expre s sion within the
parentheses, and the right parenthesis with zeros. The last instruction in the symbolic
CAP language program generated by EXPR will be an instruction to store the result of
the computation in a temporary storage location. The symbolic name of this temporary
storage location is inserted directly in the spread field by EXPR in one of the locations
formerly occupied by the parenthetical expres sion. The symbol TEM+nn will always fit
into the space vacated by the original expression. This is one of the reasons for choosing
to spread out the original expression into a spread field.

At this point, the "innermost" parenthetical expression is compiled. C¢MP¢P now
starts over again, looking for a new II innermost" parenthetical expre s sion in the modified
spread field. Since the old expression, along with its parentheses, was replaced by a
single symbol in the spread field, c¢MP0p can scan for a new II innermost'! parentheti­
cal expression exactly as it did before. It is now clear why zero words are ignored
within the spread field. Whenever the compiler writes instructions on the collation tape,
it replaces the symbols and operators within the spread field leading to the compilation

The Spread Field; C¢MP¢P 25

of these instructions by zeros. Later scans of the spread field ignore the presence of the
zero positions, as nothing more is to be compiled from the information that was once con­
tained there.

C¢MP0P iterates in the manner described; first locating an innermost parenthetical ex­
pression, and then calling upon EXPR to compile the expression. EXPR removes the ex­
pression from further consideration by modifying the spread field.

Eventually, C¢MP¢P will reach a situation in which the spread field contains no paren­
thetical expressions. Instead, it will contain a simple expression preceded by a symbol
and an equal sign. In this case, subroutine EXPR is again called with parameters indicat­
ing the beginning and end of the simple expression and with an additional parameter spec­
ifying that the program compiled is to leave its result in the AC rather than in temporary
storage. EXPR again generates symbolic instructions, writes them on the collation tape,
and modifies the spread field by replacing all elements compiled by zeros. Upon return­
ing to C¢MP¢P the compilation is nearly completed except for storage of the final result.
Subroutine C¢MP¢P then generates the necessary ST¢ instruction to complete the com­
pilation. Let us follow this procedure through for a moderately complicated expression.
Consider the following C¢MP pseudo- operation

C¢MP Y = ((A+B)*(E-C*DL)+END}*F+Ll

Figure 4.1 shows the spread field and instructions compiled in succeeding steps. Figure
4.2 is a flow diagram of C¢MP0P.

Step 1. C0MP0P plac e s the variable field in the spread field (Figure 4.1 a) and scans
for left and right parentheses, starting at the top, ending with the first right parenthesis.
(See Figure 4.lb.) It then calls EXPR to compile this "innermost" expression. EXPR
will write the instructions indicated as "step one" in Figure 4.lf, on the collation tape
and modify the spread field to that shown in Figure 4.1c.

Step 2. C0MP¢P scans again for left and right parentheses and calls EXPR to com­
pile the expres sion found. EXPR writes on the collation tape the instructions indicated
as "step two" in Figure 4.lf, and modifies the spread field to that shown in Figure 4.ld.

Step 3. One more scan for parenthetical expressions results in a call to EXPR and
compilation of instructions indicated as "step three" in Figure 4.l£. EXPR modifies the
spread field to appear as in Figure 4.1 e.

Step 4. The scan for parentheses fails this time. C¢MP¢P calls EXPR to compile
the remaining simple expression and specifies that the result of the computation be left
in the AC. EXPR compiles the instructions labeled" step four."

Step 5. C¢MP¢P compiles an ST¢ instruction with a symbolic address consisting of
that variable to the left of the equal sign. The compilation is now complete.

C¢MP0P keeps track of parenthetical expressions by means of pointers to positions
in the spread field. An alternative procedure is to push successive field items down in
a push- down list searching for a right parenthesis. Then, the subroutine compiling the
expression can retrieve items back to the last left parenthesis.

Note that we have not yet learned how EXPR compiles the symbolic arithmetic instruc­
tions and places them on the collation tape. We are analyzing the compiler from the
"outside in" and are still at a stage where the organization of the compiler is the most
important thing to be learned. Having established the procedure by which parentheses
are handled, we are now ready to begin studying the details of instruction creation.

26

y

A
+
B
)
>:<

E

C
':::::

DL
)

+
END

)

*
F
+

Ll

(a)

The Compiler of C¢lvlP Pseudo-Operations

y y y y

{
CLA

Step 1 FAD
Ip- (Ip- (Ip- (TEM+4 STY'
Ip- (TEM TEM 0 LDQ

A 0 0 0 FMP
+ 0 0 0

Step 2
STc;i

B 0 0 0 CLA
rp-) 0 0 0 FSB

~:c :=:c: * 0 ST¢
Ip- (TEM+2 0 LDQ

E E 0 0 FMP
0 0

Step 3
ST¢

C C 0 0 CLA
~:::: ~c: 0 0 FAD

DL DL 0 0 STc;i
) rp-) 0 0 LDQ

+ + + 0 FMP
END END END 0 Step 4 ST¢

)) rp-) 0 CLA

* >:c: *):c: FAD
F F F F Step 5 ST¢

+ + + +
Ll Ll Ll Ll

(b) (c) (d) (e) (f)

Figure 4.1. Successive spread fields and resulting compilation for
C¢MP Y = ((A+B»:'(E-C>:'DL)+END»:'F+Ll.

A
B
TEM
C
DL
TEM+l
E
TEM+l
TEM+2
TEM
TEM+2
TEM+3
TEM+3
END
TEM+4
TEM+4
F
TEM+5
TEM+5
Ll
y

The Spread Field; C¢MP¢P

C¢MP¢P

+
Separate symbols and
breaks of variable field.
Place in spread field.

~ Start at top of spread field. Scan for

.. Resume scan left and right parentheses.

left
paren­
thesis

right
paren­
thesis

Save field index
'-- as last left paren­

thesis location.

$EXPR I Compile

parenthetical ex­
pression. Com­
piled program
stores result in
temporary. Mod­
ify spread field.

"

no paren­
theses in
field

$EXPRJ Compile

remaining simple
expression. Com­
piled program
leave s result in
AC.

Get symbol on
left of equal
sign.

$PIV AR I Place

symbol in var­
iable field.

