
MIT /LCS/TM-233 

IMPLEMENTING INTERNET REMOTE LOGIN 

ON A 

PERSONAL COMPUTER 

: . • . •• ••• . •• • • . . .. •••• • • •• . .. .• . •• . • .•• • .. .• . . • • ! 

••••••••••••• 0. 00 ••••••••• ··: : ••••••• 00 •••••••••••••••••••• 

I .. 
. . . . . . '---_ ---,_ ,.---_ --'_ . ; . ; . j_L-. ~. __J. • • • 

:J 

~~ -~o· ll1 1 .... ........ ' . . 1' . . . . . . . . I . . . ;.; . . . . . . 

Louis J . Konopelski 
December 1982 



Implementing Internet Remote Login 
on a Personal Computer 

by 

Louis J. Konopclski 

December, 1982 

® Mnssachuseus Institute ofTechnology 1982 

Funding for this research came from IBM through discretionary funds 
provided to the M.I.T. Laboratory for Computer Science. 

Massachusells Institute of Technology 

Laboratory for Computer Science 

Cambridge. Massachusetts 

02139 



2 



Implementing Internet Remote Login 
on a Personal Computer 

by 

Louis J. Konopelski 

Submiued to the 
Department of Electrical Engineering and Computer Science 

on December 17. 1982 in partial fullillmcnt of the requirements 
for the Degree of Bachelor of Science 

Abstract 

This thesis demonstrates that a desktop personal computer can support an efficient internet 
remote login implementation wi th the same protocols used by large mainframes. It 
describes a project in which the Telnet remote login protocol. along with the supporting 
Transmission Control Protocol and Internet Protocol were implemented on an IBM 
Personal Computer. The utilit) of the implemenLation depended heavily on the software 
speed. Strategies discussed to insure quick p.:rfom1ancc included tailoring protocols to their 
clients needs. sharing the overhead of asynchronous actions. and sharing data. A natural 
order in 11 hich to process the protocol data was identified. and two control strucLUrcs were 
presented that allowed the protocol modules to run in this order. One of the control 
structures used procedures and processes. while the other used procedures alone. 

A full scnle protocol was successfully placed in the personal computer. With some foreign 
hosts. the implementation echoed characters in less than a quarter of a second. and 
processed a screenful of data in less than three seconds. The protocol software overhead was 
never the dominating perfom1ance bonlencck. The serial line interface limited the character 
echoing performance while the speed 11 ith which the processor could operate its display 
limited the processing speed of large amounts of data Memory size was not a significant 
constrainL 

Keywords: internet remote login. personal computer. asynchrony, task ing 
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Chapter One 

lntroductio n 

Personal computers arc the most recent outgro" th of the hardware rel'olution to auract the 

allcntion of the public. l11eir mass market potential allo"s manufacturers to pro' ide them 

at relati,c ly low costs. )Ct the)' remain signilicmu sources or computational power with a 

range of applications much wider than video games or simple mathenwtical calculations. A 

goal of the Computer Systems and Communications Group [I] at the M.I.T. Laboratory for 

Computer Science is to show that such machines me po"erful enough to C\ploit the 

advantages of net" or!.. communications in ways that '~ere predousl) reserved for much 

larger machines. fhis thesis deals with a subset of this problem. implementing internet 

remote login on a desktop personal computcr.1 Remote login protocols allow a user on 

one computer tO log onto another computer via a network. They provide a facility for 

communication that is much more ne~ible than directly wiring a terminal to a computer. yet 

is many times faster than a l'Onnection across 300 or 1200 baud commercial telephone lines. 

With appropriate n.:t\\UII.. umnl!l:tionl>. a compuh:r l'<lll be al-c~d b) u;,crs n:uion"ide 

with data transfer rates measured in kilobiLS or megabits. l11e primar)' disadvantage to 

imemetwork communication is equipment cost. but as hardware prices have been falling, 

this barrier has been crumbling. 

Compared \\ith the machines on \\hich remote login protocols usuall) run. personal 

computers ha\'e smaller memories. narro"cr dat:l paths. and slower processor speeds. 

Efficient design is necessal')· if protocols on personal computers arc to have acceptable 

pcrforn1ance. In the design described by this paper. areas of special efficiency emphasis 

indude copy minimi7ation. data sharing. bun·cring strmcgies. asrnchrony min im iz~tion and 

1
Karl Wn~t. 10 a comp•OIOO f';jper (!J, \\IDle about 3 diiiCICnl >Ub:.el Of lhc problem of using P=Oal 

C\llllputerslor ne1"url rummumt'JIIon. namd). unpltmenuns a lite U':lD>f<r progrJm on a pcMnJl rom puler. 
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'' 1 iting t,Jii<>red layer implcnwnt:liJOns to better meet the needs of client layers. c\n area of 

particular concern is the mcrhc;~tl llf dealing with •L~ynchronou~ C\'Cnt.s. This p~per proposes 

a natural order in 11 hkh to process data generated by asynchronous cvenLS. and prC'ients a 

t"Ontrol Stnlcture 11 hich cllicicntly and modularly follm1s this order. 

·n1is thesis sho11s that a desktop personal t-omputer can support an efficient internet remote 

login implementation with the s.1me protocols used hy large mainframes. It dc'Seribes an 

implcmemation of the Tel net. TCP. and lntemct Protocols on an lll\1 Pcr.onal Computer 

11 hich allo11S data to be transferred at rates in e1ccss of 5000 bits per second. 

The Tel net. TCP and lntemct Protocols. the IBM Pcrs,mal Computer. and the other 

hardware and software 11h1ch support the remote login protocol are described in the next 

ch:1pter. Chapters Ill and I\ d~scribe 11ays to make the prot0t1.1l implcmcmmions emcienL 

Tailoring lay·crs to meet the needs of !heir clients. sharing the 01erhead of asynchronous 

action. and sharing d;Jta ••rc the subjects of Chapter Ill. Chapter IV discusses control 

structure. The notion of a natural order of data processing is developed. and t110 methods 

for achic1 ing it are presented. Implementation details arc the subject of Chapter V. Testing 

and protocol Cl;lluation arc discuS!.Cd in Chapter VI. 11hile the linal chapter summariLcs !he 

r..::.ults and prcs.:nts >~aggcsti<m, liar imp1111 ing the implcment.allun ami .u·eas lor further 

research. 

1.1 Definition of Terms 

A number of tcm1s need to be de lined before proceeding. If A and ll arc procedures. they 

arc in the same thread of control if thei r local variables are on the program stack at the same 

time. Another wa} of phrasing this is !hat A and 13 share a thread of control if either A orB 

calls the other or calls some other program which calls the other. A process. for !he purposes 

of this paper. is a progmm in eAccution. (The remote login protocol described herein 

requi red three processes: one to process information typed by the user. one to process 

informatiCln from the network. and one to send packetS.) Processes do not have separate 

address spaces. A process is bftJcketf 11hen it is not executing and when it 11 ill ne1er execute 
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unless M~mc spcl.:ific (a11akcning) aninn1~ taken. A process is uwl!f<<' when his not executing 

hut when il 11 ill C\CCutc :11 'iOIIlC point in the futu re without ;my ~dd ilional action being 

taken. A ronning process is a process in C\CCUtion. Scheduling means deciding which 

process 10 run next. 

Interrupt dri1·en code runs in response 10 an interrupt. and preempts the code that is 

currently c~ccuting. It stores the contents of the registers in memory. and sets up a new 

stack on top of the old stack. It also turns off interrupts. i.e .. it prevents the microprocessor 

from preempting it if an interrupt occurs while it is running. When the imerrupt driven 

code is done. 11 tums imermpts back on. restores the stack and the registers. and allows the 

progmm that was running before it to continue execution. 

If a second interrupt occurs 11hile code is running in response to a first interrupt. the second 

will not be processed until the first"s code has finished. The e1·em that C"Juses the second 

interrupt can be lost if the lifetime of the event is shoner than the time taken by the code 

tim processes the first in tern1pt. In practice. interrupt driven code took ll!ss time than the 

lifetime of most events. so 1ery fe11 events were lost in this way. 

10 



Cha11tcr Two 

Software and Hardware Choices 

·n1e elidcn'e that person;1l computers can cllidently support imernct remote login was 

buill out of p;micular software and hardware. I his section dCM:ribc~ the reasons for 

choosing the particulars. 

2.1 The Pro tocols 

The rcmme login prmocol ch~cn lor the demon~tration described b} this thesis was TelneL 

the DOD standard remote login protocol. Supporting it "ere the DOD standard 

Transmission Control Proux:ol and Internet l'rmocol. TI1cse protocols were becoming 

widely implemented on the various local networks to which the personal computers were 

auached. The} would also aiiO\\ the personal computers to send p:1ckets nationwide via the 

ARPANET. 

2.1.1 The Internet Protocol 

The Internet Protocol [J) provides a level of st:mdardization that allows long distance data 

l"OmmunicatiQns across non~LmJ.1rdizcd local networks conn.:ctcd b} gatC\\a}S. It is 

designed for transferring blocks of data across packetS\' itched networks. To each block of 

data. the In ternet Protocol adds :1 header that conwins infonnation al lowing gateways to 

appropriate!)• send the packet across the local network. Internet docs not provide a reliable 

transmi!>l>ion facility. It drops packets it cannot appropriate!> process. 

The m~t important function of the lmemetlayer IS addressing. E:lch source or destination 

is a host. idcmi lied by a lixed length address. If the destination of n packet is a host on the 

local network to which a gateway is auachcd. it sends the packet to the ho~l. Otherwise. it 

for\\ards the p:lckct to a gateway cl~er to the ultimate destination. ( rhc mechanism which 

gatcwa}S usc to decide where t~ lorward o p:1ckct is beyond the scope of this paper.) 
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llte Internet header also came> mformatinn tn ;tlltl\\ g:ttC\\:t)S to ;l(ljust the par;uncters of 

th~ ln.:;tl nct,,or~ to ~~ tratN11ll a p;Kk~L lnt.:mct allo\\S the ~nder to rate the 

imponancc of a p<tcket on a scale of on.: to ctghl. It also allo"s the ~cndcr to spccif)" if the 

pac"et requires low delay. high thmughpuL or high reliability. 

A panicularly important pam meter of a local ncn•. ork is the maximum p<tcket si7C that it 

t:an transmit. lmcrnet prcwidcs a t;tcilitr "here packcL~ c;m he broken into smaller units 

~:ailed fmgments and reassemhled :ll their ultimate destination. Each fragment is marked as 

~u'h :ual;~~igncd an I LJ number M.trting '' ith 0. The la~t fragment i:. additionally marked. 

Internet pro,idc.s a rime-ro-li•·e field to prt:\Cnt mismuted p:~eke~ from being forwarded 

fore\ cr. and a header dtcchum to in>ure that th.: infnrnminn in the Internet header is 

correctly transmiued. Optional Internet t-ontrol ticlds allo'' hostS to send timestamps. 

securit) infomtation :md special rouung infomtation. Internet can dcrnuhiple~ packetS 

among \:trious dientlayers. 

Internet docs not pro' ide for data error checking. retransmission or lost data. or now 

control. These functions :trc assumed tu be pan of higher level protocols. r\dditionally, 

Internet makes no guarantee of the order in \\hich tt p;t-,cs packets to its dicnts. and. e\cept 

for fragmentS. assumes that each p:u:kct is separate from all others. 

2.1.2 The Tr:msmi~sion Control Protocol 

The Transmission Control Protoc'OI (4]. better known as TCP. makes use of the unreliable 

Internet Protocol LO provide reliable internetwork communications between pairs of 

processes. It prm·ides an error free. correctl y ordered. and bidirectional (full duplex) 

tmnsmi>sion of streams of data. 

ro insure reliably ordered dat::t. each process assigns a sequence number to the first byte or 

data in the str.:am that it is sending. Proce>ses refer to each succeeding b> te or data by the 

~ucceeding sequence number (modulo 132). l11e rccct' ing process ac~nowlcdges dma it 

rccci,cs by rctuming an ac~nowlcdgmem number which is ju~t the sequence number of the 
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nc\t O) tc that it is C\pccting to rccei1 c. When the !.ending procc~~ rcrci1 cs this 

<tckno" I~Jgmcm number. it ;L<;Sumc; that the rc<:c i' ing process has corrct:tly received all 

pre' 1ous b~tcs. fhe sender rctr.m~mitS any data not po:oitilely acknowkdged in a reasonable 

period of time. The sequence numbers. wh~n combined 11 ith a TCP length field and a 

checksum on the I CP header and data. insure reliabl~ ordered. error-free data delilery. 

TCP also allows each host to ha1e multip le processes and each process to ha'e multiple 

connections. When a process wishes to open a connecuon. it <tSks the host for a host unique 

connection II). called a pon number. The process concatenates this ID 11ith the host"s 

Internet address to fom1 a socket number. n1e socket numbers of t11o communicating 

processes uniquely spt'<:ify a connection. 1l1c TCP specification reserves cerwin pon 

numbcl>. In p:micular. it resef\es pon 23 for the Tel net sef\er process. 

TCP provides Oo11 control by ha1 mg :1 process specify a window of the number of bytes of 

data that it is prepared to rcceilc. ll1is de lines th.: ma\imum numher of b) tes of data that 

the sender may normall y ha1·e outSt:mding. i.e .. sell\ bu t nm :tcknowledged. The window 

siz.e also implies that the receiver can Store and reorder any data in the 11 indow arri1•ing out 

of sequence. Om-of -sequence data refers LO the siwation where a receiving process gets the 

tl.tta h) 11: "ith the Sl.'qu.:ntc mtml•.:r ~UO I bdim: it r~x:ehes the data h) L<' "ith sequence 

number 2000. Because TCP pronuscs its client a reli:tbly ordered stream of data. it must 

buiTcr data byte 2001 until it recei1es b}te 2000. at which poim it may pass both bytes to the 

client 

TCP gencrall)• determines the best time to send data by its 01\n volition. However. il 

provides a push fu nction through which the appl ications layer may te ll iL to send data 

immediately. TC:P also pro1ides an urgellt function through 1~hich the applications layer 

causes lCP to set an urgem pointer to the dat:t. Tile urgen t pointer sp.:t"ilies the location of 

the urgent data in the upcoming data stream so that the forc1gn TCP can process the urgent 

data quickly. 
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2.1.3 The J'clnct Protocol 

I he Tel net Protocol (5] pro1·idcs :t bi·dircctional. cigln·bit·b~ tc oriented remote login 

facility b) specifying a IIC/Ivurh l'immltrrmillai (N\T} through 11 hich tcrminal·oricntcd 

processes communicme. Tclnet ;~lso pro1ides a mech.tnism 11hcrcb~ processes C'Jn negotiate 

options diffl!rent from tho~e pro1 idcd h) N\ T. Tel net u:.cs TCP to tr:m~mll a stream of 

h) tcs which consist of USASCI I characters witlt intcr~pcrscd Tel net cnmm~nds. 

rhc nCt\\Ork \ inu;tl terminal US(..'S USASCII mdes. ntc l<x:al tcnmnal b rc\ponsihle for 

echoing. NVT is esscntiall)' a half duplex del'icc operming in line buffered mode. It 

nonnally transmits characters a line m a time unless e~plicitl~ told to do otherwise by the 

user. The Tclnet SC!Yer nm:.t send a Tclnct go ahead command 11hcn it l-:tn not proceed 

'' ithout further instructions from the user. !'his ;dlows a pmccss with a half duplex terminal 

to decide when to switch control of the terminal to the user. 

lclnet defines StMdardi£ed commands for certain control functions found on most servers 

thm are often ini'Okcd difTercntly. It defines a commands to interrupt running processes. 

abort output. signal that the server is still running. erase characters. and erase lines. It also 

provides a mechanism for the server to tell the user to ignore any dat3 buiTcrccl between the 

sencr and Lite us~r. 

Tclll1inal options can be changed from those provided b)' the net11ork 1·inual tclll1inal by 

negotiation. Four special Tclnet signals. Wil-L. WON~r DO. :ond DON.T are defined for 

this purpose. DO indicates a request for the other part} to pcrfolll1 a senice. DONT asks 

the other part) to stOp. WILL indicates the desire to begin pcrfom1ing a service while 

WON'T indicmes a desire to stop a servi~e. The pcrson;JI computer Telnct c:nn negotiate a 

full duplex connection by turning off go ahf!(u/ commands. and it can negouate remote 

character echoing. 

All Tel net commands are one byte long ;tnd are preceded by the lAC chamcter. (data byte 

255). Tclnet considers all ~har.tcters not preceded b} lAC to be d:na. Chara~tcr 255 is sent 

by sending lAC twice. 
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I here is a distinction b.:t"ccn u.,cr r dn.:t .mu sm·l!r fclneL User I cln.:t. \vhcn n11ming on 

l.1llllplllcr i\. allu,,s a u~cr of A 11> ll·{!ill to computer 13. It reads char.lctcrs from the 

key hoard and sends them II> the net. ami prinL~ characters from the net on the screen. Server 

fclnet. when nmning on computer A. alln,•s users on any foreign host to login to computer 

A. It pas<;<."i incoming l'h:Jr;K:ter<. to th~ operating. system and writes the operating system's 

responses to the net. We on I~ ''rotc user l'clnct for the personal computers since we had no 

current need for scner TclncL and since it.!; implementation \\Ould onl) hme delayed 

t'Ompktion of the much more useful user felneL 

User Tel net normally sends all characters that the user types to the foreign host. but it also 

JUO\ ides the user \\ith ;m escape sequence that the user employs to request a fclnct service 

such as m:g<lli:ning an NV r option or sending the Telnet command that will interrupt the 

foreign process. 

2.2 The Pcr~onal Computers 

The 113\1 Pcoonal Computer \\:JS a t} pkal product in the 1982 desktop personal computer 

market. We chose it for our rrojcct because it had a number of useful femures: 

1. Its memory '~as not rc~trictcd to 64 kilobytes. 

2. The documcmmion w~s well suited to software dc,elopment because it included 
commcmcd ROM listings and many schematic diagrams. 