$GEN¢P J Generate
ST¢ instruction,
wri te on collation
tape.

~
Return to caller.

Figure 4.2. Flow diagram of subroutine C¢MP0P.

27

28 The Compiler of C¢MP Pseudo- Operations

4.6 Compilation of Indi vidual Instructions

In the fifth step in the example above, subroutine C¢MP¢P had to compile the instruc­
tion ST¢ Y. To write this instruction on the collation tape, a package of subroutines is
used which manipulate a collation tape buffer and write on the collation tape. The colla­
tion tape buffer is a 14- word buffer which is used to collect a symbolic card image.

The first subroutine in thi s package is PIVAR. (Place ~n variable field.) Its calli ng
sequence is

TSX $PIVAR,4

PIVAR takes the contents of the AC as a BCD word, and inserts that BCD word in the
next available space in the variable field of the collation tape buffer. Columns 13 to 18
are filled in by the fir st call to PIVAR, columns 19 to 24 on the next, etc.

The last piece of information known' about any instruction is always the operation code.
Subroutine GEN¢P inserts the operation code and writes the collation tape buffer on the
collation tape. Its calling sequence is

TSX $GEN¢P,4
BCI 1, opr

where "opr" is the operation mnemonic to be inserted in the operation field. GEN¢P in­
serts the instructioI). code into the operation field (colUluns 7 to 12) writes the entire col­
lation tape buffer on the collation tape, and clears out the buffer with blanks, resetting
FIVAR to store in columns 13 to 18. Thus the sequence required to generate the ST¢ Y
instruction in step five, above, is

CAL
TSX
TSX
BCl

FLD,1
$PlVAR,4
$GEN¢P,4
1, ST¢

GET SYMB¢L FR0M SPREAD FIELD.
INSER T IN V AR FIELD.
GENERATE ST¢ ¢P.

When it compiles instructions, subroutine EXPR also uses the subroutines PIVAR and
GEN¢P.

4.7 Compilation of Simple Expr e s sions; EXPR

Subroutine EXPR has the responsibility of compiling parentheses-free expressions.
This responsibility includes the proper handling of precedence below the level of paren­
thetical expressions. EXPR handles precedence by making two passes over the symbolic
expression; during the first pass, all terms (symbols connected by asterisks and slashes)
are compiled leaving the expressiop in the form of a summation of individual elements
(subroutine TERM compiles the terms). In the second pass over the expression, EXPR

Compilation of Simple Expressions; EXPR 29

compiles the necessary add and subtract instructions to complete the summation. Let
us consider a typical spread field expression that EXPR is to compile. The expression
comes from Step 2 of the previous example.

E

C

DL

In the first pass, EXPR locates terms containing more than one symbol o In the given
expression, the second term falls into this category. Therefore, EXPR calls subroutine
TERM with parameters pointing to the upper and lower boundaries of the term C~{DLo Sub­
routine TERM compiles a program which computes the value of the term and inserts the
answer into temporary storage. In this case the program written on the collation tape is

LDQ C
FMP DL
ST¢ TEM

TERM will also modify the spread field by replacing the elements of the term with zeros,
and inserting the name of the temporary storage location into the spread field in an ap­
propriate place. When TERM finishes, the spread field will appear as follows:

E

TEM
o
o

Since there are no more terms in our sample expression, pass one of EXPR is complete,
and pass two begins. In pass two, EXPR compiles and writes on the collation tape a
program to perform the summation of the elements in the expre s sion.

The second pass consists of the following steps, indicated in the flow diagram in Figure
4.3.

1. Scan the spread field from the top, looking for the end of the first symbol. If an
initial minus sign is passed, set a switch.

2. Compile the instruction CLA or CLS (on the basis of the switch set in Step 1) with
a symbolic addres s consisting of the symbol obtained in Step 1, using PIVAR and
GEN¢P. Replace the operator and the symbol in the spread field with a zero.

3. Continue scanning the spread field for the end of the next symbol. Again, if an
initial minus sign is passed, set a switch.

4. Compile the instruction FAD or FSB (on the basis of the switch set in Step 3) with
a symbolic address consisting of the symbol obtained in Step 3, using PIVAR and
GEN¢P. Replace the symbol and the operator in the spread field with a zero.

5. Repeat Steps 3 and 4 until the end of the expression is reached. Now, if requested,
compile an instruction to store the result in a temporary location. The second
pass is now complete, and the expression has been compiled.

30 The Compiler of C¢MP Pseudo- Operations

EXPR

+
Set scan limi ts J

+
Resume Start at upper scan limit. I
scan Scan spread field for break characters.

~~
::::< or / + or - end of scan

"
~,

J Set precedence I ... -'Set E¢F marker
~

..... I
A .~ l marker. ,

Is precedence $TERM I Compile

marker set? yes
P'

term. Compiled

no
program stores

result in tempo-

~ Save left end l_ Is E¢F marker L rary, Modify

of term index.l no set? r spread field.

yes

Resume Start at upper scan limit.

scan get next word from spread field, and nend of scan

replace it with a zero, What is it?

~~ ,h
symbol I Set E¢F I + or - marker

" --
$PIVAR! Insert 1 Save right break char acter·1

in variable field Is this first time through?

of card. ~no yes

I Look at left break I I Look at left b;reak I

+ or start - + -

of scan

"
~, " "

$GEN¢P - - ----- ----l CLA 1--- ----- CLS I---IFAD '---------T
no I Is E¢F ...

Lmarker on? ...

I yes ... Examine calling sequence. Should re sult be stored? J

~yes no

$GNST¢ I Generate

temporary storage

symbol.

• Insert symbol in

spread field.

• "
$PIVARI Place In $GEN¢P Generate --+ Retur il. to

variable field. r--+ ST¢ instruction. calle r

Figure 4.3. Flow diagram of subroutine EXPR.

The Compilation of Terms; TERM 31

4.8 Temporary Storage and Subroutine GNST¢

The last step in subroutine EXPR was compilation of an instruction to store the AC in
a temporary location. What symbolic address should be placed in the ST¢ instruction,
and how can temporary storage be reserved? Subroutine GNST¢ provides this service.
The calling sequence

TSX $GNST¢,4

will bring into the accumulator the symbol TEM+n where n is one less than the number
of times GNST¢ has been called. Subroutine GNST¢ will also keep track of the total num­
ber of temporary locations used so that subroutine END¢P can reserve space at the end
of as sembly pass one. The first call to GNST¢ brings back the symbol TEM; later calls
produce symbols such as TEM+l, etc. The instruction

$NST0

resets GNST¢ so that the next call starts again with the symbol TEM. Since separate
C¢MP statements are independent, they can use the same temporary storage locations,
and C¢MP¢P re sets NST¢ at the beginning of each new C¢MP statement.

The sequence used by EXPR to compile the store instruction is, then,

TSX
SLW
TSX
TSX
BCI

$GNST¢,4
FLD,1
$PIVAR,4
$GEN¢P,4
1, ST¢

4.9 The Compilation of Terms; TERM

GET TEMP¢RARY SYMB¢L.
INSER T IN SPREAD FIELD.
PLACE IN VARIABLE FIELD.
GENERATE ST¢ ¢P.

When EXPR encounters a term consisting 'of symbols connected by asterisks and slashes,
it calls subroutine TERM to compile instructions which compute the value of the term and
leave the result in temporary storage. Subroutine TERM performs this compilation by
scanning the term in much the same manner as subroutine VAREVL (see Chapter 3) noting
for each symbol the break character on its left and on its right. The break character on
the left may be the beginning of the term, an asterisk, or a slash. The one on the right
may be the end of the term, an asterisk or a slash. Thus a symbol may have one of nine
pairs of break characters associated with it. Since the instructions compiled in each of
the nine cases is different, a nine-way branch must be made for each symbol. The flow di­
agram in Figure 4.4 illustrates this nine- way branch. The scan of the term begins at
the left (or top, in terms of the spread field).

Let us consider a simple term, and follow the operation of TERM through the flow dia­
gram. Suppose TERM is to compile the following spread field:

C

D

E

/
F

32 The Compiler of C¢MP Pseudo- Operations

TERM

Resume
scan

Start at upper scan limit. Get next

word from spread field and replace it
with a zero. What is it?

end of scan

symbol

$PIVAR Put

/

.... ----4 symbol in
variable field.

Get left break.
Save / as next
left break. What
was left break?

start of I
scan

*

Get left break.
Save :(c as next
left break. What
was left break?

start of
scan

$ERASE
Clear out
variable
field.

I start of
scan

Generate
storage
symbol.

Insert in
spread
field.

$PIVAR
Insert
in card.

*

Return to caller

Figure 4.4. Flow diagram of subroutine TERM.

I

Generate
storage
symbol.

Insert in
spread
field.

$PIVAR
Insert
in card.

Upon scanning for the fir st symbol, we find that the left break is the beginning of the term,
the right break an asterisk. Following the flow diagram, we see that the instruction
LDQ C is compiled in preparation for the multiply operation. We may note that in this
case, the compilation leaves the result in the proper register so that the next instruction
FMP will operate correctly. If the right break character had been a slash, the instruc­
tion CLA C would have been compiled instead. We will see that the algorithm leaves
the result in the proper register in all cases.

Review 33

The scan now resumes. The next symbol has an asterisk on the left and an asterisk on
the right. The asterisk on the left signals that we should compile the instruction FMP D;
the asterisk on the right warns of a coming multiplication, so the result must be returned
to the MQ with an XCA instruction.

Resuming the scan once more, we find that the third symbol has on the left an aster isk,
on the right a slash. Again, the asterisk on the left signals that the instruction FMP should
be compiled; however, the slash on the right indicates that the next operation will be divi­
sion. Therefore, the result is left in the AC in proper position for the FDP instruction.

Returning to the scan for the fourth and final time, we find the symbol F surrounded by
a slash on the left and the end of the term on the right. The slash calls for a division op­
eration, so the instruction FDP F is compiled. The end-of-term break indicates that we
are almost finished. A temporary storage location is generated by GNST¢ and the instruc­
tion STQ TEM is compiled. Note that if the last operation had been a multiplication, the
last instruction would have been ST¢ TEM instead.

Now, compilation of the term is finished. Although it has not been mentioned before,
the spread field was reset to zero during the scan, and, at the end, symbol TEM was placed
back into the spread field. The final result of the compilation by TERM is as follows:

Spread field Collation tape

TEM LDQ C
0 FMP D
0 XCA
0 FMP E
0 FDP F
0 STQ TEM

4.10 Review

With the study of subroutine TERM, we have completed our examination of the compiler.
A brief review of the essential points covered may help place those points in the proper
perspective.

The compiler operates during the first assembly pass of CAP. The compiler places
the instructions generated on the collation tape for processing by the second assembly
pass just as though the programmer had provided them.

Subroutine C¢MP¢P coordinates the compilation. C¢MP¢P goes over the symbolic
expression in two passes. During the first pass, it places the symbolic expression i~ the
spread field - one symbol or break character to a memory location.

In the second pass it evaluates the expression from the innermost set of parentheses
outward with the help of subroutine EXPR. Subroutine EXPR also operates in two passes.
In the first pass, EXPR reduces the expression to a summation by calling on subroutine
TERM to compile the instructions to compute the individual terms. The second pass of
EXPR compiles the instructions needed to compute the resulting summation.

During all phases of the compilation, the compiler modifies the spread field as it gen­
erates instructions and places them on the collation tape. Subroutines GEN¢P, PIVAR,
GNST¢, and ERASE help put together symbolic instructions and write them on the colla­
tion tape.

When the compilation is finished, control returns to CAP to continue assembly pass
one.

34 The Compiler of C¢MP Pseudo-Operations

4.11 Calling Sequence of Compiler Subroutines

This section describes the calling sequences of each of the subroutines of the compiler
and presents for easy reference a thumbnail sketch of the external characteristics of each
subroutine.

C¢MP¢P Subroutine C¢MP¢P is called by

TSX
PZE

$C¢MP¢P,4
BUFF

where BUFF is the first location of a 14-word buffer containing the symbolic C¢MP card.
C¢MP¢P compiles the instructions necessary to perform the arithmetic specified by the
variable field of the card in the buffer, writes these instructions on the collation tape, and
increases the value of the ILC (assumed to be stored in complement form in index register
one) by the number of instructions compiled.