3. High Jc,cl programming languages and soft\\ are tools "ere a':lilable for iL 

The processor was the sixteen bit Intel 8088 which had an eight bit data path and which ran 

on a 4.77 Mhz clock. ll1c configuration that we used had 19-1 KB of primary memory and 

t\\O dbk dmcs. each capable of holding a 160 K13 noppy disk. It also had ~n :JS>nchronous 

communications adJpter which could connect to an RS·2321ine.2 

2Thc leclrmral Ro'!frtt~rt{61 pm"des~ddiuon;ll ccchnical ucuuh nn Lh< lllt\1 Pcr><tnal Compuccr 
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2.3 Sofl11:trr DrH~Iopmrnt Tuols 

At the time we started this project. we scriou~ly (Onsidered two hmgtwgcs for software 

de,cJopmcnt: Pascal and C. We 1\0ulc.J ha1e '' riucn and compiled Pascal programs on the 

Ill~ I Per~onal Computer;. "hile 11e had to 1>rile and cross-compile C p~..rams on an 

available PDP 11/-153 11ith a Unh4 operating system. ancl do11nload the programs to the 

personal t·omputcrs. We chose the second option because a Pascal·comp:nible assembler 

was not ;l\ailablc for the 111M Personal Computer at the time 11e st:mcd this project. 

The sof!,,arc tools a1·ailablc to de,elop programs described in this paper included a 

compiler for the C language. an assembler. a linker. a C Standard 1/0 Library. and some 

Hc;nh 19 term mal emulator routines. 

2.-t The ~Ct11ork Interface 

We auached th~ 113~1 Personal Compmers via an RS-232 line to a Digital LSI·ll which 

acted as ;t packet concemrator ;md gatewal' between the IBM Personal Computers and the 

VI 1ing. a I ~lbillsec token ring net with a Unibuss interface. From Lhe VI ring. packets 

could get to the ARP·\ 'ET and a mnnberoflocal networks. 

We used a pac~et concentrator to provide a cost clicctive way of connecting multiple IBM 

Personal Computers to the VI ring. until such time as a local net for the IBM Personal 

Computer; became ll>lllmcrcially :n.tilahle. We rho~e an LSI-11 as a p:tckcL concentrator 

and gate11a)' because we had a softwnre de1elopmcnt system for code of this type for iL 

The /ow level protocul. (LLP). the interrupt driven code that ran on the personal computers 

and dealt with the serial line is described in detail in Section 5.3. 

3POI' b :o uudemark of the D1g1tal lQuipmcnl Corporntion. 

4Un1x is a trademark oft he Ikll T dephone ~lbor.llory. 

5t..mbus" ~ t.r.xlcmark urthc DISILII EqmrmcnJ Corpor:nion. 
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Chapter Three 

Designing an Erricicnt Implementation 

Perhaps the most noticeable difference between small and large computers from the point 

of' iew of the user is the tli!Terence in the speed '' ith "hich similar programs mn. The 

usability of the personal <:omputer protocols depended heavily on the efficiency or 

quickness or the implcmcrnmion. Experience with other implemenwtions indicated a 

number of guidelines to fol low to insure the efficiency of the final t-odc. rhcy arc presented 

in this chapter. 

3.1 The i\ leaning or Erlkiency ror Personal Computer Tclnet 

Protocols arc programs lbr transferring dma. II goal of the personal computer protocol 

implementation is to transfer data as quickly as possible. For the purposes of this paper. 

efficiency refers to the time it lakes to transfer dma. The less time it takes to transfer data. 

the more cffi"cmthc protocol. 

Two units of data were idernilied as being panicularly imponam in !he Telnet environment: 

a single character and a screenful of characters. Packets with a single charnctcr of data will 

be common while l'elnct is in remote echo mode. ·1 he user will be scnsiti'e to the round 

trip delay of such a packeL Many user requeslS will cause !he foreign host to send a 

screenful of data to the user in large packets: the personal computer protocols must also 

process these screenfuls efficient!~. (Some requests will produce more thnn a screenful of 

da1a. but we assume th:ll they will do so a scrccnful at a time. asking the user for positive 

r~sponse before showing the next screenful. Thus we <ISSumc a screcnful of dn1a to be the 

largest amount of un illlcrrup!cd data that the foreign host will senL) 

The benefits that the protocols derhe from impru,·ing the the handling time for these two 
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t)pCs of 1bta :~rc nm linear. nor arc the strategic, for nnprmint: them .11""~' 

cumplementary. l11c user" ill lind a single char.1ctcr rnnnd trip delay of mo1rc than a lonnh 

of a second unacceptable. Yet the user ''illnotnotke impro,ements that d~crc;t-..: the delay 

to less than a fonicth of a second. 111e protocols should process the ~000 charncters 

nccess:1ry to !ill the screen as quickly as po\sihlc. bntthcy can not '>Ctup daboratc schemes 

for managing a lot of data if it means that the) ''ill process sl011 ly pacl..cts that t'Ontain a 

single data character. 

3.2 Tailurcu and SpccialiLcu l'rotocollmplcmcnt:Hions 

One of the justHic:uions for a layered protocol specification is that it aiiOI\\ one protocol to 

serve sc1eral different clients. Unfonun.ncly. a protocol built to sene multiple clients 

seems to follow Hammer's Law: If it's good for ever) thing. it's good lor nothing. 

An allernathe strategy is to design a protocol implcrnematinn to meet the needs of a 

particular clicnL lltis strategy can be applied with t\\O different degrees of sc,erity. A mi ld 

use of this idea is to t;1ilor a protorollayer so that "hilc it complete I) mcctl> its specification. 

it docs not perform equally ~~el l with al l clients. A more e1trcme limn of this idea is to omit 

sum<: li:;Jturo.:s uf a pankular la}.:r that tho.: diclll of imo.:n.:~l Jucs nut us.:. A prollx:ol 

specialized in this "a) 1\0uld not 110rk at all "i th clients that needed the omitted features. 

The loc~l c.,pcricnce with tailored and specialized protocols indicates that such protocols 

nm li1c to ten times faster with p:micul:lr clients than impkmcmatinns dl~igncd to snppnn 

many clients. 

An example of tailoring is the personal computer TCP strategr for buffering output data 

which TCP must store in case the data is lost and reP needs to retransmit it. TCP could 

have either Telnet or Fl P (short for File f'mnsfer Protocol (7)) as its client. FTP almost 

e\clushely fills output packets" ith hundreds of bytes of data drawn from Iiles. Tel net fills 

packet.~ with data typed by a human user who types skm l)'. With Tclnct thcre should never 

be more than a few bytes of data ou~:>tanding. (i.e .. t) ped by the user but not yet 

:•ckno,>lcdgcd by the foreign host). while an FfP connection t:ould have thousands of such 
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byt~s. I he tailored pcr'iOn;d Wlll(llll<!r rCI' li>C\ ,1 \11\~lc pad.d Ill hHkl Outgoing data. This 

~\ >tcm Iiii i) meet~ the I Cl' ,p.:clli\:ati,m. 11 hi~ h doc' not 'tipulatc a minimum number of 

output packelS. but such .a \),tcm 11a1uiJ ha1.: ;ah)\lll;al pcrlimnnncc "ith FfP since it 

IIOUid limit the :tlllOUnt Of OUL,tamhng d.tt;\ to the \1/c of a ,ingle packCL It \\Orks fine with 

TehteL hllWCICr. 11hcrc the ouht~ndang d.at.t ctn aiii,I)S tit imo a ~inglc pad.ct Tailoring 

TCI' to usc n single output packet .;:11 cs the m.:rhcad or tk;aling wi th multiple pnckelS. TCP 

docs not ha1<! to queue pad.:ts or mhcr11bc daMinguhh pacl.clS that might need to be 

rctransmilh!tl. ;md it d~ not h:11.: to rcn>p) mu~h uf the I CP hcalkr each time it sends a 

new p:ldcL In facL TCP U)C> the liclcls of the ~mgk outgoing packet as Mate variables. 

In addi tion to having tailored •llllput d:u:a butTering. fCP also hn~ a 1.1ilnrcd strategy for 

buffering intoming OUI·of.sCtjiiCilCC data. ref' IJ;L\eS the llllt·ttf·SC(JIIellCC J:ll3 buffer Si~e 

on the nta\intum TCP 11 indo11 ,it<!. 11 hach 11 m turn I>;ISCS on the :li\UIIlption that the largest 

~mount of data that the user 11 illt:ll!r ''ish to !>CI! at once is one CRl ~rcenful. Sccuon 5.6 

describes the rCP window and butTer man:agcm.:nt matcgi~s more fully. 

Another e\ample ofTCP tailunng is its assumption that the user can ne1.:r type CISt enough 

to till the 11indo11 ad,eni~cd b) the forcign host. ICP trc:tlS the ct>e 11hcrc the user has 

mnrc JatJ to :..:nJ thau the f•ll .:agn ho~t h.t:> adlt!rll'cll "1udu11 rath,r indti.:icntl) ~> at c::tn 

process the nomtal case faster. Again. tl1is would h:nc resulted in poor performance with 

Ffp where the local TCP might often lillthe 11 indo~> nd1cnised by the foreign TCP. 

I he pcllilm~l computer rcmotc logan implementation as spccialitcd 111 that neither 1 Cl' nor 

Internet is able to demultiplc~ packets between multiple poru. lltis specialization docs not 

afTect thc perform:mcc ofTclnct. since Tel net requires only one TCP connection. In fact. it 

enables the protocols to run faster since dcmultiplexing imoh·es at least some extra 

o1crhead. Yet. in this I\ a}. the personal comput.:r protocol implcmcnt;uion docs not fully 

meet the ;pecilication. fCI' could not support FfP 11 hich requires multiple simultaneous 

TCP connections. nor wuld Internet suppon multiple protocols simulwncously. (A strategy 

for fi xing these deficiencies is discussed in Section 7.1. 
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An important obscrv;~tinn regarding wiloring and spcc~ali~;nion is tllat neither affects Lhe 

currcctno.::.:. "f the implcmcntauon. \ lorcign mmputcr ~upponing lntcmeL. 1 CP. and 

Tclnet ~hnultl not be able to tell the diffo.:rcncc bct11cen tailored or specialized 

implementation~ Jnd impl.::mentations that fully suppon multiple cl ientS. 

3 .. 1 Sharin~ !he 01 crhcad of A<.ynchronuus ,\ clion 

An) pmtocollaycr which can act as a source of n packet without being prodded by the layer 

above it c\hibits :ISrnchronous action with respect to the higher Ia) cr. TCP e~hibits 

asy nchronous action '' ith respect to I elnet when it sends packets acknowledging data 

'' ithout being told to do so by TclneL TCP also retransmitS d:na asynchronously. Tel net 

sho11 s asynchronous action 11 ith respect to Lhe user 11 hen it responds to foreign negotiation 

rcquc>ts 11 ithout prodding by the user. 

Asynchronous action is import.1m because e1ery packet reqUires a cen;tin amount of time 

and computer resources to process irrespective of the data it contains. Processing heuders. 

calling subroutine>. and scheduling processes wke time. The greater the number of packets 

in which protocols send a given amount of data. the greater the amount of unproductive 

prt>cc:.:.mg ;mJ the mote time th~ protlli:Ois will ta~e to procc~s the data. Prntocols should 

send information in as few packets as possible. 

l11e personal computer protocol~ combine information resulting from asynchronous action 

into o single packet whene\er possible. The protocols can combine three types of 

information: the fCP ~cknowledgmcnt number which is updated in response tO Lhe 

incoming data. nny Tel net negotiation characters that relnet must send in response to data 

carried in the incoming packet and all characters t~ pcd by the user while the protocols are 

processing the incoming packcL The protocols combine th is information by h;tving the pan 

ofTCP that updates the acknO\IIedgmcnt number and the pJI1 ofTclnct Lhat responds to 

foreign negotiation requests nm before the pan ofTelnct that processes characters from Lhe 

u~cr which in tum mn~ before the pan ofTCI' that sends packets. 
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J.-1 Data ~haring. BuiTcrin~. :mel \ linimiting CnJlics 

With the pn~ihle eM.:cption uf pro;:.:s.~ <;(:hcduling. protnmls tend not to ha'e e\pcnsive 

operations. lncy mostly ~pend urn!! in loops doing 'imple operations O\Cr and mer. The 

most common loop in prot;x:oh bone '' hich procc~.:-s the data of the protocols one b) te at 

a ti me. I he number of times a protocol implcmen~.<nion b1te processes its data is oflcn a 

good heuristic measure of iL~ eniciency. Accordingly. a spedlic goal of the personal 

;;omputcr protocols is to min imite the number of times that data was byte processed. 

The typical outgoing data b) te is proce~cd fi,.: times: 

l. A code is rlaccd into a buffer by the 113M 13a~ic 1/0 System (13105) when the 
user l} pes a character. 

:!. The Heath 19 terminal emulator gi'.:-s relnct the ASCII character 
corre~ponding to this spcctal code. 

3. Teln~t tests the character to see if it is a carriage r.:turn or a part of the user"s 
escape sequence. If it is nm a p;1rt of the c~capc sequence. I clnct pi:Jccs it in the 
output packet. 

4. TCP checksums the outgoing packeL 

5. I hi! low II!\ el protocol "1 itcs the pm:ket to the net. 

TI1e typic:Ji incoming data byte is also processed live times: 

I. In term pt drh en ~-ode rlan-; th.: data mming off the net into :111 In tern.:t packet 
butTer in memory. 

2. TCf> computes a checksum on the incoming data. 

3. Tclnet reads it and checks to see if it is a cnrri;1ge return or lAC. the Telnet 
csc:1pe character. 

4. The Heath 19 emulator handles iL 

5. 1310$ pi:Jccs it onto the screen. 

TCP somctim~ t"Opi.:s dat.;a nne aduitional time. I r :m in~1lining padct ad no" ledges only 
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part or the tlata in the c:urr..:ml~ held Utngoing p:1ckct. rCP copies each byte of 

ull.i<..:l.nml lcdgcd data to the M;lrt t•f the data ;m:a. lkc:111~<! the amount or data th:u TCP so 

t1>pics is usually none or small. the time 11 ~pcntls on these copies b much ~~~s than the time 

th:u it 110uld need to deal'' ith multiple output packets. 

Notice that the protocoh ~rc nc1cr :mtomatic:tlly copy packets across protocol layer 

boundaries. ror e~ample. no layer e1er t-opies data specifically for the Internet protocol 

la)Cr·-eilher rcr or the low klcl prmocol :tlways pa.-.s Internet a pointer to a packet. 
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Chapter Four 

Tasking: A Modular \\'ay of Coping with Asynchrony 

Protocol implcmcnwtion is nut :1 well under~tood science. One c:mnOlturn to the relevant 

chapter nf a tc\tbook to SC<! how to best do iL As the number of TCP and Tclnet 

implemcm;utons m the ''orld gro"s. problems "ith the current W<ll of doing things become 

more oh,·iou~. and po.siblc solutions suggest thcmsch es more strong!). This chapter 

describes t<IS~ing. a w;~y of organiLing protocol t\'lntrol structure using a combination of 

procedures and processes that seems to meet the requirements of protocols more n:nurally 

than tmdhitm:tlmcthods of organization.6 

.u Th<' Ncetl ror \lulliplc l"hrcnds ur Control 

111is section presents the reawns that multiple threads of control seem desirable in layered 

protocol implementations. 

4.1.1 Mo~u l :trity Throu~;h Layering 

Writing a program that can reliably send and receive characters and special commands for 

the user by I\\ tc.ldling bns on an unreliable network is a large task. Protocol designers have 

modularized this task by spccif)ing layers of protocols. each of ''hich performs a ccnain 

subfunction of this task. 

A significant ad,amage of layered modularization is that it limits interaction between 

6
111c p:trucul:tr fimn of t:!>t rn~ II>Cd here i$lhe icl<a of Dr. David Clark and "ill be fully dO>Cribed by him in 

a luturc publlc;otlun his d<"SCribcd her~ bec·ause it provtdcd u e<>n,enicnt w;~v uf nr~:onuing.thc IBM personal 
'""'Pllter llllll<>cols. rhc tblmg paclJ¥C pr~ntc'tl here doe> nUL n<CC>:.:tnll' ,,,cur.uel1 or completely 
implemcntt:"l"'~ a> emhKtned h1 Dr Ll • .rk rht> popcr 1> not meamto be the lin.d \\Ord on ta>kms or a 
'~.Jnln1oH\ .,J I h.: rca~un~ tOr u~mg IL 
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protocol l;t) e1>. Gtch layer n111~t dc<tl 11-ith Dnly t 1111 other Ia) cr);: the l.t) cr immediately 

ahm cit and the bycr innncdi:ll.:ly below it. The I elnl!tlaycr docs not need to worry about 

the lo11 k1cl pmtocol. 11 hile the TCP Ia) cr doe!> not have to deal 11 ith the user. 

\ iolating modularity somcunli!S <;eems ncccss.,l) or desirable in order to improve 

performance. While cat:h such change may produt:e a local efficiency. the sum of many such 

ch:mgcs will lead to code that i-. diflicultto understand and to modify. and which may have 

pcrlonn:mc.: problem-. in the l.tl",;c that no one real!) understands. I he ne~t t110 sections 

dL'SCribc ~me t:hamctcristtL'S of protocols that make them especially vulnerable to creeping 

unmodularity. 