EXPR Subroutine EXPR is called by

TSX
PZE
PZE

$EXPR,4
LI, T, RI
FLD

where FLD- LI is the address of the left break and FLD- RI is the address of the right
break. EXPR take s a string of symbols connected by + - ~:~ or / and compile s the re sult
in floating point. If T = 0, the result is placed in temporary storage. Otherwise, the
result is in the AC. The spread field is modified accordingly.

TERM Subroutine TERM is called by

TSX
PZE
PZE

$TERM,4
LI, 0, RI
FLD

where FLD- LI is the address of the left break, and FLD- RI is the address of the right
break. TERM take s a string of symbols connected by ~:~ or / and compile s the re sult

in floating point. The compiled program places its result in temporary storage, and
TERM modifies the spread field accordingly.

The following subroutine s are used to form symbolic instructions:

PIVAR Subroutine PIVAR (place in variable field) is called by

TSX SPIV AR,4

PIVAR takes the C(AC)p, 1""35 as a BCD word and stores that word in the next available
location in the collation tape buffer. On the first call to PIVAR, the next available loca­
tion is the first word in the variable field position of the buffer.

ERASE Subroutine ERASE is called by

TSX $ERASE,4

Subroutine ERASE clears the collation tape buffer, replacing all words with blanks, and
resetting PIVAR so that on the next call it will start at the beginning of the variable field.

Calling Sequence of Compiler Subroutine s 35

GEN¢P Subroutine GEN¢P is called by

TSX $GEN¢P,4
BCl 1, opr

where the letters "opr" are the symbolic operation code desired. GEN¢P will take the symbolic operation code in location 1,4 and insert it into the operation field of the colla­tion tape buffer. It will then write the buffer on the collation tape and call subroutine ERASE to clear the buffer so that it may be used again.

GNST¢ Subroutine GNST¢ is called by

TSX $GNST¢,4

Subroutine GNST¢ returns to the caller after placing in the AC p, 1 -35 a symbol of the form TEM+n where mis one less than the number of times that GNST¢ has been called. Entry point NST¢ will contain this number; and if NST¢ is reset to zero, n will be reset to zero for the next call to GNST¢. GNST¢ keeps track of the largest n ever encountered and leaves it in a location where it is accessible to subroutine END¢P for purposes of as­signing temporary storage at the end ·of the first assembly pass of CAP.

Chapter 5

CAP AS A LABORA TOR Y EXERCISE

CAP finds application both in the classroom and in the laboratory. In the laboratory the
student modifies or improves the assembler, for example, by adding pseudo-operations to
make the CAP language more flexible or by improving the internal operations of the assem­
bler. Appendix C contains a list of suggested modifications.

This chapter is divided into two parts to correspond, roughly, to material of greater
interest to the student and to his instructor, respectively. No clear line can be drawn
between these interests, of course, as the instructor will wish to read the entire chapter
and an advanced student will find much of interest in the second part.

501 The CAP Laboratory

The CAP assembly program was written with expansion in mind. Thus, although there
might be simpler ways to perform some of the operations called for in the original CAP
language, extension of these operations might be difficult if a simpler, less general, ap­
proach had been used in the original coding. There are also several examples throughout
CAP of points onto which additional coding may be easily attached. An analogy would be
the complicated highway interchange with one blocked exit at a point where a new highway
is to be built someday.

The suggested modifications represent changes which are at once useful, educational,
and not too difficult, when the operation of the original assembler is well understood.

When CAP is used in the laboratory, the main program which calls CAP is replaced by
an execution monitor program to aid in debugging the modifications. This execution mon­
itor provides aid in case the modified assembly program gets into a loop or comes to a
stop, and it provides a postmortem when the CAP assembly is finished.

Also, in the laboratory, the input- output subroutines are replaced with an II ¢ simula­
tor package to speed up testing; this simulator provides as CAP input a symbolic test
program for assembly and simulates the collation tape with a core buffer.

Extent of Laboratory Assignment

A typical laboratory assignment might be the following: The instructor selects a set
of modifications totaling in value about 200 "points" as required modifications. (See Ap­
pendix C for point values.) The student then selects additional modifications worth about
100 points. The student is permitted eight or nine computer "runs" to attempt to get all
300 points of modifications working correctly.

Evaluation of the student's work is done on the basis of a brief written report describing
the modifications attempted and the degree of success in achieving modification. Printed
computer output should accompany the report as evidence of correct operation of the
modified assembly program.

36

UPDATE 37

How CAP Is Modified

Two different procedures have been used to allow the modification of CAP. In the first
and simpler procedure, the student makes a copy of the symbolic decks of all the subrou­
tines basic to the assembler and, if desired, the compiler. He then makes changes to this
deck of 1000 to 2000 cards and submits it for as sembly by F AP and te sting under the ex­
ecution monitor.

If this procedure is used, the reader may wish to skip the next sections and proceed
immediately with the discussion of testing of the modified assembly program (Section 5.3).

5.2 UPDATE

If a large class uses CAP as a laboratory exercise, the above procedure can lead to the
processing of a very large number of cards. An alternate procedure involving the UPDATE
feature of FAP can significantly cut down on the number of cards used. Under this proce­
dure, the unmodified CAP subprograms are placed in symbolic form on a single UPDATE
input tape for all students, and each student need only submit cards corresponding to the
changes he wishes to make in the subprograms. The UPDATE pseudo-operations of the
FAP language control the merging of the student's changes with the original symbolic pro­
grams and the assembly of the merged programs.

The UPDATE procedure has the di sadvantage that the student must learn the UPDATE
language in order to modify CAP. However, the advantages of a small input deck are
significant both in time saved preparing input tapes for the computer and in added relia­
bility of a smaller deck of cards.

All features of the UPDATE language necessary for the successful modification of CAP
will be discussed here. The FAP Reference Manual contains additional information. *

The Use of UPDATE

Images of the cards submitted for a run are written ahead of run time on the System
Input Tape by off-line card-to-tape equipment. When programs are assembled normally
on the 7090 (without UPDATE), FAP reads the card images from the System Input Tape
and processes them one at a time. When UPDATE is used, two more tapes are involved:
the UPDA TE Input Tape and the UPDATE Output Tape. In CAP, only the UPDATE Input
Tape is used.

The UPDATE Input Tape contains the unaltered symbolic ver sions of the CAP subrou­
tines as shown in the listings in Appendix A. The serialization in columns 73 to 80 on the
lists is also on the UPDATE Input Tape and is used by FAP to determine the order of
processing card images from the System Input Tape and the UPDATE Input Tape.

Because the UPDATE facility is a part of F AP the fir st card of any deck submitted
using UPDATE must be

~c FAP

This card causes control to be transferred to FAP. FAP retains control until an END
card is processed. It is important to keep in mind that the program assembled begins
at the * FAP card on the System Input Tape and terminates with the first END card proc­
essed; this END card may be on either the System Input Tape or the UPDATE Input Tape.
Assembly of another subprogram requires another * FAP card.

* Reference Manual, F¢R TRAN As sembly Program (F AP), IBM Publication C28- 62 35
(September, 1962).

38 CAP As a Laboratory Exe rci se

The use of four UPDATE pseudo- operations (UPDATE, DELETE, DELET E THlZU,

and SKIPT¢) will be described. UPDATE operations are FAP pseudo- operations and,
as such, begin in column 8 of the card.

The UPDATE Pseudo-Operation

The UPDATE pseudo-operation specifies the use of the UPDATE feature of FAP. A
card with UPDATE punched in the operation field follows the ,:~ F AP card. The variable
field, beginning in column 16, specifies the details of the UPDATE run. The first sub­
field contains the logical tape number of the tape unit on which the UPDATE Input Tape
has been mounted. In the following examples we will as sume that tne UPDATE Input
Tape is mounted on logical tape drive 11. The other subfields of the UPDATE card spec­
ify features not used in CAP and should be left blank. Hence the first two cards in each
CAP UPDATE assembly are

Adding and Replacing Cards

,:~ F AP

UPDATE 11

Assembly, initiated by the >:~ FAP and UPDATE cards, continues as card images of
F AP instructions are read from the normal System Input Tape and the UPDATE Input
Tape one at a time in serial order. A serialized card image on the System Input Tape
is assembled before a card of equal or higher serialization but after a card of lower
serialization on the UPDATE Input Tape. Whenever F AP encounter s card image s of
equal serialization on the two tapes, the card image on the System Input Tape is assem­
bled in place of the card image on the UPDATE Input Tape. If there is no serialization
on the card image on the System Input Tape, the card image is immediately assembled.
(See Figure 5.1, a flow diagram of UPDATE.)

More than nine cards can be inserted between two consecutive cards already on the
UPDATE Input Tape by giving the first card to be inserted a serial number between the
two cards on the UPDATE Input Tape. The remaining cards to be inserted at this point
in the subprogram are not serialized.

Changes can be made in increasing order of serialization only.

Deleting Cards from Programs on the UPDATE Input Tape

To remove a card from a program on the UPDATE Input Tape, the DELETE pseudo­
operation is used. When FAP reads a card from the System Input Tape that has DELETE
in its operation field, cards are assembled from the UPDATE Input Tape until a card
image with serialization equal to that of the DELETE card is found. F AP does not as­
semble this card image from the UPDATE Input Tape; normal updating and assembly con­
tinue with the next card from each tape.

If many consecutive cards are to be deleted from programs on the UPDATE Input Tape,
the DELETE THRU pseudo- operation may be used. When FAP reads a card that has
DELETE in its. operation field and the letters THRU in the variable field, no more card
images from the UPDATE Input Tape are assembled until a card of serialization higher
than that of the DELETE THRU card is found on the UPDATE Input Tape. >!~ FAP will
then resume normal updating and assembly.

,:~ As of May, 1962, the M.1. T. version of F AP requires THRU in columns 15 to 18;
this differs from the FAP Reference Manual description of DELETE THRU.

UPDATE 39

To delete a block of cards from the middle of a program: First, insert a DELETE
card with serialization of the first card in the block. This DELETE card should be fol­
lowed by a DELETE THRU with serialization equal to the serial number of the last card
to be deleted. DELETE THRU will delete a card of equal but not higher serialization.
The input tape s should never be moved backward while updating a program.

The Necessary END Card.

To insure proper operation of UPDATE, the last card of the input deck for each sub­
program updated must be a serialized END card. The serialization of the END card in
the input deck must be identical to that of the END card on the UPDATE Input Tape for
the subprogram being updated.

Bypassing Assembly of Subprograms

The UPDATE Input Tape will be rewound before the job starts and we may assume that
it is properly positioned to begin assembly of the first subprogram on the tape. The order
of subprograms on the UPDATE Input Tape is specified in Figure 5.2. The order is the
same as on the CAP listings.

The fir st

,:c FAP

UPDATE 11

would therefore, start assembly of subprogram CAP. At the end of this assembly the
UPDATE Input Tape would be positioned ready to start assembly of the second subpro­
gram. The next

* FAP

UPDATE 11

would start assembly of PASSl, and so forth.
Most of the suggested alterations to CAP require changes to only a few of the subpro­

grams. Therefore, it would be wasteful of machine time to assemble all of the CAP sub­
programs during each run. Assembly of subprograms not being modified on the UPDATE
Input Tape may be omitted by proper use of the SKIPT¢ pseudo- operations.

When FAP reads a card image from the System Input Tape with SKIPT¢ in its opera­
tion field, assembly is suspended and the UPDATE Input Tape is read until a card image
of serialization identical to the serialization of the SKIPT¢ card is found. Normal up­
dating and assembly commence with the card of identical serialization on the UPDATE
Input Tape. A card of serialization higher than that of the SKIPT¢ card will not terminate
the SKIPT¢ operation; the serializations must be identical. Thus, assembly of a sub­
program can be avoided by using a SKIPT¢ card serialized with the serial number of
the first card in the next subprogram to be updated. Subprograms must be updated and
assembled in the order that they appear on the UPDATE Input Tape; SKIPT¢ cannot be
used to move the UPDATE Input Tape backward.