4. 1.! The \atur:tl Order of Data Processing 

Each protocol la)cr has a function. E~amming these functions reveals a natural order in 

which to procc~ data between the nclii'Ork and the user. Incoming data should first be 

processed by Internet then by TCP. and fina ll y by Telnet. rherc is not a one-to-one 

<.'Orrcspondcnce between the number of pac-kets th:n Internet receives. the number of 

pac-kets TCP rccei1es. and the number of times rclnct and the user rcL'Cile data. If Internet 

limb tha1 1hc Internet header h;ts a bad dtcc~sunt. n 11ill nut r•"~ the p:tl:kct to TCP. If 

Internet passes a packet to TCP that coma ins on I)' an acknowlcdgmcm for data and no new 

data. TCP will not pa~ anything to TclneL Similarly. if Tel net reccii'CS only a negotiation 

request it 11 ill not pass am thing to the user. 

The opposite situation occurs 11 ith outgoing data from the user. It should first be processed 

by Tel net. then by TCP. then hy Internet. and fina ll y passed to the network. Again. the fact 

that one protocoll:lyer nms docs not imply that the ne.\t layer in the natural order will also 

run. lltc user may ask Tclnet to interpret all future characters in a different 11ay. and TCP 

"ill not immediately ntn. TCP may buffer data from Telnet unless C\plicitly told not to do 

so. ;md Internet may not run. 
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.J.I.J \s~nl·hronou\ bent~. Ll~Cr>. and I hrrad\ ofComrol 

While the order in 11 hkh la)ers should nu1 Ill pnJCcss data is straigh tforward. coming up 

with a comrol suucture thai both follo11s this order and preserves modularity is difficult 

Procedure calls seem too innc,ible to do this. 

To illustrate. suppose Tdnet is the top lclel procedure and that the user passes d:na to it 

that must immediate I) traverse the network. lclnet calls TCJ>. and passes ICP the d:na with 

in,t ructions to send it immcdimclr. TCP fonnats ;t packet tumaining the data and calls 

Internet which in turn !ires np the low level Jlrotocol and sends out a packet. After sending 

the packet the low level protocol rctums to Internet which in turn returns to TCP which 

returns to TclneL lclnet then waits until the u~cr has more inforn1ation to send. 

What now happens if a packet ackno11 !edging the data t-omes in 0\ er the net? lntemet and 

the low level protocol need to run. but control remains in rclncl. We l'Ould give Tel net 

knowledge of when :1 p:ICkel comes in from the net so it can call TCI' wl1ich in tum c.1n call 

In ternet. but then Tel net would have kn011 ledge of the nc11vork which violates layered 

modul:1rity. Also. for incoming packets Tdnct would be calling rep which would call 

lntemet··exactl} the OllJlOSite of the natur:1l order described abo\ e. To ;tchic1e the natural 

urd.:r. procedure~ that hamlk <IS} nchronou:. data lllU)t nut ,hart! thr.::td~ 111" cumrol. lk'tause 

a5}nchronous data arises in multiple la)crs. and because kt}ers c:~nnot ~hare procedures. 

there must be at lea.\! as many threads of control as there are layers thnt handle 

a~} nchronous CI'Cn ts. 

All TelneL TCP. and Internet implementations must deal with a minimum of three 

<IS) nchronous e\ents: characters from the u~r. packetS from the nemork. and 

retransmission timer time-outs. Because a difrcrent protocol layer handles each of these, all 

modular implememations ofTclneL TCP. and Internet must hal'e ;u least three threads of 

control: a thremJ with a fclnet procedure as the top level procedure that processes 

ch:tracters from the user. a thread with a TCP procedure as the top le' el procedure that rons 

11hen the retransmission timer goes oii and a thrc:~d 11ith an Internet procedure as the top 

le1cl prO<.--edurc that processes incoming packets. 
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I he protocol implemcmor ma) desi re to create other as) nchronous events as wel l. 

Section 3.3 ~hawed that the pan ol" 'l Cl' that ;~cknowlcdgcs datu by sending a packet with an 

updated acknowledgment number should wait until the part of Tel net that handles data 

from the user has run. l)cla) ing data acknowledgment effecthely c-Juses it to become an 

asynchronous C\'Cnt because no procedure can mtturall~ call the TCP procedure that 

acknowledges d:ua. The pan ofTCP thlll processes the in,'Oming packet can 1101 call it··this 

pan ofTCP gil'eS up control to give Tel net an opponunil~ to run. If l'elnet has data to send 

from the user. it "ill call TCP :tgain. bm fclnet should nm ha\e to l~tll a TCP procedure if 

the user docs nott~pe an) characters. lllUs procedures in the TCP la}er must handle two 

asynchronous events: the retransmission timer and data acknowledgment. If each event 

were processed by a separate procedure. two threads of control would be needed by the 

TCP la)·er. one to retransmit packets and one to send packets ackno" !edging incoming data 

To avoid multiple threads of control in the TCP layer. "e used a single procedure sent 

packets in response to bmh events. In fact "e made a funher simplification and had a single 

procedure senti all outgoing TCP packets. flccause there is only one output packcL (see 

Section 3.2). writing a procedure that handles all output packets was easy. 

Placing the TCP procedure that sends packets in its O\\ n thread of control also pro' ides a 

conv<!nicnt ""Y of shanng th~ asynchronous action o'erhead that results when 1 clnet 

responds to a foreign negotintion rcquesL Tel net calls TCP with some data to send. but TCP 

docs not send it immediately. Instead TCP places it in the same packet as the updated 

;td.no" ledgmcnt number (that ocknO\~kdges the characters which formed the foreign 

negotiation request). and allows the pan ofTelnet "hich handles characters from the user to 

run. 

4.l..t 1 he Special i':ccds of Rc:1l Time Events 

A characteristic of asynchronous events is that they may occur at almost the same time. This 

can be a problem if the events have a lifetime. If the rou tine responsible for processing an 

event can not do so within the event's lifetime. then the routine will lose the evenL 

bamplel. of C\ents with lifeumes are the signal produced when the user presses a key on 
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the ke\ btl.arcl and a byte u>ming in mer the ~ria l line. Unfortunately the amount of time 

needed hl the pcrson;1l wmputer pmtcxuls tO mmplctcl} process such c1ents is much 

longer th~n their lifetimes. If t\\O e1·cnts occur at almost the same time. the second will cease 

to exist belhre the protocols completel) process the first. To nvoid this problem. the 

pcr;onal computer protoc~1ls usc intem1pt dri1en code to buffer realtime events. and code 

not dri,·en by intcrrunts can then process the buffered e1 cnts at itS convenience. Interrupt 

dn1en code nm> "hen the user pres.~cs a keyboard ke). 11 hen a byte comes in orr the serial 

line. and in rcspun~ to a timer interrupt. 

.u Implementing ~luhiplc Thread<. of Control 

Figure 4·1 summarizes the natural order of data processing clescribed in the previous 

section. Bro~en lines indicate layer boundaries. Dots surround intern1pt dri1en code. 

Blocks indic:~tc procedures in~ide of Ia} ers. Data i~ first proces.-;cd by a procedure from 

which an arro" points and then by the procedure to which the arrow points. This section 

describes three ways of structuring the mul tiple threads of control that "ill process data in 

the natural order. 

-1.2.1 Layers a~ Processes 

ll1c traditional way of constructing multiple threads of control is to make each layer a 

scpamtc process. Becau~c processes ran n111 in any arbitrary order. they can al~o mn in the 

natu ral order. Each layer has the potential to be the first to process a piece of as) nchronous 

dma. For outgoing packets. the user's ke)stroke awakens the Tel net process which in turn 

awakens the TCP process which in turn awakens the Internet process. An incoming packet 

a11:1kens Internet "hich awakens TCP 1~ohich in turn a11akcns TelneL A retransmission 

umc-outawakcns TCP without awakening TelncL 

In practice. however. scheduling processes in the natural order t-an be extremely difficult. A 

simple scheduling system where processes run in the order in 11 hich the) arc awakened does 

nut work well. For c~amplc. if an incoming packet arrives over the net and awakens 
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llllemct between the time Teln~t gets a character from the user and the time that it awakens 

I CP to send the character. then lmemct "ill run after I dn.:t hut before reP. (The low 

lc1cl protocol processes p;H.:kclS coming off the net :n interrupt lc'el.) Running Internet 

between T .:!net and reP can result in unncccs<;ary delay in sending the d.tta that the user 

types. 

t\n unpredictable order of data processing can ctusc more scnous problems than delaying 

informmion. It can make sharing certain llata between layers impossible. If the protocols 

follm' the natur:tl order of data proc-essing. r elneL TeP. and Internet c:m all usc the same 

outgoing packet. 13ut with an unpredictable order. Tclnet could ntn hrt"een TCP and 

Internet. Telnet could then modi f) the packet :tflt!r TCP put a checksum on it. causing the 

foreign ho~t to reject the pad.ct. ~luhi·proc~'S S}Stcms that allow pnoce~~cs to run in an 

;~rbitrary order arc also dimcult to debug. 

A more romplicated scheduler in,·oldng some son of primitic~ 110uld produce the natural 

order. but using it wou ld incre:asc Lite 01 crhead of schedul ing. lnt.:rcasing the 01·erhead of 

scheduling is detrimental to performance when sending or r.:ccil ing Telnct data requires 

three Ia) ers to run. and thus that th ree processes be n"akcned. scheduled. and run. In 

itddi tion. priorities :uc not lli•Jdul;•r bu:au~c to chuu-,c the appropriate pru•rit} for a 

particular purpose. a process must have tmplic:it knowledge of how all the other processes 

wi ll use priorities. 

4.2.2 A l'rocetlure·based Scheduler 

An alternative scheme would be to make n scheduler the top le1el procedure and implement 

layers as a collccuon of procedures. The scheduler would monitor the asynchronous eventS. 

and "it would C'.tll a procedure in the appropriate layer when an event occurred. The 

sch~;duler 110uld effective!) act as a s11 itching station bet1,een as) nchronou~ e1 cntS and the 

procedures that need to process such e'ent.s. effectively eswblishing different threads of 

control for e:~~.:h such procedure. When the user t} ped information. the Slheduler would 

t-all Telncl. If neccss.1ry. Tclnct could then call TCP \\hich in tum could c:tll lntemeL 
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When infonn:uion arril·cd o1cr !he nc111ork. 1hc ~hcdukr ~~oukl t~tl l lmcmct. and if 

ll<~C~ary. lillcrncl muld call I Cl' "luth m !Um could c;tll kine!. When !he rc!r:m~miS!>ion 

umcr wem orr. !he ~hcdulcr llllUid (,dl fCJ> 11hich in !Urn 110ultl call Internet. lllliS 

conlrol would follow !he nawml order oi dma processing. 

The atlranlagc of !his impkmclllalion lies in ilS elliciency. ll1e procedure-based -;cheduler 

passes t·umrul from itself 10 a Ia~ er ami from nne 1.1~ cr 10 anmher 'ia pn><:edurc calls mthcr 

!han by scheduling :md running a new rrocc>s. Running the la}CN to process an incoming 

or outgoing packet requires three procedure t-ails. For e1amrlc. 11hen a packet comes in orr 

!he net. !he ~hedu lcr t~t lls llllcmeL I nlcmcl calls TCP. and TCP ~ails Tel net 

1 he scheduler. as we llcscrihcd it. is 1c~ unnmdular. I! must know abolul the net. it must 

~now abou11he user. it muM ~n011 about lhe relransmi'>Sion umer. and il 111~1 ~now about 

procedures in all!hc layers. We could. however. cons! rue! a simpler scheduler which is not 

as unmodular. It 110uld m;anagc a t:ircular list Each clcmemof the list 11ould ha1e :m e1en1 

nag and n pointer 10 a procedure. T11c scheduler would look at each clcmcm of !he list in 

round robin fashion. (Round robin scheduling allows 1he protocol l:1~crs 10 share packets 

produced b} asynrhronous :tction. Sec S.:c1ion 3.3.) When the scheduler finds an elemem 

wilh iL~ e1clll flag SCI. 11 1.:-..:1 the !lao: and (,IllS the ;ll>...X:i;lltd pro<:clhll.:. Lu.:h layer !hal 

needs to nm a procedure in response 10 an event would give the scheduler a procedure 

poi mer. and would get nn e1cnt flag poimcr :tftcr the scheduler added a new elerncntiO lhe 

liS!. 111e layer COUld then gil~ lhC nag pointer tO the C<lt!C lh~l handled !he CICnl. When !he 

e1cn1 occurred. lhe code that handled the CICnt would S<!l 1he nag. 1 he scheduler would 

lhus have no panicul:tr knowledge of either evenlS or !he nature of !he procedures \haL 

respond 10 e1 ents. 

We seriouS!) considered th.: procedure-based scheduler as an implcmcnl:ltion strategy for 

the rerstm31 romputer prolocols: however. 11 e chose 10 usc !he tm.king pack:1ge desc ribed in 

the ne\L section. Section -1.2.-1 describes lhe reasons ~>c chose t.:tSking 01cr !he procedure­

based scheduler. 
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-1.2.3 Ta'lking 

Instead or ha1 ing a procedure-based scheduler call the top l~vcl pron:dure of the 

appropriate thread of comrul in response to an asynchronous c,·ent. ''e could place each 

such procedure in a separate pmccss. Each process ''ould ha'e i~ O\\n ~tack. :md the top 

lclel procedure in each thread would be at the top (base) of a stack I he interrupt driven 

t-ode that nms in response to :m asynchronous event would awaken the process as well as 

buiTer the e'en!. When the process ran. the top level procedure "mild handle the e\ent. :md 

itl'Ould then call procedures Ill other layers if necessary. 

The remote login implcmcnt.1tion needs three processe-s to make such a system work-·one 

li>r each thread of control. Tlte vmiables of tltc top level procedure of the tluead of control 

sit on top of the process· stacl... One process handles characters from the user. and has a 

Tclnet prOCI!dure at the top of i~ stack: one process handles outgoing pacl..ets. and has a 

TCP procedure at the top of its ~tack: and the linal process handles incoming packets from 

the network. and has :m lmernet procedure at the top of its stack. r\s a matter of 

convenience we will respccti1el) refer to the three processes as the user process. the send 

process. :md the net'' ork process. 

In this nmcd procedure and process ~):.Lem. a protocol l<t~er t'm~bts o 1 a t-olk..:tion of 

procedures which can run in v:trious processes. To hide the con5titu tion of one layer from 

another. la)'Crs may use on!) 1>rocedure calls for imcrl:lyer t-ommunication. lnterproccss 

communicaiJI)n o.:curs insitl~ of layers. For e'ample. suppose thnt the user t) ping a 

character causes a Tel net procedure to run in the user process. and that felnct would like to 

send this charncter across the net" ork. Tel net cannot awaken the send process directly, since 

the top level procedure in this process is a TCP procedure. Instead. Tel net must call a TCP 

procedure in the user process. ·ntis TCP procedure will place the character in the output 

packeL and a1~akcn the send task. Because a TCP procedure awakens the process that has a 

TCP procedure as its top lc1cl procedur~. the interproccss communication occurs within a 

single layer. 

A procedure mar run in more th:tn one process. For example. the TCP procedure that 
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:m;~kcn\ the send pmcCS!> and runs in the u\.:r procc~ 1~h.:n rclncl 11i~hcs to send da1:1 from 

the user abo ru11s in the nctiHlr~ prtXC'' 11 hen rclnct calls i110 bend char~ctcrs in rc~ronse 

10 a foreign network vinual tcrminalncgotiation rcqucsL 

We will call this panicular 11:1~ of t·ombining procedures and processes ta.1kiflg. A tflsl< is a 

combination of a process and the rrocedures thnt run in the process. A tasking module 

conwins all the routines that manage tasking. in particula r. the mutincs 11hkh ;lllow tnsks 10 

go blocked and 10 awaken otltcr tasks. The ta~k ing module manages a circular list of taSk 

control blocks. E.1Ch 1a.~k control block hns a nag and n pointer to a ta.'l. stncl.. One t:ISk 

could aw:1kcn another task by ~tting the nag associated 11ith iL~ task control block. When a 

task bhx:l.s b) calling a tasking m•)dule blocking routine. the t:L\king module 11 ill look at 

each ta~k control bl<Jck in a round robin f:c.hion. If the nag of a ta.>k rontrnl block is set. the 

task ing module wi ll nc.1t run the process that uses the associated stack. r\ task resumes 

control from the puint 11 here it became blocked. 

Figure 4·2 shows the task boundaries in the personal t'Ompu ter remote login protocol. The 

imerrupt dri"en code that runs in response 10 an incoming packet calls an Internet routine 

"hi~:h awakens the net \lark ta~k. When this task mns. Internet is the top lc1 cl procedure. 

and <.:an ~:.til TCP. ·1 Cl' in tllnll:lll lall I dnct. and it c.::nl pruuu~..: an :1l·knn11 lcdgmcnl and 

a11aken the send tasL When the user LaS!- nms in response 10 a kc)Stroke. Tclnct is the top 

level procedure. lfTclnct wishes 10 send data it calls a TCP routine that awakens the send 

wsk. The TCP procedure that is the top lc1cl procedure in the ~nd t:tsk can then call 

Internet. The Telnet routine that responds to foreign net"ork vinual terminal negotiation 

requests and the interrupt driven code that runs in re~ponse to a clock interrupt can also call 

TCP routines in order to :11~aken the send L:ISk . 

. n..t l'roccdurc·bascd Scheduling \crsus fasking 

Either the procedure· based scheduler or L.'lSking could have formed the basis of an efficient 

remote login protocol. ·n1is section presents the reasons 11e chose t:tSking. 

A simple proccdurc·bascd scheduler would have been somewhat more crlicient than the 
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u~~ing p~r~bgc that we actually u\cd. We 1\I"Olc a simpl~ pfl)(;.:dur.:·h~l\Cd !>ehedukr like 

the one dc\~:ribcd in Section 4.2.2. and used it to run some vacuous procedures. (procedures 

that rm:rcl) sctth.: c1·cm llag of the nc\t pfl)(;edure to run before the) returned.) Swapping 

control from one 1·acuous procedure 10 another in a different thread nf control took about 

70 micro~cconds. (S11apping control i111ohed scuing an el'cnl nag. returning 10 the 

scheduler. deciding which procedure to nrn ne~t. and calling it.) With tasking. swapping 

l~rntrol be111Ccn 1acuous pro~:cdur.:; in dini:rcnt processes takes about 135 microseconds. 