It is good practice to include a SKIPT¢ card in the input deck for every subprogram to
be updated. If the UPDATE Input Tape is positioned ~eady to read the card specified by
the SKIPT¢ card, F AP will begin as sembly with that card. Inclusion of the SKIPT¢
cards in all input decks makes each subprogram independent of all others. The input
cards for a particular subprogram may be removed from the complete input deck without

40

UPDATE

.... -~ D (from next page)

Read one card from UDINT.

Read one card from SYSINT.

What is operation field of card

from SYSINT?

DELETE DELETE SKIPT¢

THRU

A B c

SYSINT< UDINT

SYSINT - System Input Tape

UDINT - UPDATE Input Tape

other

CAP As a Laboratory Exercise

SYSINT> UDINT

UDINT.

SYSINT=UDINT - Serialization on card from SYSINT equals serialization on card

from UDINT.

SYSINT< UDINT - Serialization on card from SYSINT isles s than serialization on

card from UDINT.

SYSINT> UDINT - Serialization on card from SYSINT is greater than serialization on

card from UDINT.

Figure 5.la. UPDATE flow diagram.

UPDATE 41

~
DELETE

DELETE>UDINT DELETE<UDINT

Process card from UDINT. DELETE=UDINT

Read card from UDINT.

D

(to previous page)

~
DELETE THRU

UDINT<DELETE THRU UPDATE>DELETE THRU

UDINT=DELETE THRU

Read card from UDINT.

(to previous page)

~
SKIPT¢

UDINT =I- SKIPT¢

UDINT=SKIPT¢

Process card from UDINT. Read card from UDINT.

(to previous page)

Figure 5.lh. UPDATE flow diagram.

42 CAP As a Laboratory Exercise

Se riali zation Serialization
Subprogram of first card of END card

CAP CAPOOOIO CAPOO320

PASSI PASIOOIO PASI0790

PASS2 PAS20010 PAS22210

VAREVL VEVLOOIO VEVL2220

¢PTBL ¢PTBOOIO ¢PTB0790

INT¢P INTPOOIO INTP0990

UTILITIES UTILOOIO UTILl140

SYMST¢ SYMSOOIO SYMS0540

END¢P ENDPOOlO ENDPI020

C¢MP¢P C¢MPOOlO C¢MP1860

EXPR EXPROOIO EXPR17l0

TERM TERMOOIO TERM1350

Figure 5.2. Order of subprograms on CAP UPDATE Input Tape.

the need to add a SKIPT¢ card in the deck for the following subprogram. The first three
cards for each subprogram to be updated should be

* FAP

UPDATE

SKIPT¢

11

Column 73

~
SUBROOIO -------

(

Serial number Of)
the fir st card in ----
the subprogram
to be updated.

Remember that the UPDATE Input Tape contains the unaltered, symbolic version of
the CAP subprograms as contai.ned in the listing in Appendix A. When we submit a deck
to update a CAP subprogram, it is the combination of that symbolic input deck and the
unaltered symbolic program on the UPDATE Input Tape that is assembled. When new
changes are made to a subprogram all previous desired changes to that subprogram must
be included in the input deck.

5.3 How CAP Is Tested

If the modified version of CAP assembles successfully, it may be tested on the same
computer run. To simplify this testing a special library tape is used with the F¢R TRAN
Monitor System. This library tape contains the execution monitor program and all of the
subroutines of the CAP assembler in an unmodified, binary form. The student need only

How CAP Is Te sted 43

assemble those subprograms of CAP for which changes are desired, and the library will
provide the rest of the subroutines needed to complete CAP. The student must also pro­
vide a main program which calls the execution monitor program.

Once a subprogram has been modified, assembled, and checked out, it may be sub­
mitted on later runs in binary form; it need not be reassembled if no changes are to be
made to it.

Let us suppose that a student has made a change to one subprogram, V AREVL, in his
attempt to add division to the variable field operations. 1£ he submits an assembly and a
main program as an FMS job, the following steps will be carried out:

1. The F AP assembly will take place.

2. If the assembly is successful, the main program and the program just assembled,
VAREVL, will be loaded into core memory.

3. The library will be searched for the rest of the CAP assembler and the execution
moni tor, and they will be loaded into core memory.

4. The CAP assembler, as modified, is then run under the execution monitor program.
The input- output simulator will provide a symbolic test program for CAP to assemble.
A typical symbolic program used to test CAP is shown in Appendix B.

5. When CAP finishes its assembly of the test program (or gets into a loop or stops
because of the modifications), control of the computer returns to the execution monitor
which prints out for debugging and comparison purposes, the following:

a. The symbolic test program CAP worked on.

b. The collation tape, if anything was written on it by subroutine WCT1. The col­
lation tape is printed out in BCD.

c. An octal postmortem of all programs which were submitted (in this case, only
V AREVL and the main program).

d. An octal postmortem of the region in core storage in which CAP was to have
placed the assembled program.

In the case of the VAREVL test, it will be noted that the symbolic test program in
Appendix B has in it several variable field division signs. Examination of the addresses
assembled for these instructions will tell whether or not the modification worked cor­
rectly.

In case of difficulty, such as a program stop or loop, the collation tape dump is often
most helpful if the stop occurred in pass one, since the tape will contain the las t instruc­
tion proce s sed correctly. Similarly, pas s two loops or stops may be diagno sed by ob­
serving which instruction was the la§t processed and printed on the CAP assembly list­
ing. For example, if the first instruction which does not appear on the CAP output
listing is the first instruction in which division appears in the variable field, one might
suspect the new V AREVL modification.

In connection with item five, listed earlier in this section, the execution monitor as­
sumes CAP to be in an endless loop if it takes longer than five seconds to complete its
assembly. The postmortem indicates the instruction location where the program was
stopped. Adding one to this location will give the instruction which was next to be ex­
ecuted. A normal CAP assembly takes about one second on the IBM 7090 and the most
complicated interaction of modifications should not extend this time by more than three
seconds.

A typical CAP execution run is shown in Appendix B following assembly listings of the
execution monitor subprograms. The format of the CAP assembly output and of the
postmortem outputs can be seen there.

44 CAP As a Laboratory Exercise

5.4 Tactics for Modifying CAP

Experience has shown that the following tactics can be helpful in making maximum use
of the limited number of computer runs available for debugging modifications to CAP.

1. Some modifications are closely related to others; making the first modification al­
lows the second to follow with but a few instructions.