(S11,rpping l'Ontrol 11ith taS~ing in1ohes selling an e1ent nag. calling a bind. routine in the 

tas~ing module. dttiding \\hid! las~ should mn next and running iL) Thus the d.:cision 10 

usc tasking added 65 microseconds to the cost of processing an incoming packet and 200 

micros~:contls to the cost of processing an outgoing nackeL (With wsking both the user task 

~rntl the send t:JSk need to run in order to send an output packet 1-ith data from the user.) 

.An additional ad1anwgc to the procedure·ha.sed scheduler is that itS implcmentauon docs 

not require :my nsscmbl) langu:tgc programming. 

The prirn~ry ad1antage 10 t.'l.~king is that it is more nc~ible than the nrocedur.:·bascd 

scheduler 10 that it con1cniently allo,,s procedures to block :n an)' poim and 10 later 

l~llllllllll! C\~Cutinn in C\,lltl) lite S.lll1C place and \lith Ct;.telly the ~me 'late. n1is bIll)! the 

t~tse with the procedure-based scheduler 11 hich requires thJt the top level procedure in one 

thread of control return before the scheduler can call a procedure in a different thread or 

control. 

For example. assume that in the send task. Internet linds that it is mi~ing a resource that it 

needs LO send a packeL It can arrange for the resource's manager 10 awaken an Internet 

procedure when the resource b<X:omes a1;rilable. and then it can block. lmernet in a 

prcx.-edure·bascd scheduler system. howe1cr. would ha1e 10 return 10 TCP which would 

have 10 return 10 the scheduler before a procedure in a differem thread of comrol could run. 

Further. re·invo~ing Internet 11 hen the resource b.:comes Dvailable is not :rs maightforward 

as with tasking. TCP should not be called in response to an even! whkh concerns Internet 

yet TCP rnay wbh to run after lmemct has succes.~fullr sent the packcL Rcsnurce processing 

mal Lhu~ n'ed its 011 n thre:nl uf control. 
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I he three thrcads nf Cl"llmlm the personal cmnput~r protocols generally nm to completion 

in respon~c to a5~r11.:hronous CICnl~. and do not h;I\C to block waiting for resources. I hus 

th~ abilit~· of the t.."'Sking package to stop threads of l'Ontrol in multiple places is not an 

ad1antage in the personal computer remote login cn1 ironment fclnet TCP. and Internet 

would run sliglnlr quicker if implcmemcd with a procedure-based scheduler than if 

implemented \\ ith ~;~king. but thi> difference 11ould probably not be noticeable to the user. 

We cho;c to use tasking rather than the procedurc·basccl schL·duler for t11 0 reasons: 1) many 

other protocol implementations that our group support~ usc t:ISking. ;md putting LaSking on 

the pcr..onal computer protocoh prcscnes some a.>n~btcnq among the implementations. 

:md 2) the :rddcd ncxibility or tnsk ing might come in handy when implementing future 

protocols on the personal computers such ns the Simple \I ail Transfer Protocol [8). 
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Chapter Five 

Implementation Details 

This chapter presentS th~ dc1ails oft he m:-.1 pcNmal t'Ompmer remote login protocols. 

5.1 Signals 

Signals prO\ ide a modular imerface bet"een intermpt drhen code and the t;L~king package. 

The signal routines 1-riuen for the 113\1 Personal Computer are loosely modeled on lhe 

UniA signal package. A program con call the signal manager wilh an event code and a 

procedure pointer as argumems. The signal manager arranges lhings so that "hen an 

as1•nchronous e1 ent occurs. the interrupt driven code that handles the event calls the 

procedure. The personal computer protocols usc two signals: a signal thill the low level 

protocol has received a packet from the neL and the retransmission timer signal. They did 

not usc a signal for the keyboard bec;~use the interrupt driven code that buiTers characters 

fmmth.: ke) board is a pan nfthe I U\1 lh~ic l/0 Sy\tcm. and'' riling sud1 md~: ''oulo.l h;11c 

im•olved changing BIOS. Instead. a procedure in the user taSk polls a butTer for characters 

from the user. 

Since interrupt driven routines call procedures passed to th<: signal munager. these 

procedures run "hilc intermpts are turned oiT. and they thus must be shon. For cxan1ple. 

TCP asks lhe signal manager to arrange to ha1c lhe interrupt driven retransmission timer 

routine coli a TCP procedure when a panicular amount of time has passed. This TCP 

procedure merely awa~ens the send taSk··a very quick operation. Notice that this meetS the 

restriction that intcrprocess communication ~hould occur within a single layer. TI1c send 

task has TCP code at its top level. and the procedure that awakens this task is a TCP 

procedure. 
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5.2 Tas~in:.: 

l ,~;king h n way of organiting pmccdurcs and processes to fonn protocol hl}ers tha t both 

prcscn e:, IJyer modularity and cfficiemly processes the JS} nchronous data of the layers. A 

I:L\~ is a process and a collection of procedures that run in the process. 1l1e procedures nrc 

often from different prmocol layers. Tasks cannot pn:cmpt one another although tasks can 

he preempted by routines which arc interrupt drhen. A l<ISk !>tOps runnins "hen it calls a 

bltx:king n1utine in the wsking module. T:t~ks c.,ecutc in series. Tasking is not a way of 

simulating paralld processing. 

Disciplined wsk progr;unming requires that one task may awaken another tlnly if the two 

ta:.ks shnre state. i.e .. internal to a protocol layer. For e1ample. one task must at least know 

about the t:ISk control block of another ta~k in order to awaken the other. ro hide the 

constillltion of one ln}cr from another. only procedure calls may be used to pass control 

fmm one Ia> er to another. 

Figure 5·1 sh011s the mcmor} organization of the 113M Personal Computer 11hen a typical 

program nms. ll1c 113~1 Di!>k Operating S}stcm reSCf\es the first 100 b> tcs (hex) of the 

code segment for itself. The progmm code resides immediate!)" abol'l! this. The dnta 

'><!gmcnt ~tans att~r th~ prugmm lWI!. At the bottom ulthe data s.:gmcnt is >p:tce lbr the 

global and static 1ariables. At the top of the data segment is the program stack which grows 

downwmd. 13ct\\een the stack and the global variables is a rrcc area in 1\hich programs can 

d} namicall) alloc:ne stomge. 

Figure 5·2 shows memory organization when l<tSking runs. It is e~actly the same as Figure 5-

1 except that there are additional objects in the d} namic-allr allocated storage area. namely 

task stacks and task control blocks (TCBs). Each task stack is organized like the original 

program SIJck. A task control block contains a 1.1Sk"s st:Jck pointer. an c1ent Oag. and a next 

TCB pointer. 

Task comrol blocks furm a circular list ch:1incd b} ne1t TCn pointers. An initialization 

routine in the tasking module creates a l:lSk l"Ontrol block \\ith a stack pointer pointing to 
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the original program stack and a ne\t TCB pointer pointing back to the newly created TCB 

i!Self. The iniualization routine returns a pointer to lhis t.:lSk conLrol block. 

Another rou tine in the tasking module creates additional task comrol blocks and t.:lSk stacks. 

Titis rouune mkes a poimer to a task control block and a pointer to a procedure as 

argumeniS. and rctums a pointer to a new t.:lSk control block. II places the new task control 

block in the circular wsk contml block list aller the TCB specified by itS argumenL and 

initiali1cs the n.:w task mntrol block so that it poin ts to the newly created stack. It also 

i niti:rlizc~ the ~t:d so that when the t:tsk runs for the lirst ume. the l:tSk swriS executing the 

procedure pa:.scd in as an argument. The maximum stack size for a t.~k stack is fixed atlhe 

time this rouunc creates the stack. 
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Altho"gh the task ing modul e allowed us to create and free task 
structures dynamicall y. in practice we only allocated tasks In the 
initialization rou t ines and navar recycled them. lhus In usa, task control 
blocks and stacks ware more stat1C than dynamic. 

39 



,\ t.t>l- hltl\.1,:, h) t~tlling a n>uttnc in the ta'lking module. This routine c~aminc:. sut-cecding 

dcmcniS uf th~ list ofTClls. staning "ith the 'J CB pointed to by the neJ.t lCll pointer of 

the current task. unti l it find' a TCfl 11 nh its event nag seL The task with this TCB is the 

nc\1 wsk tn run. The routine rese\Sthe wsk's event n~l£. and pushes onto the swck the local 

'~riablcs pointer and a pointer 10 the line of code unmediatel) arter the blocking routine 

c;tl l. Thi; line of code would nomwll) be the ne.\t line to e~ccutc when the blocking routine 

returns. but the binding routine load~ the stack poilllcr of the new task into the stack 

Jlllintcr r.-gister of the 80!18. On the return. the 8088 loads the program counter 11 ith the 

code pointer on the swck. but since the swck pointer has been changed to point to the stack 

ufthe ne11 t..'\51-.. the progrnm counter points to a line of code in the new task. Thus e'ecution 

in the nc11 UL~k stans with the piece of code following the blocking routine call that caused 

the new task to block. 

ntc pnxct.lurc in the tasking module that awakens taSks. 11hcn c:1llcd 11ith a poimer 10 a 

task t-ontrol hiOt:l. as an argument. setS the event nag of the task control block. rhe routine 

that blocks t.'\Sks resetS this nag before it manipul;nes stacks. A t:ISk c:m awa~en itself by 

c:tlling the routine that a11:1kcns l.a'>ks 11 ith a pointer to its 01111 ta~k control block. thus 

assuring that it will run ;~gain. 

The wsking routines arc shon as well as efficienL They take up about three pages of C code 

and an addition~! pageof8088 assembly l~nguage routines. 

5.3 The Local :'\et11ork Protocol 

TI1e local network protocol between the personal computers and the packet concentrator is 

called LLP. short for low level protocol. It defines four special charJcters: R £(?-·request to 

send a packet. ACK··requcst acknowledged. £ND-·end of packet. and J:'SC··an escape 

character used 10 send the ASCI I characters displaced by the special characters. 

LLP is bidirectional. If one machine "i~hcs to send a packet to the other. it sends a REQ. 

The other mnchinc responds with an ACK when it is ready to receive the rnckeL The first 
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machine then ..ends the p:lt~~~ ti,IJo"~tl b) ;m rND. If the other machine is sending a 

f>:ltkct when the first machine \cnlls a REQ. the ACK c:~n he embedded in the packet: the 

lirst m;t<:hinc must remove iL 

If the "ait bctllccn REQ and ACK or the wait between an) two data char:tcters is too long, 

LLP assumes that the other m:u:lline has crashed. The receipt of a R EQ in a data packet 

indicate~ that the end or the rrc1 ious packet has h..:cn lost. and LLP discards the packet. 

LLP also di\Card~ unc.\pt.:cted characters. 

Most LLP routines are interrupt dri1en. On an mcoming char.Jctcr. these routines check 

thei r state to find the chamcter"s t'OntCXL R CQ causes LLP to get a packet from the packet 

manager routine ldcscril>ed in the ne~t section). l r LLP can not get a p:tckct or is otherwise 

unable to process a p;tcket. it will nOt send an ACK. An E 0 cau'>CS LLP to hand a packet 

to the pac~ct manager as good. A REQ t-:~uses LLP to gi1•e the p:tcket to the packet 

manager tO be recycled. 

One routint in the Low Level Protocol that send~> packets is not interrupt driven. Internet 

calls this routine "hen it wishes to send a pac~et 01er the net. This rouune adds a four byte 

lora I h~adcr to the packet. C. ill'-~' the interntot clrh en routine that ~nt ch:tr:,cter; to ~nd a 

REQ. and waits for an ACK. If the ACK does not come l\ithin two seconds. the routine 

reports failure to the Internet layer. If the ACK comes. it causes the interrupt driven 

routines to send the rest of the packeL and returns to Internet reponing success. This 

routine '':ms lor the int.:rrupt dri,cn routines to lin ish sending the outgomg packet before it 

returns to Internet b}' running :t loop that waits on a nag which the interrurt dri,·en routines 

set when they lme finished sending the packet. 1l1c interrupt driven routines that send 

packets preempt this w;tit lotlp. LLP does nm return control to Internet sooner. because to 

do so m1ght ali0\1 a higher lc,el prOtocol to modi f)' the output packet. and c:tuse the packet 

to have an incorrect checksum. 
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5..1 I he :\l'lllor~ lnitialitat inn :uull'arkrt .\lanagcr Houtincs 

I he net"nrk tnitiatitalicm mutine crem .. -s t\\O p~cket queues called the u~cd quen~ and the 

free queue. and thiny·two mu~imum-sited empty packet buffers 11hic:h it initiall) places in 

the free qu.:uc. When a routine needs an empt~· packet buffer. the pad • .:tmanag.:r pro1 ides 

one from the free queue. ·n1c used queue contain~ incoming packets 1\hich LLP has 

rccehed but the higher level protocols ha'e not yet processed. LI.P call' the packet man~ger 

to place good packets on the used queue. The Internet procedure that runs in the net11ork 

t;~k. calls the packet nmn;~ger 10 pick up packets from the used queue. When the n<:1110rk 

task finishes processing a pocket it gives the packet back to the p:det manager" hich places 

it back on the free queue. PacketS need not be on either queue. For e1ampk. the incoming 

packet currcmly being processed by the network t.ask and the outrut r:1ck.:t ar.: on neither 

queue. 

The network initialization routine also sends a special addrc:.s request p:~cl.et 10 the packet 

concentrator. The packet oonccntrator responds with the Internet address of the personal 

l'OIIlputcr making the requcsL The nCl\\Ork initialization routine pla~.:s this address in a 

global vari~ble in the 1/0 libral) where that all layers can access it. For .:x:unrle. both TCP 

and Internet need to kno" the personal l'Omputcr's addre~ to l\lrrccth pr.x:css the 

checksums of incoming packets. 

5.5 lntt'rnct 

The actuallntcmel implementation differs sign ificant!~ from the model presented in earlier 

chapters. The implementation ignores Internet's optional fields. it does not do 

frngmentation or reassembly. nor does it act <L~ the top lel'el of the network task. Instead. 

TCP acts :IS the top level. and calls Internet on an incoming packet signal. 

The lmernet implementation was origin~lly wriuen 10 support the User Dawgram Protocol 

(9) and the frivial File Transfer Protocol (TFTP) (10). TFTP no" umtrul is >implc enough 

not to require tas~ing. Reassembly. etc .. were left out to gel TFfP nmning as quickly as 

possibh: 10 t:1cilitate do11nloading programs 10 the personalmmputcrs from the I'DP II on 
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"hich the} "ere wmpikd. I<> l••dlitatt: d.:huggmg. \\C u~cd the stmc copic, of Internet and 

I I I' for both I FrP and I clnet 

;\n Internet open connection r.:que!>t l:l~es as :trguments a protocol number (in this case 

fCI''s number). and a lordgn host address. It returns :t connection I D. To send packets. 

I Cl' C"Jlls Internet 1~i th the connccuon I D. a pointer to the p:1cket it wants sent. and the 

length of the packet. Internet sends the packet to the t'Orrect foreign :tddre:.s with the 

.1ppropriate protocol numh<!r. On an int-omin:; pac~et signal. fCP calls another lmemet 

routine 11 ith :t connection 10 as an argument. and this muune returns a packet if the 

Incoming packet had a good Internet header checksum. if it I'<IS from the correct foreign 

h~l. and if it 11as for the TCP protocol. For the purpo;;es of modularit). Internet also 

prolides routmes that ;~lloemc and free packets. 11hich pass the requests through to the 

puckct manager. 

While the Internet implcmcnl:ltion is limitcd. it is complete enough to suppon connections 

to all hosts on the M.I.T. networks 11hich support Tclnet. It also prol'idcs a complete layer 

interface "h1ch cffcctilely hides 1011 lcl'cl details from TCP. Nevertheless the lmemct 

implcmemation is incomplete and upgrading it is high on the list of impro1cments 

sugg~•tcd in th~ final dwptcr of thi5 thesi~. 

5.6 TCP 

I CP prO\ ides an initialit.:nion routine th:tt. 11 hen called b} the T dnct routine that initialized 

tasking. sets up the send taSk and the network l:llok. {If lmernct h~d been the top level 

progrmn in the network ~k. TCP would have railed ;111 Internet initialization routine which 

would ha1e set up the network t.aSU The order of t.'\Sk~ in the list of task control blocks is 

thus the user l:llok. follo"ed b) the send l:llo~. follo11ed by the network taSk. 

·1 CP also pr01 ides Tel net wi th routines which will open or close rCP connections. a routine 

1\hich puts data in the output packet. a push function. a routine to send urgent data and a 

mutinc that prims connection status ~tati>tit's. ll1csc routines run in the user wsk. The open 
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routine. tlosc rou tine. pu~h I unction . and urgent data routin~ awaken the send task. The 

urgent data rouunc sets the urgcm pmntcr to the tlat:l. 

A fCP routine is the top lel'cl procedure in the send t.1Sk. It always sends a packet when it 

nm~. and it ~umes that the rep routine that a\\akcned it has :tpproprimel) modified the 

nut put packet. It calls an Internet routine to send p:tckcts. and it calls aT duct rollline if the 

li>rcign host docs not respond to a rcquc>t to open :1 connection within a cert:tin period of 

time or 11 hen the foreign host wants to close the tlcmnection. It also passes a pointer to its 

task control block to the signal handler so that it will be a11akcned when the retransmission 

timer goes off. TCP docs not have to worry about which packet to send or retransmit as 

there is only one. All outgoing infonnation is ~ept in a single output packet. rep alwa~s 
sends the em ire output packet unless the foreign window is smaller than the amount of dma 

in the packet. a situation that never occurs in a nonnal Tclnet connection because the user 

I} pes so slo\\ I}. If it did O<.x:ur. TCP "ould call the Internet routine that sends packets with a 

sht1rtened packet length field ;JS an argument. and the Internet routine 11 ou ld only send as 

much of the packet as the length field implied current!)' contained information. 

(l'"ortunatcly. data comes at the end of a packet. This scheme would not ha1e 1\0rked if 

header c.1me at the end of a packet. nnd Internet tnmcated pan of the he;~dcr rather than 

data.) l CP would tr} to send th.: data nga111 when the retr:msmtS-\1011 tim~r timed out. which 

would hopefull} be after the foreign host had enlarged the foreign windm\. 

l11e top level TCP rou tine in the send task is also responsible for munal!ing the wi ndow. It 

upgrades the 1\ ind011 only :~fter the window is at least half used up. and it alwa) s updates it 

to the maximum window size. This prevents silly window syndrome. the phenomenon 

whereby the foreign host sends its data in small packets because the local host enlarges the 

11indo" by only a small amount [II]. The maximum size of the wind011 is a tailored 

pammetcr. (Sec Section 3.2.) We b$Cd its value on the obscnation that the largest amount 

()f c.law that the foreign side will normally want to send is a screen fu l of dma. The goal is to 

:1rrange things so that the foreign side t";Jil send an entire serccnful of data. namely 2000 

h)tes. 11ithout ha1'ing to 11ait for a 11indow update which will increase the time it takes to 

send a screcnful of data. To prevent si lly window we must upcl:ue the window in large 
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incremen t>. If we never update the windnw by less than 500 h) tes. a reasonably large packet 

site. then th.: ma.1imum window size needs to be at lc;~st 2500 bytes. 

Because the personal computer Internet layer docs not use tasking for reasons discussed in 

the pre1ious section. a TCI' routine is also the top le1cl procedure in the network process. 

This routine passes to the signal handler a pointer to the network t:tSk control block so that 

the network task will awaken when a packet comes in from the network. TCP uses this 

si~al as a him to run and poll Internet for a packet. Internet docs not always produce a 

usable packet: for example if the incoming packet has a bad Internet header checksum. 

Internet will not return a packet. 

The first thing TCP will do 11hen it receives a packet is checksum the packet and make sure 

that the receired checksum agrees with the computed checksum. If the packet acknowledges 

data. TCP 11 ill adjust the output packet. If the incoming p::tcket acknowledges all the 

outgoing data. then TCP sets the output packet dma length to zero and turns off the 

retransmission timer. If the incoming packet acknowledges only pan of the data. then TCP 

copies the unacknowledged data to the beginning of the packet data area. TI1e amount of 

data that TCP copies is usually just a few bytes. TCP never has to explicitly rcmo\'e old data 

since new daw 11 ill be t1lpktl \)\W the old data. and bct:aus~: TCI' passes the site of the 

packet to Internet which sends only the from of the packet which is new. and not the end of 

the packet which might be old. 

If the incoming pa~.:ket has tlata. TCI' will check to make sure tlwt it is wilitin its advertised 

window: otherwise. it is discarded. If it is out of sequence. TCP will put it in the out·of· 

sequence packet buffer described below. Otherwise. it will awaken the send ~'ISk to send an 

acknowledgmenL and call TclneL passing it the new data and any data from the out·of· 

sequence data buiTer that follows the new data in sequence. 

To help make sure that the personal computer does not run out of packet buiTers. TCP does 

not ::tcknowlcdge data or update the window unti l it has processed all incoming packets in 

the used queue. Un fortunately. this feature turned out to e::tusc lock step "hen a foreign 
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ho\l quid.ly sent ~nough data Ill lill the local TCP window. nccausc the interrupt driven 

mutinc' can rcce11e p;~~:kcl5 fa!>tcr than the high lc1cl protocol> t~lll pmcc-;s th~m. if the 

foreign hO!>l sends a window full uf data quid.l}. then rep 11ill nut ad now ledge any oflhe 

<.lata or update the window until it has rccei1·ed the entire 11indow fu ll. (assuming that no 

data is lust.) Meanwhile. the foreign lCP em not send any more data until it receives an 

updated 11 ind011 advenisemcnL nllls the connecuon ciTccthcly b<:comcs half-duplex for a 

shnn p~riod of time. This problem is nm too serious hcc3usc "ith our "indo" matcgy it 

only Ot'Curs when the foreign host sends more than a screen fu l of d:na: howe\'er. it did affect 

some pcrfom1ance tests described in Chapter 6. Section 7.1 discusses some ways of 

eliminating this problem. 

TI1c site of the out-of-sequence data buller is related to the adveniscd 11 indow size. Oecause 

the 11 indo" is Lhe ma\imum :1mount of data that the foreign TCP can ha1 e outStanding. it is 

also the m:l.\imum amount of d:ua that might arri1 e out of sequence. ll1us Lhe out-of­

s~quencc buffer must be at lea!>l 2500 brtes long. the smallest maximum window size Lhat 

will always allow a screen ful of dma to arrive unin tcrnlpted b)' window updates. 

TCP creates two arrays to store out-of-sequence data. One is a chamctcr arral and one is a 

SI.IJI I CIIL~ number array. 1 CP swrcs b} t~S of tklta 111 1hc char,l~tcr ami} clclllLlll iltOC\CU by 

low order bitS of the byte's sequence number. TCP stores Lhe byte's sequence number itSelf 

in Lhe corresponding clemem of the sequence number array. The test to check if TCP is 

storing a panicular b\ tc of dm:t in the char.1cter array is to sec if the sequence number array 

clement indexed by the low order bitS oi the wanted byte's sequence number is the wamed 

byte's sequence number il5clf. If it is. then the wanted b} te is in Lhe corresponding character 

array clcmenL 

n1is scheme has the properties: 

I. The test to sec if the ncM hytc of <bta needed by Tel net is buiTered. ~~hich has to 
be done e1cl) time an incoming packet is rccehed. is quick. It consists of a 
~uhroutine call. a logic:JI AND operation. indexing :m arr:ty. and a comparison 
of two long numbers. 
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2. Stormg or rctric1 lllg a single h) tc uf data t) onlr \lightly more t"<nnplicatcd. 
Since mn" packets in a rclnct t"<mncction comain nnly a single b)te of data. 
most swre~ and rcuicvcs arc fast. 

3. Storing or retrieving larger amounts of d:lla is not unacceptably slow. 

-1. :"lothing has to be done 10 1he armys ;~t ;my other time. 

In is scheme is rather space intcnsh·e. The character army is 4098 b) tes long. the power of 

two gre;tlcr than the 2500 b)ICS needed to prc1ent dela)S in sending scrcenfuls of da\3. 

F.a~h sequence number is four bytes long so the sequence number array is 16.394 bytes long. 

Ho11ever. speed turned out to be a problem on the l!lM Personal Computers whi le plenty 

of memory space 11 as available so 11e felt this tr:tde-off of space for speed 11as IIOrthwhile. 

In prac1icc. incoming packets can take more I han a second 10 proc1..'SS. If 1hc local hosl has a 

4000 b) 1e window ad1 enised and 1he foreign host sends 4000 b) 1es in medium sized 

packeiS. il mighl ta~e the local TCP and Telnet a few seconds 10 process ;ti l the incoming 

in formation. Lcng1hy processing can be a problem if the user 1ypes n charnc1er jus I aflcr the 

ne1110rk task Sl:trtS proce~ing 1he first packet If 1hc net11ork taSk never gives up control 

until it processes ~II incoming p;1cke1S. 1hen the user"s charac1er c-Jn be delayed a few 

:..!<..1111d~. I hb. Jda) 11111 b.: e!>pcciall~ IJad if 1hc: torcign h,,.. ti1r !.OillC rcawn t:::nures our 

window and keeps sending packets pre1en1ing the user from typing an abo11 ou1pu1 or 

break command. 

The solution is thai once lhe TCP procedure in the network l;tSk has processed one 

incoming packeL if an01hcr is 11:1i1ing to be processed. TCP should call Tel net and ask it if 

1he user taSk needs to run. If so. TCP "ill lea\e a message in a variable for the TCP 

procedure 1ha1 runs in lhe send taSk 1elling it not to update the window. and then TCP in 

1he network taSk will block. The user task wi ll run nex1 and process all the characters tl1at 

the user has typed. ·n1c send taSk will then nm. sending the user"s characters. fhe TCP 

procedure in the send tusk should not update the window umil the nc1work task has 

finished processing ;11! the incoming p:~ckets. Othcn' ise. the foreign hos1 ma~ send even 

more packeiS. \\hen 1he ~nd 1ask is done. 1he TCI' rou1in<! in the nct11orl.. 1ask can continue 

processing right where i1 Mopped. 
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5.7 Thl' ll~ath I'J Terminal Emulat or anti Other 1/0 l~outincs 

lllt 111\1 BIOS (Ba\k 1/0 S}~lcm) pro,idcs illlcrmpl dri,en routines for handling 

ch;tracters typed on the ke} board. It places codes for the ke}s hit in a butTer. An Hemh 19 

terminal emula1or funclion will. 11hen relnet calls it. process these codes as if the user hit 

the s:unc keys on ;tn Heath 19tcmlinal. 11 returns ASCII characters. 

l\o s1gnal {s.:c Section 5.1) C\iSts for Slriking the keyboard because writing such code would 

h;~1c required changing BIOS. Telnc1 polls the character code buiTc r wi th Lhe Hemh 19 

function instead. I dnct schedules the user task 10 run as of1en as possible. and each time it 

runs 11 polls the ch<tractcr code buO"er. The character code butTer has space for fifteen codes 

11luch is large enough so that under normal circumstances the user cannot type quickly 

enough 10 overflow it 

,\not her tcnmnal emulator funcuon uses BIOS 10 put characters on the screen in a manner 

lh.tt simulates an Hemh 19 tenninal. 

5.8 Tclnet 

I he tt~cr calls tltc I clnel ptugram 11 ith lhc name or address nr a furcign IHhl a> an 

;argument {l:llemeL sends a p<tcket 10 a name server 10 resolve a name.) Telncl lirst 

initializes ~Zking by seuing up the user process on the main program stack. and then it calls 

lh~ TCP inilialitauon n>ttlinc "hkh SCL~ up the remaining tasks. Ne\t Tdncl calb the TCP 

funclion wh ich tries 10 open a connection to !he Tel net server at the specified <tddrcss. TCP 

calls one Telnet routine if the connection opens sua:essfully and another if a time·out 

occurs. When the connection opens. Tel net infom1s the user and uses the Heath 19 function 

to check if the user has typed an} clwracters. Because characters typed by the users do not 

cause inlcrrupt dril'en code 10 awaken the user task. relnct must awaken itself before it 

blocks in order to be able 10 run ag<tin to ched if the user has I} pcd :m} thing. 

Tdncl provides J"CP with a funttion 10 cal l when lhc connection clo~es. This docs little 

more 1han prim "closed" on the tcrmtnal and relllrn 10 mmm:lnd level on the personal 
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tomput~.r. ldnct also prod.t-. .... a funcll•lnthat 11illtell ICP if the user t<L\1. IK'cds to run to 

pmcc-s J ch:uacll:r. Finall). it pm1itk\ ICP 11ith a limctionto call 11ith ldnct tl:1ta. This 

I unction p:~--s data to the Hc:llh 19 tcm1mal emulator" hich puts it on the screen. and it 

;~I'><> responds to Network \'inual I crminal negotiation requests. 

I dnct can negotiate remote echo. It al~o prol'ides the user with the abili ty to send a Tclnet 

hrcak command in TCP urgent mode. and the Tel net m·e you there command. fclnct allows 

th~.: user to chose to send data after e1 cry d1aractcr. in '' hich case rclnct calls the TCP push 

function after every character: or CIC!') carriage rctunt in 11hich casc onlr calls the push 

function after CICT} carriage return. Finally. Telnct pro1ides the user "ith a <.-ommand 

11hich prints Tclnct connection statu~ mlbnnation on the screen. ;md :c.ks TCP tn prim its 

status. 
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Chapter Six 

Performance Testing :\11(1 Evaluation 

Thi~ chapter ckscrihes a series of c~pcrimen ts used to Cl'aluDtc the pcrform;mce or the 

personal c.:omput<.:r remote login protocol. 

6.1 Some i\ let hod Notes 

Tl1is dwrtcr dcsc.:ribc> two t) p~s of tc.!sts: test~ between two personal t1lll1putcrs t-onncctccl 

by .Ill RS·~3~ line. and test> bet"ccn a person;tl tXllllputcr and a fl.lrcign host via the p;tcket 

ronccntmtor and a network. lc<;ts bct"cen l\\O personal t-omputers pm,idi!d us "ith a 

mill rolled cn1 ironment in "hid1 tt> conduct performance testing. Of the t\\O t) pes of tests. 

those bCt\\CCn t\\ O personal computers had fewer variahlcs affecting pcrfonnance. and we 

found it 10 he the easier cn1 imnment in which to measure the limits of pcrfom1ancc. We 

used t~'Sb ocross the ncl\lork to measure performance under conditions of octual use. 

On~ :~dditional set oftcsts··those between two pcr54ll1a l t-omputcrs connected b)' the packet 

concentrator··would also have been useful. l11csc testS would have enabled us to isolate 

and idemifr the performance constraints imposed br the p:•cket conccmrator. 

Unlortunatcly. at the time 11c h:>to:d the protocols. the pa<:kct <.:um.cntr;nor d1d not suppon 

simultaneous connections 11> multiple personal computers. 

Whene~cr we needed an arbitrary tmnsfer rate for tests bet11een two 113M Personal 

Computers. we chose 9600 bitS per second. This 11as originallr the llL\tcst rate at \\hich the 

packet conccntr.nor could run. and we thus thought thut it lll)uld be the most u>eful rJte in 

practice. 9600 bits per second is also the fastest rote at 11 hich 111M ~uggcsLS running the 

serial line. 

In the C\pcrimcnts dcscrihcd below. we timed e1cnts by finding the clifferen'c between the 
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'•tluc of a dod \;uiahlc at th.: stan of an C\Cnt and its 'alue :ll the end nf <Ill e'enL llte 

mM personal computer prO\ illcd a doc~ rout ine that mn once C\ cry 55 milli!.cconds (at 

18.2 Hertz.) to which we added a piece of code that updated Lhc clock variable. 

Unfortunatelr. this clock w;~s too·coarse gr:tincd to accm:ttely measure many interesting 

e\cnts. An C\ample "ill illustrate this problem. (In this e~:1mple. "hen "e S:l) that the 

clock licked. \\C mean that the clock routin~ updated the 'alue of the clock \:triable. We will 

abo refer to the \alue of the clock 'ariabh: ~the 'alue oft he clock.) 

Imagine that event A is three·founhs of the clock's period in length. If/\ occurs with in a 

quarter period alter the clock ticks. then the value of the clock after A is 0\ cr wi ll be the 

,,me as it was before A started. Alternative!). if A occurs between onc·<juartcr and one 

clock periods after the clock ticks. then the 'alue of the clock "hen A is O\ er "ill be one 

period gr.:ater than u.s 'alue ju>t before A ~taned. If the clock and A arc independent. then 

one·founh of the time. A should occur \1 ithin one quarter period of a clock tick. while 

three·founhs of the time. A should occur between onc·quaner and four·quaner clock 

periods after the clock ticks. Thus we have a .25 prob:lbility of measuring t\ :IS tak ing zero 

dock periods. "hile "e have a .75 probability or measuring A ns ta~ing one clock pe1iod. 

although neither of these ,·alues are panicularl> close to the tme ,·:~Jue of A. 

We can use t"o techniques to more accurate!) measure e'ents that are fast relative to the 

clock such ns event A. With one technique we run fast events many times. one after another. 

ancl find the time for a single event by didtl in.a the time for the series by the number of 

e'ents in the series. An alternati\e technique is to sum the experimental times of many 

individual independent events and divide the sum by the number of events to obt.1in an 

a'emge time. We used the first technique "hen possible. because it deternlinistically 

bounds the inaccumcr of the experiment due to the clock. "hile the second only 

prob;Jbilistically bounds the inaccuracy. 1 he second technique was useful when an event 

W<l~ not repeatable. <IS when the event sometimes occurred unsuccessfully and an 

unsuccessful e'ent had a value which was uninteresting. bu t differed grcatl ) from the value 

of a successful event. In this case the deterministic technique would produce an average 

value "hich "as ske"ed by the inclusion of the times li)r unsucc~ful C\Cnt~. \\hile we 

could sclccthcl) ignore unsuccessful C\ents with the probabilistic approach. 
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6.2 Tc~ls in a Coni rnllrd Em ironmcnl 

We perfom1ed the c~perimcms in this se~tion with two lflM personal computers connected 

by an RS-232 wire that was slightly less than ~ meter in length. These tests isolated the 

perform~nce of the 113M Person:~ I Compmer software and hardware from the effects of an 

external network. 

6.2.1 Detailed l1crformancc Measurements 

We designed the first set of e.,periments to lind out how and where the protocols spent 

time. We did this by sending packets of various sizes from one personal computer to 

another and back. and then noting the time these transfers took. This time included: 

- the time the first personal computer needed to get the packet ready to send. 

-the time this packet spent on the serial line. 

-the time the second personal computer needed to process the incoming packeL 

-the time the second personal computer needed to fom1a1 a packet conl:lining the 
same dal:l incoming packet. 

- th~ time th is new packet took to get back to the first personal computer. 

-and linally the time the first personal computer needed 10 process this new 
packeL 

In summary. Lhe time included the protocol overhead of sending two packets and receiving 

two packets. and the time two packets spent on Lhe serial line. 

Because Lhe time to do all ll1 is was only a few clock periods. the clock was too coarse to 

measure h accurJtely. Thus we ran one hundred of these operations one after another. and 

divided the rcsullllnt tot:al time by one hundred to get the time for a single transfer. 13ecause 

we scm the same d3ta one hundred times. the protocols needed to copy the data into an 

output packet onll' once in each direction. 