2. All anticipated modifications should be submitted before the fourth or fifth run (if
eight runs are availa1;>le) to allow sufficient time for debugging.

3. Leave the addition of pseudo- operations which change the ILC (such as BSS) until
later runs; debugging the simpler modifications in early runs. (If one of these pseudo­
operations fails, the result is usually catastrophic.)

4. Observe that the point values attached to modifications are an indication of their
relative difficulty. In particular, modifications to the compiler require an understanding
of advanced material in Chapter 4 and should be avoided by the beginner.

,5.5 The Instructor's Point of View

The material discussed in this section is of an advanced nature and may be skipped by
the reader not interested in teaching CAP to a class.

The Execution Monitor

The execution monitor is a package of library subroutines called by a main program.
The calling sequence to this monitor is

TSX $ TESTS,4

The main program listed in Appendix B, which contains the above instruction, may be
assembled and given to the student in binary form for submission along with his modifica­
tions. The main program also contains three words of octal 7' s which prevent the student
from duplicating the binary cards on an IBM 026 keypunch. Without the octal 7' s the 026
may duplicate the cards incorrectly but the 7' s prevent all duplication, and thus they in­
sure against the possibility of an incorrect binary main program. Note also that the ex­
ecution monitor does not return to the main program which called it, it exits to the
F¢R TRAN Monitor System when finished testing CAP.

The execution monitor first prints a subprogram storage map of all binary and sym­
bolic programs submitted by the student. This is done by reference to subroutine M¢VIE)
inserted at the time of loading by the BSS loader. * The storage map lists all subprograms
found in M¢VIE) from the beginning of core storage up to the subroutine TESTS, which
is the first subprogram loaded from the library.

Depending on the status of sense switch one, either a core storage clock or a magnetic
tape on channel B of the 7090 in combination with a data channel trap is used as a five­
second timer. In the latter case, a scratch tape (tape B3 as the program is shown in
Appendix B) is write selected and a sequence of data channel commands with a word count
of 50000 and terminating with an I¢CT command is given to channel B.

):' Subroutine M¢VIE) is a copy of the BSS loader table which has been moved to a position
following the last subprogram loaded and given an entry point name by the BSS loader be­
fore beginning execution. This loader table consists of entry name and entry point pairs
and permits a selective storage map and postmortem to be given.

The Instructor's Point of View 45

Since the, word transmission rate of a 729 mod IV magnetic tape is about 10,000 words
per second, the data channel trap will occur in about 5 seconds if CAP has not completed
its assembly and returned to the monitor by that time. This trap will restart the com­
puter if it is at a program stop.

Other trap returns are also set by the execution moni tor. A standard floating point trap
interpreter is provided which changes underflow to zero and terminates the run on over­
flow. The select trap return is set up and the select trap enabled before calling CAP.

After these traps have been enabled, the execution monitor places in the AC the origin
of the symbolic program that CAP is to as semble (50000

8
) and calls CAP.

An 1/ ¢ simulator package handles all calls for input and output from CAP. The input
tape is simulated by a core storage buffer containing strings of card images. Subprogram
PR¢G is used as a buffer to hold these strings. The collation tape is also simulated using
a core buffer.

Control eventually returns to the execution monitor; it returns either via the expected
return from CAP, or via timer or select traps. The execution monitor prints an appro­
priate comment and gives a postmortem of relevant information. It then returns to the
F0R TRAN Monitor System with a standard system load sequence.

Miscellaneous Details About the Laboratory

If a student has made a modification which is not tested in the symbolic test program
contained in subprogram PR¢G, a special input/output package is used which reads card
images from the System Input Tape after the student' s ~:~ DA TA card. All other 1/0 opera­
tions are handled in exactly the same way as in the usual II¢> simulator package.

Each student must have the UPDATE Input Tape rewound at the beginning of his job.
This rewind may be accomplished in one of several ways; perhaps the simplest is the
temporary modification of the F~R TRAN Monitor System to rewind the tape between jobs. ~~
An alternative might be to require that each student use the REWIND pseudo- operation
.in his first FAP assembly.

Making an UPDATE Input Tape

The UPDATE Input Tape used for CAP may be made with the aid of the FAP UPDATE
facility. In the following discussion, since the tape is being written, it will be referred
to as an UPDATE Output Tape. When making an UPDATE tape from a card deck, only
an output tape is specified on the UPDATE card. For example, if the tape being written
is on logical drive 11, the F AP control card would be

UPDATE ,11"D

The D in the fourth subfield specifies that assembly is deleted, permitting the entire tape,
including all subroutines, to be written with only one loading of FAP.

Since the third subfield is void, the output tape will be in blocked format. This blocked
format is preferable to unblocked, as Ie ss time will be required to move the UPDATE tape
when it is used later by a class. (F AP writes blocked records 16 cards to a block.)

Since assembly is deleted by the fourth subfield, regular END cards (in the subroutines
being placed on the UPDATE Output Tape) will not stop FAP: the pseudo-operation END UP
will. Following the last subprogram being placed on the UPDA TE Output Tape, the
UPDATE pseudo- operations ENDFIL and REWIND may be used to complete the tape.

If a student should attempt to SKIPT¢ a serial number not on the UPDATE tape, F AP
will stop with a comment and print the last card on the UPDATE tape. For this reason,
a card with a distinctive comment such as "SKIPT¢ ERR¢R" may be inserted after the
last subprogram written on the UPDATE tape.

>'r: J. H. Saltzer, M.1. T. Computation Center Memo CC-204 (February, 1963).

Appendix A

LISTING OF THE CLASSROOM ASSEMBLY PROGRAM

This appendix consists of FAP listings of the complete Classroom Assembly Program.
At the end of these listings is an assembly output produced by CAP, of a sample CAP lan­
guage program. Certain conventions have been observed in these listings. The double
asterisk e:~~:~) has been used as a zero element in the variable field of those instructions
subject to program modification. Each subroutine begins with the pseudo-operation PCC
to insure that all cards in the original subprogram appear on the listing. Since the listings
are to be usec-1 as references for UPDATE modifications, the position of all control cards
must be known.