Figure 6· 1 presents the resu lts of such timing measurementS. It shows the packet size in bits 
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Figure b-1 :Packet Transfer Times Between Two Personal Computers 
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pinned along the horizontal a \Is .md the tr.msf~r time ploucd on the 1enical 3\i:.. Instead of 

plouing the size of t11o pac~cL~ 1crsus the time to ~end two packets. the time to receive two 

packets. and the time two packets were on the net. 1\e di1 idcd the numb~r of bits and the 

transfer ume br 1\\0 to get the time spent processing a single packeL E.1ch point in Figure 

6·1 is the aven1ge of th ree timings. With these points. we used li near rcgrcs.~ ions to calculate 

the lines in Figure 6·1. 

In addition to daw. each p;1cket had twenty bytes of TCP header. twenty bytes of Internet 

header. lour b}tes of local net header. a READY b}te. and ACK byte and an END byte. 

11le minimum si£e packeL the size of a packet with no data. was 47 bytes long. On the 

personal computer. each b~ te was eight bits long. but LLP added a stan and stOp bit to each 

b) te sent mer the serial line. ntus sending a 47 byte packet meant sending 470 bits. 

Line CR of Figure 6·1 sho115 the results" here the packet data contained one carriage return 

after e1cry eighty ptintable characters. Carriage returns turned out to be much more 

expensive to process than print<1ble charncters because they involved scmlling lines on the 

screen. 

Line PC of Figure 6·1 shows the results of transfers ~imilar to the first set. C\CCpt th:ll we 

replaced each carriage return 11 ith t110 printable characters. (To distinguish a c-Jrriage return 

that acts as a newline from a carriage retum that is really a carriage return. T <!I net represents 

the former as a carriage return followed by a linefeed and the Iauer as a c:trriage return 

followed b}' a null.) 

A third set of transfers dispensed with printing characters on the screen altogether. This set 

"<IS similar to the second set except that we patched out the call to the tcffilinal emu IalOr 

routine that wrote characters on the screen. Line OP in Figure 6·1 shows he results of these 

transfers. (OP stands for Other Protcx."'I overhead.) 

Line SL in Figure 6·1 shows the amoum of time that a packet of a panicular size had to 

spend on the serial line at a tmnsfcr rJte of 9600 bits per second. (We calculated line SL 

rmhcr tlwn measured it.) 1 his line represents the theoretical minimum amount of time that 

the protocol needed Ill transfl.!r a packet u~ing the serial line. 
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·1 he interrupt dril ~11 wdc that ltundlcd dwrallcrs 011 the ~erial line n111 faster than 9600 hi ts 

per ~ccond. Concurrent 11 ith the time that chamctcr~ 11cre on the line hut interrurt dri1en 

mdc 11as not running. the processor mn non-interrupt dri1en t'Odc. (the code th:n the 

interrupt dri1 en routines preempted). For outgoing pockets. this c:ndc was just a wait loop in 

the non-interrupt tlrilen pan or the low level pmtocol. (Sec Section 5.3.) For incoming 

packets. any code could run.For e1ample. 11 hile the ne1110rk scm one pxketto the personal 

computer. the high lc1 cl protocols could process the pre1 ious packet. although intern1pt 

driven routines 110uld preempt them fur a shon 11hilc c:~ch time a new byte came in from 

the serial line. rhe fact that interrupt driven routines :md high level protocols ran 

concurreml~ (interspersed) 11aS imponant in explaining perfom1ance figures presemed later 

in this chapter. 

llccause the interrupt driven rouunes that handled the net ran interspersed 11ith high level 

code. and bec-.lUse the) tumed ofT interrupts including the clock interrupt. 11e had no 

convenient way of di rectly me;ISuring the amoun1 of time thm they used. We indirectly 

calculated a conservative estim:ne of this time by looking up in the 8088 User's Manual. the 

number of clock cycles that the interrupt level code that handled the a1cr:tge char:tctcr used. 

~nd adding 10 percent to this number. (Special characters such as ROY took much more 

time to process than the al'erage character. No characters took less time to process. The 

8088 User's Manual states. "With typical instruction mixes. the time actually required to 

execute a sequence of instructions "ill typically be within 5-10% of the sum of the 

inJilidual timing~ ... Cases can be con~.tructed. howe\Cr. in which c~ccution time m:ty be 

much higher ... " [12].) This estimate suggested thot the interrupt level routines took 231 

microseconds to process each byte that they received from the serial line. We ploued this 

estimate on Figure 6-1 as line INT. 

From Figure 6-1 we calculmed a number of useful statistics. (The fomllllas that \\e used to 

CIIculate them are summarized in Pan A of Table 6- L) The difference between line CR 

and line PC is the carriage return overhead (CRO). ·rnis was the amount of additional time 

tha t the protocols spent processing carriage returns compared with processing printable 

ch:Ir.tctcrs. The carriage return overhead depended upon the frequency with which carriage 
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Tablt 6·1: llr~akdu11 n ufPuck~t 1 r.msfcr I im~-. U~111 cen f1~o l'crson.tl Computers 

A. Formula Used to Calcula te Detailed Times 

Cerrl age Return Overhead .. ... . . . ........... CRO • CR (s ize)· PC (size) 
Printing Character Overhead ..... .. .......... PRO • PC (s ize ) • OP (size) 
Other Ove r head--Fixed ...................... OOF • OP (size • 0) - SL ( s i ze • 0) 
Otner Overhead--Variable ................... OOV • OP {size) - OOF - SL ( s i ze ) 
Available Concurrent Process1ng Tine ....... ACT • SL (size ) - 1111 (she) 

6. Detailed Times 

statistic 1 values ror various packet data sizes I per byte I 
I · · · · • - • · • • • · · · · · - - · I value I 
I 0 bytes I I byte 1466 byttsl500 bytesl I 

I I (sac.) 1 (sec.) I (sec.) 1 (sec.) i(usectbyte)l 
(s :=== == ==== I•••••••••I========~ I:•=••••••I•======== J= •== •••••••I 

I CRO I o.oooo I o.ooo" I 0.1825 I 0.1959 I 392 I 
1--- ----- ------- ------------------------------------------------1 
I PCO I -o.ooot I o.ooo5 I 0.3225 I 0.3460 I 692 I 
J····-------~---------·----- ----~ - --------~---------~--- - - ------1 

I OOF I o. o too I I I I I 
l-- - ---- - ---+---------+-- --- ----- - ----- ---+-- ------ ---- -- - ------1 
1 oov 1 o.oooo I o.oooz 1 o.o357 1 0.0768 1 t5 4 I 
1------- ----·---------·------ --·+·-- ----··+·····-·· -· ---- -······1 
I SL( size ) • I 0.0490 I o.o5oo I 0.5344 I 0.5696 I t 042 I 
1·----------·---------·---------- - --------·-- ----------- ------·· l 
Jllll(size) .. l o.o to9 I o.Oilt I O. lt85 I 0.1264 I 231 I 
1----------------- ---- ----- ------------------------------------- 1 
I ACT 1 O.OJ81 I 0 . 0389 I 0.4159 I o. ~JJ• I 811 I 

Notes: • This statlst•c was not measured experimentally . It was 
ca lculated by div1ding the total packe t size in bits 
by 9600 bits/second . 

•• This statistic was based on the estimated anount or time 
spent in i nterrupt driven code. This estimate may be 
very inaccurate. 

returns appeared in the dma Ste;!m. In these expcrimems. we sent one carriage return for 

CICI) full line ofprint~blc characters. i.e .. one for c~ery 80 print~blc characters. Table 6-1 

Part 13 shows the carriage return overhead for packets of various sizes. If for some packet 

siLc. we d ivided the c:trri:tgc return overhead by the number of data char:lctcrs transferred. 

11c found that the cost per data character of having carriage returns ;as opposed to having 

printable char.tctcrs 11:1) 392 microseconds. Since packets rontaincd one carriage return in 

Cl'cry cighty·t11o b} tcs of data. the processmg t.'OSt per C:lrri~ge return W<ll> 32 milliseconds. 
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l his is apparent I) the time required to mme the pre' ious scr~cn com en~!> up one byte 

(scrolling). 

The difference between line PC and line OP of Figure 6-1 is the amount of Lime that the 

software spent writing primablc ch~racters on the screen. This stmbtic also appears in 

Table 6·1. 

13) subtracting line 01' from line SL we found the protocol overhead of the non-interrupt 

driven routines that was not :L-;sociated '' ith printing things on the screen. We ~ep:tratcd this 

other protocol m~rhcad imo two l"Omponents: a fhed overhead ''hich ''as irresp~ti'e of 

the amount of data that the p:tckct contains and included a lnt of header processing. :md a 

'ari:~ble 0\ erhc:1d which depended on the :m10u111 of r acket datn. The lhed overhead was 

the difference between the two lines \\hen the packet contained no data (470 bits). The 

'miableoverhe;~d "as the difference bet"een the lines OP and SLat other packet sizes less 

tho: li~ed overhead. 1 he fhcd O\ crhead was 0.01 seconds. "hilc the ~ariable o' crhead was 

154 microseconds per byte of data. 

A problem \\ ilh these measures of other protocol O\erhead "as that the) included the 

merhe:1d of hoth <endinf!. :md rerciving p~ckets. We h~d no cmncnient w~r nf determining 

how much or this overhead the code that sent packets caused. and how much the code that 

received packets caused. We auributed half the O\Crhead to each. Attributing h:llf the cost 

to each probabl) underestimated the amount of time necessary to recei,·e packets. but for 

most or the calcul:ttions in this ch;qHer. a low estimate of the tunc needed to receive a p:tcket 

was a conservative estimate. 

Another interesting statistic was the amount of time a\ailable to non-interrupt driven 

routines when a packet came in rrom the serial line. This swtistic mc:ISured the time 

available for concurrent processing in the protocols. (:IS explained on rage 55). 13ccause of 

:1\ailable concurrent processing time. we did not e\pectthe protocols to take~ long to send 

ten packets from one personal computer to another ~nd back. as "e did to send one packet 

back and ronh ten times. In the former case the protocols r rorcssed and received packets 
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coiH:urrcmly. ~~hilc in the Iauer case the protorol~ mmpicLcly pnl\:csscd one incoming 

pa,kct and !lent a packet l>dorc lh~} \tarH:d to rccei1c the ne\t packet. In the Iauer C:ISC the 

prot01.-ob 11asted the :11ailable 1.'0ncurrcnt proce~~ing time. The a1ailablc concurrent 

proces~ing. time is equal to the di!Tercnce between the line SL. the :unount of time the 

packet 11as on the seri:1lline. and line I NT. the amount of time used br the interrupt driven 

cude th:ll processes incoming characters. and it appenrs in fable 6-1. 

6.1.2 I he \ laximum Data Tran~fer Test 

We ba<;ed a number of the stati5tics in Figure 6-1 :md Table 6·1 on estimates as 11CII as 

mca\urcmcnts. and 11e wished to double check the accuraq of these estimates. We dc1 iscd 

an e~pcrimcnt in which one lllivl Personal Computer sent large packets ;n a second as 

quick!} ;Is possible for ten minutes. Because the first personal t-omputcr t·ould send packets 

f:J;ter than its counterpart could recci1 c them. (the ..:nder did not ha1e to print characters 

on the screen). the fir..t personal computer kept the ~ccond one busy for the duration of the 

test. We counted the number of data packets that the second personal cnmputcr received. 

and the number of p:~ckets acknowledging data that it sent. Using these t11o numbers and 

the infom1ation pro\ idcd by Figure 6·1 and Table 6·1. 1\ c predicted the amoum of time that 

:1 pcr)\lltli contputcr IICI!I.kd 10 rccci\c :111d ~enJ thew p:uticul:1r lllllllbcr~ of p;ICkc~. I he 

closer this predicted time came to t•m minutes. the actual transfer time. the yreatcr the 

accurac} of Figure 6·1 and Table 6·1. 

'I he personal computer that rccei\ed dma originally offered a window of 4000 bytes. The 

sending personal computer filled this window "ith eight 500 b} te packets. and waited for a 

window update before sending more packetS. As the first packet of these eight packets 

arrived. felnet Internet and TCP hat! nothing to do concurrent!) with the interrupt driven 

code that received characters from the serial line. When the second and succeeding six 

packets arri1 cd. the higher level protocols h:td d;na to process concurrently with the 

interrupt driven rouunes. &cause the receiving personal computer did not update the 

11 in dow or acknowledge dma until it processed all the p~ckcts that had arrh·ed. (see Section 

5.6). :md because the sender could send packets fasttr than the r.:cci1cr could process them. 
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Tahlc Ci·2: l'r~dk:tcd I im~oftltc Maximum Daw rr.m~fcr Tcst 

Packets Sent: 92 Packets Received: 734 
91 full groups of eight packets and 1 partial group of 5 packets 

first Packet Received in Each Group 
Carriage Return Overhead 
Printable Character Overhead 
Other Protocol Overhead - fixed 

or Eight: 
CRO (500) 

• PCO (500) 

for incoming packet • 112 oor 
Other Protocol Overhead - Variable 

for incoming packe t 
Interrupt Or1ven Code Overhead 

ror 1ncoming packe t 
Available Concurrent Proc. Ti~e 

Total 

1/2 oov (500) 

1/H (500) 
ACT (500) 

Next Seven Packets Received in tach Group or 
Carriage Return Overhead 

Eight: 
CRO ( 500) 
PCO (500) Pr1ntable Character Overhead 

Other Protocol Overhead - fixed 
ror incom1ng packet 

Other Protocol Overhead - Variable 
tor incoming packet 

Interrupt Driven Code Overhead 
for incoming packet 

Total 

Packet Acknowledginq Oata: 
Other protoco l Uve,·head - fl>&d 

for outgoing packet 

• 

Time Packe t was on the Serial line • 

Total 

112 OOF 

1/2 oov (500) 

lilT (500) 

1/2 OOF 
SL (G) 

Time ror lhe Sanoing Porsonol Compu tar lO Process the 
and Starl Sending New Data: 

Other Protocol Overhead • fixed 
for incoming ACK packet : 112 OOF 

Ot her Protocol Overhead - Fixed 
for outgo1ng data packet 1/2 OOF 

Other Protocol Overhead - Variable 
ror outgoing data packel : 1/2 oov (500) 

To ta l 

92 First Packets • 106.3 seconds 
(734 - 92) Later packets • ~55.9 seconds 

9 1 Ack. Packe ts • 4.9 seconds 
9 1 Foreign Overheads • 4 . 4 soconds 

Total • 572.5 seconds 
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• 
• 

• 

• 

• 
• 

0. 1959 
0.3460 

0.0050 

0.0384 

0.1264 
0. 4434 

seconds 
seconds 

seconds 

seconds 

seconds 
seconds 

• 1.1551 seconds 

• 0.1959 seconds 
• 0.3460 seconds 

• 0.0050 seconds 

• 0 .0384 seconds 

• 0.1264 seconds 

• 0.7117 seconos 

• 0 . 0050 seconds 
• O.OJ90 seconds 

• 0.0540 seconds 

Acknowlcdg<'lent 

• 0.0050 seconds 

• 0.0050 seconds 

• 0.0384 seconds 

• 0.0484 seconds 

95X or 600 seconds 



th~ rcccl\cr on I) scm one ;u.Jnow lcdgm~nt for e1ery eight packets s.:nt I he pacl.ct that 

wntuncd the acknu" lcdgmcnt also olfercd the sender a nc11 -1000 byte "andow. ~nd the 

pmcc~ \tancd 01er again. n1~ rcceh ing personal computer rcceil~d 734 packets and sent 

n packcL~- We would actually on I) ha1c predicted that it would send 91 pacl.ets. one for 

eaclll'<lmplctc group of ci~ht packet~ rcceil eel. We ignored the c\lra packet in our figures. 

fahlc 6-2 ~h011s the results of this lest. We accoumed for 572.5 seconds out oft he actual 600 

~econcltransfer time (95%). which shows that our cstim::nes in Figure 6· 1 and Table 6-1 were 

fairl) accurate. This test also ~h011s the ma\irnum rme at which the personal computer 

protocols could handle large amounts of d;ua on a 9600 bit per second line. In ten minutes 

the personal l'Oillputcrs tmnsferred i 34 d;lla packets. each of" hich comamed 5470 hits of 

~~hich 4000 were data bi~ (500 d:lla b)tes) for a tot;tl transfer rJte of 6770 bits per second 

and an ciTccth c data transtcr r.nc of 4900 hilS per second. 

6.2.3 l'crformancc Limitation l'rcllictions 

We used Figure 6·1 and Table 6·1to predict the minimum amount of time th:llthc protocol 

sort ware needed to handle a screcnful or dow. lllc screen held 2-1 eight) character lines 

'cparatcd h) ~.l carriagc n:tunh. \ -,crccnfulllf dat3 rc<tuircd 1966 data h)tcs "hi.:h m: 

assumed "ould be sent in three p;tckcts ''ith 500 data b~tes. and one packet ''ith 466. We 

further assumed that the serial line speed was perfectly :~djusted to the software speed so 

that there was no :11:tilablc concurrent processing time. i.e .. that lines SL and 1:--JT in Figure 

6.1 OI'Crbpped. From these assumptions ~>e concluded that the protocol soft\\are needed 

about 2.8 seconds to receive a screenful of data. (Table 6·3 gives the details of this 

calculation.) This implied that for a screcnful of data. the protocols have a ma.\imum total 

tmn~fer rate (data and header) of 7700 bits per second. and a ma~imum effective dnta 

tmnsfer r.tte of 5600 bits per second. 

We ~•m also break down the O\erhcad for a screcnful of data into itS ~'Omponcnts. When we 

do this \IC lind that the speed at which the tem1inal emulator rouunes Mite data on the 

<;ercen is the factor 1\hich most limits the handling time for a screenful of data. The)' need 
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I aiM 6·3: i\.linimum Time Needed 10 H~ndlc ~~ Scrccnful of Oata 

1966 characters/screenf ul (1920 printable and 23 carriage re turns ) 
3 packe ts of 500 bytes. I packet of 466 bytes. 