Index to Appendix A

Main program

CAP

PASS1

PASS2

VAREVL

¢PTBL

INT¢P

C¢MMA,

SYMST¢,

END¢P, PIVAR, GEN¢P, GNST¢, ERASE

C¢MP¢P

EXPR

TERM

READ!, PRINT, WCT1, REWIND, READ2

47

48

50

52

55

61

67

69

72

76

78

81

86

91

95

Appendix C

SUGGESTED ADDITIONS TO CAP

This appendix contains a list of sugge sted modifications to CAP which a student may attempt to make when using CAP as a laboratory exercise. With each modification is given a "point" value which is an indication of the relative difficulty of modification. The descriptions of many of these additions make reference to similar facilities in FAP (F¢RTRAN Assembly Program). Detailed information on the operation of the FAP facilities can be obtained from the F AP reference manual.~:<

C.l Symbols

1. Add a test for multiply defined symbols and have CAP indicate with an M 40 points every operation involving a multiply defined symbol.

2. Sort the symbol table after PASS 1. Beware, this is a difficult modifica­
tion. If it fails, nothing else in CAP will work properly.

a. Interchange sort.
40 points b. Radix sort or any sort which take s a time comparable to N log N. 75 points

3. Use an exponential table lookup of the sorted symbol table for SYMGET. 75 points
4. Add the pseudo-op EQU which is to operate as in FAP. Check for phase 50 points error s, and indicate with a P.

5. Add a test to flag the eleven illegal characters in the location field. In­dicate with an S.

C.2 Operation Field

35 points

1. Add the three -letter prefix code s to CAP as in F AP (that is, P ZE, M ZE, 25 points P¢N, etc., and blank field).

2. Add the pseudo- op ¢C T which accepts octal input in the same format as 50 points INT. Er ror s should be indicated with an E.

3. Add the pseudo - op BSS as in F AP. Check for phase error s and indicate 40 points with a P.

4. Add the pseudo-op H¢L which accepts a card in the format of that in 50 points Figure C.l. n is a digit from 1 to 9, or if blank or a it is assumed to be 10.

~:CReference Manual, F¢RTRAN Assembly Program (FAP), IBM Publication C28-6235 (September, 1962).

167

168

H¢L should then use n words of storage for BCl words as the F AP pseudo-op

BCl does.

1 6r718 1 1 12 13 72

Symbol H¢L n n 6-character words of BCl

Figure C .1. Format for H¢L pseudo-operations.

5. Add the pseudo -op CALL as in F AP except that:

a. No transfer vector is formed.

b. No error words are generated.

6. Allow for indirect addressing of operators with an asterisk.

7. Use an exponential table lookup for the op-table. (Only 25 points if you

did this for the symbol table also.)

8. Improve the REM pseudo-op so that blanks replace the letters REM in

the assembly listing.

C.3 Variable Field

1. Modify V AREVL to accept a "/,, as a break character for division. Be

careful of signs.

50 points

25 points

75 points

25 points

25 points

2. Modify CAP to consider" $" as a symbol (in the variable field) meaning 40 points

"this location" as does the IP:'" in FAP.

3. Add decimal integer literals. 75 points

4. Modify CAP to accept a tag field and remove the present tags in ¢PTBL. 25 points

5. Extend 4 so that CAP will also accepta decrement field and remove 15 points

the present decrement in ¢PTBL.

CA Assembly Listing

1. After the assembly listing, print a listing of symbols defined and their

values.

2. Bonus for literals: After the symbol table, print a listing of literals.

40 points

40 points

3. Bonus for multiply defined symbols: Before the as sembI y listing, print 40 points

a list of multiply defined symbols and their multiple values.

4. Bonus for symbol table: Form a table of undefined symbols and print 25 points

after the assembly listing.

5. Print ¢C T, INT, and CALL in detail mode.

6. Consider a ~~ in column 1 to indicate a remark as in F AP.

169

25 points

25 points

7. Improve the assembly listing by separating the fields of the octal words, 65 points
that is, CLA 64 should print as follows:

0500 00 0 00100

While TXL 1,1,1 should print

-3 00001 1 00001

and INT -32 should print

-000040 000000

while H¢L 1 AB should print (if you have added H¢L)

602122606060

8. Print the nonerror indications A, T, and D where applicable. For ex- 40 points
ample, the letter A means either "an instruction normally written with an ad-
dress does not have one" or "an instruction normally written without an address
has one." Similarly for T (tag) and D (decrement).

9. Add the nonerror indication"s F and Q. F means "a nonindirectly ad- -50 points
dressable instruction has an indirect address." Q means "the instruction ST¢
(instead of the probable STQ) follows a divide instruction."

N. B.: In connection with these last three suggestions (and others) you may
note that all operation codes are completely specified by the first four and the
last four octal digits. Thus the middle four may be used in ¢PTBL for A, T,
D, and F information and for controlling printing of instructions. The se middle
four digits may be masked out of the opcode before inserting in the assembled
program.

C.5 Compiler

1. Add diagnostics to C¢MP including
a. Nonzero reduction level.
b. Illegal grammar, that is,

multiple "-II signs

A = C(B}

A = C} + (B

A = C + r:~C)

75 points

2. Let column 7 be used for continuation cards in the same way that column 50 points
6 is in F¢R TRAN, or column 11 is in MAD.

3. Add the operator ~:~~:~ to C¢MP in such a way that A~:~~:~B would be com- 75 points
piled as

CLA A

LDQ B

TSX EXP3,4

and the result from EXP3 is left in the AC. The operator ~:~~:~ should be given
proper precedence.

170

4. Modify the compiler to accept integer and floating pOInt constants and
form these into a table, say,' LIT+OO to LIT+99 at the end of the progranl after
TEM. To convert an integer of magnitude less than 227 to floating point, the
following sequence of 7090 instructions will work:

CLA ~NT C(AC) = address integer

0RA :=: 0233000000000 Put in exponent

FAD :=: 0233000000000 Normalize

ST0 FLT C(FLT) = floating point equiva-
lent of the integer INT

puints

5. Improve the efficiency of the compiler by reducing the number of \50 - lOO points
combinations

and replacing the cOITlbinations

and

with

ST0 TEM+n

CLA TEM+n

STQ TEM+n

CLA TEM+n

ST¢ TEMtn

LDQ TEM+n

XCA

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170