Minimun Overhead for Incon1ng Packets W\th 500 Data Bytes: 
Carriage Raturn Overhead • CRO (500) • 0. 1959 
Printable Character Overhead • PCO (500) • 0.3460 
Other Protocol Overhead • F1xed • 1/2 oor • 0.0050 
Other Protocol Overhead · Variable • l/2 oov ( 500) • 0.0384 
Interrupt Dr1ven Code Overhead IIH (500) • 0.1264 

Tot a 1 • 0.7117 

M1nimun Overheaa for lnco~ing Packets with 455 Data Bytes: 
Carriage Return Overhead • CRO ( 466} • 0. 1325 
Printaole Character Overhead • PCO ( 465) • 0.3225 
Other Protocol Ove rhead · Fixed • 1/2 oor • 0.0050 
Other Protocol Overhead • Variable • 1/2 oov ( 466) • 0.0357 
Interrupt Driven Code Overhead • lUI ( 466) • 0. 1185 

seconds 
seconds 
seconds 
seconds 
seconds 

seconds 

seconds 
seconds 
seconds 
seconds 
seconds 

To ta l • 0.66•2 seconds 

3 Packets with 500 Da ta Bytes • 2. 1351 seconds 
t Packet with 466 Data Bytes • .6642 seconds 

Iota! • 2.7993 seconos 

2.13 SCl'Oillb to Illite 19()6 bytes Oil till! :>ereen. ( rhis li!lU re is LhC 1:arriagc I'Cllllll lWCrh~:td 

and printable char;tcter 01 crhcad of three 500 data b) tc packets and one 466 da1,;1 byte 

packeL We double checked this figure ~>ith o. simple program that primed a 1966 byte 

t:ha ractcr array on the screen nne dement at a time.) ·ntus no maucr how fa,L 11.: make th.: 

rest of the code. the 1/0 routines "ill pre1em the remote login proux:ol from handling a 

screenful of data at a speed faster than 7400 bits per second. 

The terminal emulator and 1/0 code for the personal computer is well ''riucn. lmpro1ing 

them enough to make a significant change in the handling time for a screcnfulof data would 

be difficult. We should mostly auribute the 7-100 bps figure to the limitations of the of the 

personal t'Omputer"s microprocessor. 

Annther interesting statistic is the nw\irnum transfer rate that we would expect if we 
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rcplacctlthc ~erial line and interrupt dri1cn 001k 1\llh a fa;,tcr net1101'k wnncction. We can 

find an upper bound on this ligur.: h) adding the ctrriag.: return 01erhe:1d and printable 

character overhead to half of the li1cd and 'ariabk protocol 01 crhcads lor three 500 data 

b}•tc packets and one 466 dat;a b} te packet. I h;: total o1crhcad comes to 2.30 seconds. 

imp!) ins a ma~imum transfer r.tte of about 6800 biL~ per second. 

From our estimates of the ~reed :11 11 hich the interrupt dri,cn routines th:n fetch bytes from 

the serial line run. 11e can prctlict the m:u.imum r:atc at 11hich the intcrmpt drhcn routines 

can rccehc packeiS. Since the a1erage b)te takes ~31 microseconds to process. we e\pcct 

the interrupt driven routines to drop bytes if the b) tcs came in over the serial line at a rate 

faster than 43.000 bits per second. In fact we c~pect the intcrn1pt ciriven rou tines to drop 

bytes at rates substantiall} beluw thts because some bytes take longer to process than 231 

microseconds. In practice the interrupt dril en muun.-s did not recei1 e any packets correct!) 

at 43.000 bps. and they recehed onl) half of the packets correctly at 38..100 bits per second. 

a speed 11 l1ich pro' ides 260 microseconds to procc~> each b) tc. I hey did not correctly 

receive 3% of the packets at 2&.800 hits per second. "hich supported the t'Onclusion that a 

few byt~s took longer than 347 microseconds to process. (incorrectl) received packets ore 

packets" hose checksum lield does not match the computed checksum.) 

6.2.4 Charncter Echoing Time 

Section 3.1 showed that the amount of time a remote login implementation takes to echo a 

character tS an important m~asure of its pcrfonnance. Between tl\0 IBM personal 

computers. the echoing time is the amount of time necessary for a packet "ith a single data 

byte to go from one personal computer to another. and back to the first. The character is 

printed on the screens of both personal computers. Table 6-4 shows the character echoing 

time at various serial line ~l)eeds. 

The columns or Table 6·4 labeled .. Predicted rimes .. show predicted character echo times 

de rived from Fig.urc 6· 1 while the columns marked .. E~perimental Times .. show the resu lts 

of a ~pccial test in 1\hich 1000 character echoes were nm one ;~Iter :mother. and the result 
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T:1hlc 6·-l: Character Echoing Time bct"cen T"o Personal Computers 

Overhead Uot Dependent on Line Speed - One Way 
(One Packet with a Single Da ta Character ): 

Pr intab le Characte r Overhead PCO (I) • 0.0006 seconds 
Other Protocol Overhead - fixed 

both inco~lng and outgoing • oor • 0.0 100 seconds 
Other Protocol Overheaa - Variable 

both lncom1ng and outgoing • OOV (I) • 0. 0002 seconds 

Total = 0.0 108 seconds 

Overhead Not Dependent on Line Speed - Round Trip: 
• 2 • One Way Overhead 0.0216 seconds 

One Packet with a Single Da ta Character has 480 bi ts . 

One Way Li ne Time • 480 bits I Li ne Speed 
Round Tr ip line Time • 2 • One Way Line Time 
Total Round Trip Ti~e • Round Tr1p Line Ti~e 

line 
Speed 
(bps) 

-1.800 

9,600 

19 . 200 

23.040 

• Rouno Tr1p Overhead ~ot Dependent on l1ne Speed 

Predicted T l~es I 1 Experimental Times 
I line Tine I Tota l Tine II Total Tine 1 lotal lime Minus 
1 Round Tr1p I Round Tr1p II Round Trio 1 Predicted line Tine 
I (seconds ) I (seconds) I I (seconds) I (seconds) 
I••••= =====• •I••======•• ••J! ===== ••••= == I===• • • •= ==== ==••• •e•=l 
I 0.2000 1 o.221s 11 0 . 2222 1 0 .0222 1 
l··--------·- l- ·--- ----··-ll---- ------· - 1--- - - -------·· -----·· l 
1 o. 1ooo I o.1216 II 0.1219 1 o.o219 1 
1- ---·--- ---- l ·-- ----- -·-- ll ·---------·- l-- ·----------- ------- l 
I o.osoo I 0.0716 II 0.0718 1 o . OZ18 I 
l------------1·-- --------·l l · ---- --·-··-l -- ·-·----- -----------l 
I o.0 41G I 0.0632 II 0.0638 I 0.0222 1 

\\ ;LS di' ided by 1.000. Notice that the predicted and e.~ perimental values in the columns 

labeled "Towl Time Round Trip" are quite close. 

Table 6·4 shOw!> that most of t.he character echoing time is due 10 !>erial line overhead. The 

protocols spend only about 20 milliseconds processing the packets c.\clushe uf processing 

rclmed to the serial line. If "e oould replace the serial line" ith a f:IStcr nel\~ork connection 

\\C might impro'e performance by up to a factor of t.hree compared \lith the current 

performance at n serial line speed of 23.040 hits per second. 
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6.1.5 I land ling rime for :1 Screenful of Data 

Section 3.1 also memioned the impon~nce uf a l>Crccnful of d:ua to a I cln~t connection. 

Table 6·5 shows predicted and e~perimental va lues of the handling time for a screenful of 

data tmnsferred bCt\\CCtl two personal computers. rhc times sho\\n in fable 6·5 measure 

from the instam ju~t before the prutOculs pnnt th~ first character of the screenful on the 

screen. to the in~t.1nt just after the) print the last character on the screen. These 

measurements do not mcludc the time the first p;td.et in the screcnful 'pent 1lll the serial 

line. or the time the prowcols spent processing the lirst packet before thC) printed the first 

character on the ~crcen. We chose to rncasur~ the hnmlling time fnr a scrccnful of data in 

th is way bec:msc "c were interested in measuring the performance of the personal computer 

protocol code rather than the perfonnance of the fnreign hosLS or the p~rform:mce of the 

interconnecting networks. 

ro predict the handling time for a sereenful of data used a diiTcrent method at serial line 

speeds of 9600 bits per second and greater. from thm used at 4800 biLS per second. Section 

6.2.3 showed that at speeds greater than 7700 bps. the software O\erhead limits 

pcrform:mce. At these ~pceds. the protocol !.Oft,, are docs not ha'e to ''ait for data because 

the ;1\ail:tble concurrent processing time is less umc than the protocols need to process the 

incoming data. \\ e calculated the predicted O\Crhead at these speeds from the amount of 

time the protocols need to process the packets containing a screen ful of data. At a serial line 

speed of 4800 bps. the time that the protocol software takes to process a packet is less than 

the time that the pat~ct bun the serial line. :.o sume ~''ailahlc tun.;urrcnt processing time 

goes unused. and the time a packet is on the serial line affec!S perfomtance. At 4800 bps. the 

screenful handling time is f01md b) adding the time that the packeLS are on the serial line to 

the time needed to process the last packcL (The protocols process each of the other packets 

,.,hile iLS successor i~ on the serial line.) 

The differcm:e between the predicted and experimental values of Table 6·5 can be only 

panly e~pbined b)' clock inaccuracy. At ~peeds of 9600 bps and above. the two sclS of 

\alucs ditTcr by bet,•cen t\\U and three clock periods. We appear to ha\e merlooked some 

factor in calculaung the prcdict.:d 'alucs. lltc large diiTcrcnt:e bet\\eCn the predicted and 
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T:thlc C··5: I ime 1\ccJt.'d to Handle a Scrccnful of Data B..:t\\CCn I ''o PCs 

A. Precicled Overhead nt Speeds Where Protocol Overhead is the Bott leneck 

ltme spenl processing first packet afltr rlrst character gets 
prin.ad: 

Carriage Return Overhead • CRO (500) 0.1959 
Printable Character Overhead • PCO (500) = 0.3460 
Other Protocol Overhead - Variable • liZ OOV {500) • 0.0384 

Tota 1 = 0.5803 

Ove rhead not Dependent on Line Speed for Remaining Incoming 
Packets with 500 Data Bytes: 

(See Table 6.3) = 0.7 11 7 

Overhead not Dependent on Line Speed for Final Packet With 
466 Data Bytes: 

(See Table 6.3) = 0.6642 

Total Overhead at Speeas Where Protocol Overhead is :he Bottleneck 
I ftrst 500 Gala byte packet • 0.5803 seconds 
2 rema1n1ng packets wtth SGO data bytes • 1.4234 seconds 

final packet with 466 data bytes • 0.6642 seconds 

Tot a 1 • 2.6679 seconds 

seconds 
seconds 
seconds 

seconds 

seconds 

seconds 

B. Predicted Overhead at Speeds Where the Serial Line is the Bottleneck 

Iota! lime ~pent on the Ser1al Line • Paclet Stze I 
500 data byte packet (5~70 total btts) at 4800 bps 
466 data byte packet (5130 total bits) at <BOO bps 

Line Speaa 
' 1.1396 
• I. 0688 

seconds 
seconds 

Time to process a 466 data byte packet exclusive of Serial Line T1me: 
Carriage Return Overhead • CRO ( 466) 
rrintahle Character Overhead • PCO (466) 
Other Protocol Overhead - Fixed • 1/2 oor 
Ot her Protocol Overhead - Variable • 1/2 oov (466) 

Total 

Total Overhead at 4800 bits per second: 
lime second packet is on the ser1al line • 
Time third packet IS on the ser>al line • 
Time final packet is on the ser>al line • 
lime to process the final packet 

I. 1396 
I. 1396 
I. 0688 
0.5457 

= 0.1825 seconds 
0. 322!; seconds 

• 0.0050 seconds 
= 0.0357 seconds 

• 0.5457 seconds 

seconds 
seconds 
seconds 
seconds 

Total • 3.8937 seconds 
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r,thlc 6·5 (Cu11t.) 

C. Comparison or Preo1cted and E~perimental Values 

I L1ne Speed I Pred1cted ValJe 1 E~per1mental Value 1 
I (bits per second) I (seconds) 1 (seconds ) I 
r~s••••••==== ====··· l ==== ====·····=== = l = ===·····==== ====···l 

I 4. soo I 3. 89 I 4. 62 I 
1-------- ----- ------l-----------------l·-------------------l 
I 9.6oo I 2.67 I 2.82 I 
(------ ------- ------(----- ------------1--------- ------- ----l 
I 19.200 I 2.57 1 2.83 I 
(---------- --------· (·-------- --------l --------------------1 
I 23.040 1 2.67 I 2.84 I 

the C\pcrimental \aluc ;u -1800 bps has <Ill allernativc e\planation. At this speed. the low 

level protocol had some bu~ that caused the receiving personal computer to be 

unsut-ccssful in sending packcLs that arknowledg.cd duta. rypic;~ll)'. timc·outs would occur 

in four out of five tests at this speed. ;md 11hilc Table 6-5 sho11s the results oft~ts that did 

not time out. the) probably came close to doing so. 

6.J Tc~ l s .\cross a 1 cl11ork 

llle te!>ts in I his sec1ion illuSifate 1he performance of the remole lug in protocol "hile it 

rorn tnun tc;ttcd with mm:luncs on v<tritHI~ local nctwot ks. 1 hesc arc the macl1 incs with 11 hich 

the protocol 11 ill be used in practice. 

A charncteristic of nell\ork communication is that its perfom1ance can nuoua1e 

signi fkamly from one momem to 1he nex t. A network mal experience a particularl y heavy 

load in one instant. thereby dcla~ing or losing packets. and work perfectly 11ell the next 

msLant. A foreign host may process a request for information slowll when three of its users 

simultaneously try to compile IJ rge programs. but "ill respond much more quickly when 

they nnish. ll1c statistics in this section will tend to show best case rather than average case 

perlormance. because 1~c ''ish to illustrate how well the personal computer protocols can 

11ork rather than how poor!} the net110rk or foreign hosts can re~pond. We generally used 

the :11craging technique with probabilistic accur.tC)' rather thnn the technique with 

deterministic accuraq• (sec Section 6.1l bcc~usc this npr>ro:tch ullowcd us to ignore non· 

optimal data 
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Figure 6·1:Character h:hom!! l'~rlnmwncc "ith CSR 
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6.3.1 CSR: A Sample Foreign Host 

At this point we shall ocscribe mcasuremenlS on a connection with one particular foreign 

hosL CSR. 10 illustrate the son:s of problems that 11e faced in interpreting data from 

connections 11ith foreign hoslS. CSR is a PDP·ll/-15 11ith a Uni' operating system that 

belongs to 11ha1 was once the Computer S}Stems Rese;~rc:h Group. CSR a11aches to a 

10 Mbit ringnet which in a gatew;ty in tum connecLS to the 1 l\lbit ringnet of which the 

packet conccntmtor is a member. 

Figure 6·2 shows the rcsullS of 100 indi1ioually timed character echo tests on a connection 

between an 111M Per..onal Cumputa ano CSR. We used the e1cnts that tool. three or four 
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dock pcrioJ~ at 9(,00 hps or L\\O or three period; at 19.200 hps to calculmc the best case 

times. We a»umcd that the other c\ cnts non-optimal conditions delayed the mher events. 

anti we ignored them. 

X X 

2.0 

Figure6·3:Handl ing Time for a Screenfut of Da ta from CSR 
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Figure 6· 3 sho"s the results of ten indi' idually timed tests for measuring the h<tndling time 

of a 5Crcenful of data. fhc number oi retrnnsmissions ll1a1 ''ere n~-ccssaf) 10 get the dat.a 

from CSR to the personal computer e~plains the clumping within the data. Tests which 

took about th ree seconds c~perienced no retransmissions. test which took about seven 

seconds e~pcriencctl one rctransmiosion. anti tests 11hich took about d~\cn ,c,ontls 

experienced two retransmissions. Various loads on the network and CSR probably caused 

the differences between tests within clumps. We found the best case times for this type of 

test by taking the C\ent with the lo11esttime at each serial line speed. 

The large number of retransmissions was due to a bug in the packet concentrmor. Whenever 

multiple packetS came in to the packet conccmmtor in quick succession from a foreign host. 

the packet concentrator often dropped packetS other than the lirst. Increasing the number 

of packets in the succession or dccre:lSing the M:rialline speed incrca~etlthc chances that the 

mnccntrator "ould drop a packcL This was not a problem for the character echoing test 

>incc it :.ent packetS one at a time. 
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fnhlc 6·6: Character Echoing Performance With Various Foreign HoslS 

1 Foreign Host 1 9600 bps I 19.200 bps I difference I 

(:::::: ••••••••• l•;::;::;;:;ai:•••••••••==J============J 
1 IBM PC • I 0.122 sec. 1 0.072 sec. I 0.050 sec. I 
1---------------···----·------- ·----·------------------l 
I CSR 1 0.175 sec. I 0.128 sec. I 0.047 sec. I 
1---------------·------------+------------·----------- -l 
1 Co:net 1 0.196 sec. 1 0.136 sec. 1 0.060 sec. 1 
1-------·- ------+------- -- -·-·------------·------------l 
I XX I 0.2 12 sec I 0. 161 sec. I 0.05 1 sec . I 

1--- ------------·---------- --·----------- -·- --- --------l 
I Multics I 0.382 sec I 0.325 sec I 0.057 sec. I 

• The packet concentr•tor was not used between the 
two 181~ Personal CoG>puters . 

6.3.2 Character Ecl10in~,: Performance 1\ilh Variou~ Foreign lloSIS 

Table 6·6 shows the charncter echoing performance with vmious foreign hostS.7 

Significant!}. the echo time with many hoslS \\;IS under 0.25 seconds. and in one case was 

under 0.1.5 ~mds. a lc1el of perfonnancc that most u~rs "ouiJ lind rca<;l)n:tble. We 

included a connecuon between two IBM Personal Computers for reference purposes. 

Although we did not expect to be able to predict !he eAact character echo times for !he 

foreign hoslS. we did c.\pctt that for tile sam.: foreign host. the tlii'J'cn.:m:c between the time~ 

of lcs!S at different ~rial line rates would be oppro~imately constanL The amount of time 

saved b)' speeding up the serial line interface should be independent of the foreign hosL 

Table 6-6 con finned this e~pectation. 

' 'Comet"' a Oo~ual \A \/750 nonning Lnix. X>.",, Oo~it:ol O[C S)>1cm·20 runnmg lu!l'·20. Muttics is a 
I hme)"<lllnrumt.oloun ~\\1<111>~/liO nonnong t.luhoo. anJ "h~eh we <K,:e>:.<d •·talh< ARPANI:T. 
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T;~ blc fi·i : Handling I im.: li1r a S~n.:~nl"u l of Dala from Various f-oreign Hos1s 

I Foreign Host 1 pred1cted 1 9600 bps 1 19.200 bps 1 
1···· ·=== ====··· 1···=·· ·=·· ·· 1···=========1========·===1 
I IBM PC • I 2.6 7 sec. I 2 . 82 sec. I 2.83 sec. I 
j------··-----·-·--···--· ·----·-----------+·---···--·--1 
I CSR I 2.67 sec. 1 2.80 sec. 1 2.9 1 sec. I 
1···---- -- -- ----+---··- --·--·+·--··-------+··--·-------1 
I XX I 2.77sec . J I 3.19sec I 

• = The packet concentrator was not used between the 
two IBM Personal Computers. 

6.3.3 llantlling Time for a Snccnfu l of I >:I ta From Va rious Foreign llosts 

Table 6·7 shows predicted ;md actu31 handling times for a screenful of da1a from various 

foreign hostS. We assumed that the foreign host.s could send packets fi1Ster 1han lhe 

personal complller could process incoming packeiS. i.e .. thm the foreign hosiS could send 

packetS at a rate faster than 7700 bits per second (see Section 6.2.3). and c~pected that lhe 

personal computer software overhead would limit scrccnful handling performance just as 

was the case with transfers between two personal computers. We thus used the same figures 

tu predict p.:rlonnancc bct11c.:n :t personal wmputer :111d a !(.>reign hosts tha t "c used to 

predict perfom1ance between two personal computers. 

CSR sent a scrcenful of data in lour packeiS. exactly the same number of packets as one 

personal computer sem to the other in the tests between two personal computers. TI1us we 

expected the handling time for a screenful of data between CSR and a personal computer to 

be very close to the hand ling ti me between two personal computers. Table 6· 7 confim1ed 

this expectation. 

Foreign hostS other than CSR sent each screenful of dat:l in more than lour packets. XX and 

Multics sent a screenful of datn in about eight packets. whi le Comet used more than twenty. 

These large numbers of packciS reacted unfavorably with the bug in the packet 

concentratOr. and prevented us from receiving a screenful of d:na from most of these hosts 
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1\ithout rcmlltMnbsions. I he on I} add1uonal host from "hich we could obwin ligures was 

;._\\\hen the sen;1llinc speed ''as I? .. WO bps . .X>. '><:JH a scrccnful or data m eight packets. 

We therefore expected a pcrsomtl computer to wke somcwh;~t lllngcr to handle a screcnful 

of !law from :-.>. than from CSR or another personal computer. Table 6-7 ;also confirmed 

tlu;, c~pcctation. 

lhe numlx:r of packets that a host uses to send a scrcenful or data is imponant for reasons 

other than its interactions with the packet conccntr.uor hug. 13 ... 'Causc foreign hosts send data 

to the packet concentr.nor faster than the packet concentrator s~nds packets to the personal 

computer. the packet concentr.nor may run out of ~pace and drop packets if the foreign 

hosts send-. the packet concentr:uor too man) packets. Droppmg packets "ould force the 

foreign host to retran~mit the packets which \\Oulu slow down ~'Ommun icmion. This 

problem i:. not just idle spccul:nion. Comet uses more than twenty p:1ckets to send a 

scrcenfulof data. Because Comet sends these packets to the packet concentrator much faster 

than the packet concentr.1tor sends them to the personal computer. packets back up at the 

p;~cket conccntrntor. T"emy packets is a large enough number to cause the packet 

conccmrator to run out of packet buffers. and throw a"al some packets in the scrccnful 

thus forcing Comet to retransmit the packets. (e,·en if it did not have to rctnmsmit them due 

to the bug in the packet concentrator.) 

This problem of dropped packets highlights two fundamental problem with the TCP. FirsL 

the TCP now control mechanism aiiO\\S impl.:ment:nions to specify onlv roughl)' the 

ma\imum amount of information that they can handle. A local TCP implementation 

specifics its window in data bytes. but if the foreign host sends data in small packets. then 

the amount of data that the local low level routines must handle m:1y be signincantl)' greater 

than the amount ad,eniscd by the local TCP window. For inst.1ncc. if a foreign host sent 

each byte ofTCP data to the personal computer in a separate packet. the lo" lc,cl protocol 

on the personal comruter will handle fony-cight bytes for every byte of TCP data 

Fortunately. reasonably intelligent fCP implementations that try to send data in packets 

that arc as large as possible <.~tn minimi1c this problem. 
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A ~contl problem II ilh rcr is Lh:ll it provides no mechani~lll for con~cstiun t'(llltrol. C\'C il 

if the m:1chincs on bnth ends of a et>nncction c:~n keep up 11 ith the 11011 of data. the nO\, 
may still 01cna\ some imermediate machine. and cause it to perform poorl~-. Comet 

01enn~es the packet concemrmor in e~actl r this way. The link between Comet and the 

packet conccmr:Hor is much faster than the serial line bcmccn the packet concentrator and 

the personal computer. llle packet concentrator c:~n not get rid or packets as fast as it 

rcceii'CS them. anc.l it sometime nansuut of packet buffers and drops p~ck ets. 

If 11 e make the personal computer's 11 in dow su fficicntl} sm:tll. the packetmncentr:Hor will 

not run out of butTers. Comet sends packe!S wilh about eight~ b} tes of data. If the personal 

mmputcr TCP advertises a 2-10 b} te window. then Comet 11 ill on I) send four packets at 

once. just like CSR. Unf011unately. a 2-10 byte window implies that the 11indow must be 

updated eight or nine times for the personal computer to rccei1e a !>Creenful of data. Eight 

or nine windo11 updates increase the time needed to rccci1e a screcnful of data. :Jithough 

not by as much as 11:1iting for retransmission timeouts. Making the TCP '' mdow size 

dependent on the foreign host is I'Cry unmodular. Wh} should the window si£e of the 

personal computer TCP depend on the number of buffers in the packet concentrator'? 

Cunge~tion control i~ a 11 ell ~11u11 n mul diflicult problem in the lick! uf intcrnctwOI k 

communication [13] [1·1]. A way to prevent congestion :n the junction of 1011 speed and high 

speed networks is of panicular impon:mce to us and is a topic for future research. 

6.3.4 Memory Size and Code Length 

In the Introduction of this paper. 11e suggested that the limited memo!) size of desktop 

personal computers might affect the performance of an imemet remote login protocol. In 

fact. the memory size did nm affect perfom1ance. The memory of the lllM Personal 

Computer was sufficiently large that we never had to 110rry about space in the 

implementation. In wme cases our implementation was actually ~pace intensive. Our 

butTering strateg)' for OUL·of-sequence TCP data is an example. 

T:1ble 6·8 sh011S the code length of 1arious modules used in the personal computer 
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I :thlc 6-1!: Code Length ot \arion:. ~lodules 

Module Code Leng~n (by~es) 

letne~ 

TCP 
ln~ernet 

LLP and Packet Manager 
!asking 
C Stanoard f/0 library and 

Heath 19 Ter~ln al Emulator 
C Runtiwe System• 
Operat1ng System Area 

Total 

: 3.156 
: 5.396 
: l . 112 
: 4,868 
: 432 

: 9.068 
282 

• 256 

• 24.470 

»o~e: • Tne C runtime system starts C programs runn1ng on tne IBM Personal 
Computer and in1t1allzes the Standard l/0 L1brary. 

protocols. The code for the entire remote login implementation occupied under 25 K B of 

memory. The "Giob<tl ;md Static Variables" ponion of the data !.l:gmcnt (sec Figure 5·2) 

w:ls 49.584 b) tes long. or this. the TCP Olll·of·scquence data buffers took up ~0.480 bytes, 

and thiny·two 704 byte p<tcket buffers used 22.528 b)•tes of space. Task comrol blocks, task 

stncks. and the main program stack used additional memory. Thus the entire remote login 

package needed about 80 K B of memO I"}. and it could ha\·e fit in a 96 K £lor 128 K B system. 
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Chapter Seven 

Conclusion 

7.1 Su~estions for lmpro1ement 

The first improvement we would make to the impl~rncnt:nion dcscriht:d h) this thesis 11ould 

be to rewrite Internet so that it used tasking and mn as the lOll level procedure in the 

network task. Such a modification would mnke it caS) for Internet to demultiplex packets 

among 1arious client protocols and to handle fr.1gmented packets ;md Internet options. 

With the current system. if t\\0 protocols mn on top ollnternet. both 110uld ha1e to poll 

Internet on an incoming packet signal. On!} one client protocol 11ould actual!) get 3 packeL 

or perhaps none 110uld if the incoming packet were a fragment. Unsucc~llSful polling wastes 

time. If Internet were nt the top of the network task. it l'OUid call the ;~ppropriate client 

protocol. and all its other clients "ould not h:l\e to run. If only a fragment came in. Internet 

could put it into a fragment buffer and ''ould not t';lll 3 client at all. 

II lntcrnctl'UuiJ tdl I Cl' the number of packcb that :trc 1\aiting 111 the u~cd queue for the 

network task to process them. TCP could update the windo" when the the protocols had 

one incoming packet left to process rather than zero packets. Updating the window earlier 

would allow the fi>reign TCP to send more packets before the person;~! computer protocol 

actually mn out of packets to process. rhis would increase the amount of concurrent 

processing within the remote login implementation. It would also soll·e the TCP lock step 

problem described in Section 5.6. 

l11e tasking package also has room for improvemenL To block, a procedure must call a 

blocking routine in the tasking package in order tt> give up control and allow a new process 

to run. We wrote this blocking routine in C. and it is five lines long. It c:tlls a routine written 

in .L<;Scmbl) langu;tgc to actual!} swap the old and new stack pointers. Sw<tpping tasks thus 

requires two procedure calls. If we "rite the blocking routine entirely in assembly language. 
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the code to ~11;~p ta>ks multi he l..~>mhincd in111 a 'inglc proLcdurc. a prnn~~ Lh:tl IIUIIIJ 

su b~w nti;~ll) rcduc:c tl1e 01 crhcatluf swapping t ;~sks. 

Another LISk ing improl'cmcm 110uld be to allo11 the p:m ofTCP that sends packets to run 

in more than one task. rclnet wo11ld call it :1s a procedure in the user ~a:.k 11hen the user 

types a character. but it wnu ld run m the send task "hen the rctr:msmission timer went ofT. 

Only one task would ha~c to run li1r m:111y outgoing packct.s rather than two. These two 

impro"crnenL~ would climin:ttc most of the l'el') small ellicienq ad1ant:tge that the 

procedure-based scheduling has 01er tasking. 

From the 11ser'~ standpoint. the ideas pr~entcd so far in th is section would have only a 

minor ciTcct on protocol performance. Arc there an) changes th:1t 11e can make to 

substantially impro1e performance? 

One idea is to replace the personal computer serial line interface. which Lnkes one interrupt 

for each by te that traverses the serial line. with an Ethernet8 or other high perfom1ance 

netii'Ork interface that takes a ~ingle interrupt per pncket. Table 6·4 suggests that character 

echoing time between two personal computers is mostly serial line time. A high 

perfnm1ance interf.1ce "'uld unprme the ,·haracter echo times between tllo personal 

computers b)' as much as a factor of two or three. ll1e relati1·e impro1·emem would be 

somewhat less with character echoing from foreign host.s. since proportionately less of 

foreign host echoing overhead is serial line overhead. Ho11ever. improvements with foreign 

hosts" ill be in the r.mge 111 whu.:h the user most notices penormunce impro1ements. 

A high performance network intert:tce would not greatly improve the handling time for a 

screenful of data. Section 6.2.3 shows that replacing the serial line with a perfect network 

interfnce would decrease the handling time for a scrcenful of data from 2.8 S<."conds to 2.3 

seconds. Ma~ing the protocol~ more efficient ulso s..>ems to be a hard way to impro1•e the 

handling time for a scrccnful of data since the protocol larcrs accoumed for less than 

0.2 seconds of the towl 2.8 second h:tnd ling time. 

8nllcm(IIS d tr-.xlemarl or the \C!O\ Corpor-Jiion. 

75 



Grc;nl} 1mpro1 ing h;mdlinr. tunc for'' <,erccnfulnf dat.l pruhabl) b not p<h .... iblc. rhe l/0 

rou tines c;nt only print data''' a rate of?-100 hits per second. (Again. sec Se~:uon 6.2.3.) The 

1/0 routines seem to be rcasonubly efficient. ll1e pcrsonnl computer's processor speed 

appears to be the factor limiting the handling time for a screcnful of data 

7.2 Tutlics for Further l~esearch 

The previous section suggcsll. a mnnhcr of areas for fun her research. Will the addition of 

an Ethernet card to the IB1\I Personal computer impro'c character echoing pcrtonnance but 

not the handling time for a scrcenful of data? Is the speed ~~ith which a personal computer 

c.~n perform tenninal l/0 an imponam criterion for choosing a personal wmputer for a 

remote login implementation? Our research suggcst5 :111innathc ans"ers to both of these 

questions. but these answers should be con !inned. 

We spent a lot of time in this lltcsis discussing t11~ relall1c ments of tasking ;md procedure­

based scheduling. lluilding a remote login implemcmauon using a procedure-based 

scheduler would he the best wa) to lind uut all the details ofho11 such a S}stem works. 

The lllll'lt difficult que~! ion roscd by !his thesis b ho" 10 control congcsl i<)n so that a high 

speed network does not swamp a machine connecting it to a low speed network. This 

question is a part of the genernlly unsolved problem of controlling congestion in and 

between computer networks. 

7.3 Summary of Results 

The perfommnce measurements of the 113M Personal Computer Tclnet implementation 

presented in Chapter Six show that a desktop personal computer can suppon an efficient 

internet remote login implcmcnt:nion with the same protocols used by large mainframes. 

The speed "ith "hich programs run on small computers often determines the programs· 

utility. We therefore built the remote login protocol; to run as quickly as possible. We 
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followed a number of strategies tnward this end. I he TCP implementation was wilored to 

the spedf1c needs of the 'I clnct remote ll>gin protocol. This ctwblcd us to simplify the 

complic;tted TCP protocol in" number ofwa)S that allm1ed its implemenwtion to run more 

quickly. The ':uious protocol l:t}ers shared the 01erh~.td of as}nchronous action. In this 

way. the layers were often able to share packets and ~end one packet instead of two. The 

layers sh;~red data as much :ts possible to prevent the overhead of excess copying. 

A f;~ctor particularly imponam to the speed '' ith which the implemelll . .'llion ran was the 

mechanism used to pass control betl•een the protocol layer modules. A mulli· layer remote 

login protocol that handles asynchronous events in more than one layer needs multiple 

threads of control to eflicicntly and modul<trly process data. We proposed two methods of 

structuring t'lliHrolthat ;~llo,,cd multipli! threads. One of these methods.t:tsking. employed 

a combination of procedures and processes to structure control 11hile the other method. 

procedure-based scheduling. u~ed a top le1el scheduling module that employed procedure 

ca lls e~clusively. Both methods t-ould have formed the basis of an cfliciclll implementation. 

1l1e procedure-based scheduler 110uld have run marginally faster. Tasking was the more 

OeAible option. but the remote login prmocol did not need the added OcAibility. We chose 

tasking for the demonstr.llion implementation to presene consistency bct11een the personal 

computer protocol and a number of other local implemenwtion~. and because its udded 

nc,\ibility might be handy for implementing other protocols on the personal computer in 

the future. 1l1e demonstration implementation showed that a tasking package could run on 

a personal computer. 

Overall. we were pleased with the performance of the demonstr:nion personal computer 

remote login protocol implcmenwtion. On a Tel net connection between two IBM personal 

computers connected by a 11irc. the round trip delay time for a single character was 0.072 

seconds at 3 serial line speed of 19.200 bits per second 11hile the handling time for a 

screcnful of data could wa!> under three seconds for an effccthe dala tr.msfcr rate of Ol'er 

5000 bps. The character echoing times to other locul t-omputcrs were as low as 0.128 

seconds. while screenfuls ol' d.1ta Clluld be tr.111sferrcd in as linle as 2.9 1 seconds. 
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I he '>Pc~d or thl! ~rial fine imcrl;"c: "a' th~ p.:rforrnnnt<! boulcn..x·~ fnn.x:homg cha rartcrs. 

A more cffiticm network interface n11gln improH! the lharacto:r c:chomg time b) a> much as 

a factor of t\\O or three. llte spL'I)d '' ith "hich the processor l'Ould pcrlimn 1/0 limited 

performance when the prmocols proco:~cd brgc amounts or dnta 

1 he personal computer protocol implemcnUiliOn used :tbout 80K 13 of 111CI110r)'. lltc 194 K fl 

memory si7c or the 113M Pcr;onal Computer was su fficicmly l;1rgc that it diu not pose any 

constraints on our implcmenwtion. 
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