
I
I

A SECURE AND FLEXIBLE MODEL OF PROCB$$ INITIATION

FOR A COMPUTBR UfJLETY·

Warren Alan Montgomery

June 1976

The research reported here was supported in part by the National Science
Foundation, through a graduate fellowship, in part by Honeywell Information
Systems !no., and in part by the Air Force Information Systems Technology
Applications Office (ISTAO), and by the Advanced Research Projects Agency
(ARPA) of the Department of Defense under ARPA order No. 2641 which was
monitored by ISTAO under contract No. F19628-74-C-0193.

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

MASSACHUSETTS 02139

Aclcnowlectgements

I would like t1o thank some of the people who helped in this re.search. I
would like to tlank professor Sal tzer, my thesis supervisor, for help in
definin~ the to.pio ·en<~ cut~ tlarouahOUt tM .~Jtrojeet. .>Hally of the members
of the Computer Systems Reaee.rcb ~~ pve helpf~a~l suggestions as the ideas
for this thesis weN .beginn1ai :to fcmt~~ . Ken Pottr.an and Doug Wells of the
Computer Systems ltesearoh goup. and Paul ·Green of Honeywell Information
Systems provided great assistenoe 1n the deai,gn and debugging of the · test
implementation. !1-ofeseor M. D. Schroeder, and Dr. D. Clark provided many
valuable suggestiOOIB on drafts of aoae .or tbe·:ae.otions of the thesis. Most of
all, I would like to thank IIY wife, Carla, for inspiration throughout the
project, for help in preparing tbe thesis, and for patience during three long
years of graduate study.

I would also llke to thank the National Science Foundation (NSF) for
funding for graduate study under the NSF Graduate Fellowship Program.

This research was performed in the Computer Systems Research Division of
the M. I. T. Laboratory for Computer 'Soil.mce. It was sponsored in part by
Honeywell Information Systems Ine. , and in part by the Air Foree Information
Systems Technology .Applioations Office (ISTAO), and by the Advanced Research
Projects Agency (ARPA) of the Department of Defense under ARPA order No. 2641
which was monitored by ISTAO under contract No. F19628-74-C-0193.

-2-

A SECURE AID FLEXliLJ MOI,)BI,. .. .QF:.JtllOCESS INITIATION
FOR A COMPUTER UTILITY•

by

Warren Alan Montgomery

ABSTRACT

This thesis demonstrates that the amount of protected, privile~ed qode
·related to process initiation in a computer utility oan be gN'atly reduced by
making process creation unprivileged. The creation pf processes can . be
·controlled by the standard mechanism for oontrollin& eritto/ tO a doma1n. which
forces a new process to begin execution at a controlled location. Login of
\,lSers can thus be accomplished by an unprivilepd creation of a prt,ce.s$ · in the
potential user's domain, followed by authentication of toe user by an
.unprivileged initial procedure in that do~~ain. ·

The thesis divides the security constraints provided by .a computer
utility into three classes: Access control, prevention of unauthorized denial
of service, and confinement. We . d-~~l~.P .. a .. ~d.~~ .-~~at .~~v;f.de.s J)r~~·~
initiation into five independent f\iaot.twtu ·· ~-~ · CMJWti'On, · dOIIatn
changing, resource control, authentication, and environment in~tializaJ;ion.
We show whiCh classes of security constraints depend ;:.b!l' elo·h of these
functions and show how to implement the functions such that these are the oply
qependencies present. ·· ··· · · ., '··: .. · · · · ·'

The thesis discusses an implementation· of pt'oeess initiation for the
Hultics computer utility based on the model. The major pPoblems encountered
in this implementation are presented and discussed. We show th•t. t~1s
implementation is substantially simpler and 110re flex!bie:'thari :·that ·used in
the current Hultics system.

•.this report is based upon a thesis: o.'t ·i'til~~· ode t!tle submitted tO" the
Department of Electt•ioal Engineerin~ and Computer ~1enoe, Ma~•ac.h\.lsetts
l;l}stitute of Technology, on Ha)'l: Jl3, 1 ·19'16' 0 :1-n·· ·~\af'i'ulttllliil!irlt"'bf the
requirements for the degrees of Master of Science and Electrical Eqineer.

-3-

SECTION

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

CHAPTER 1o INTRODUCTION

1 o 1 The Problem

1 • 2 Method of Atta~

1.3 Results

1 0 4 Thesis Plan

1o5. Related Work

CHAPTER 2. A MODEL FOR PROCESS Ilil.TIATlON

2.1 Security Goe.ls

2o2 A Layered Security Kernel

2.3 A Model for Pr.ooau Initiation

CHAPTE!R 3o AUTHENTICATION

3o1 Properties of Authentication Mechanisms

3o2 Authentication Forwarding

3o3 Example of our Authentication Scheme

CHAPTER 4o RESOURCE CONTROL

4o1 Issues of Resource Control

4.2 Primitive Operations for Resource Control

4o3 Limitations on Resource Control Policy

-4-

t,

PAGE

3

4

6

7

7

8

10

l2

13

l5

15

20

22

21

27

33

36,

39

39

42

46

"'- . ~-·---~-
·l, - :.. . .

4.4 Limitations on Security Constraints

CHAPTER 5. MECHANISMS FOR AUTHORIZING DC»fAIN CHANGES

5.1 Introduction to Domain Changing

· 5.2 Four Mechani·SJts tor Authorizing Dollairi·Wan«es

5.2.1 Exact Specification

5.2.2 Partial Specification

5.2.3 Last Component Specification

5.2.4 Appending Specification

5.3 Domain Changing and Confinement

5.4 Evaluation of Domain Changing Mechanisms

CHAPTER 6. THE TEST IMPLEMENTATION

6.1 Brief Introduction to Hultics

6.2 The Implementation

.6.3 Evaluation of the Test Implement~1ort

CHAPTER 7. EVALUATION AND CONCLUSIONS

7.1 Comparison of the Model to Other Schemes

1.2 Summary of Conclusions

7.3 Areas for Future Research

APPENDIX A. DETAILS OF THE IMPLEMENTATION

REFERENCES

-5-

' ~.~ -----:;-·--

46

48

48

49

50

54

58

60

63

68

70

70

75

88

93

93

99

102

103

123

FIGURES AND TABLES

Number

Table 2.1 Process Initiation Functions in the Security Kernel

Figure 5.1 Domain and Domain Gate Objects in a
Hierarchical File System

Table 5.1 Examples of ACL Term Matching

Figure 6.1 A Typical Process Initiation

Table 6.1 Impact of the Model on the Number of Lines of
PL/I Code in the Kernel

Table 6.2 Impact of the Model on the Number of Programs
in the Kernel

Figure 7.1 Hierarchical Process Creation for
Mutually Suspicious Subsystems

-6-

Page

26

56

61

77

90

90

98

1.1 The Problem.

CHAPTER 1

INTRODUCTION

This thesis is concerned with process initiation in a computer utility.

Process initiation consists of all those functions that are performed to

support the creation of processes. In the Multics comput~r utility, these

functions are:

1) Process C1•eation: The addition of a new process to the set of processes

being managed by the system.

2) Resource Control: The assignment of resources (GPU cycles, memory

pages, and the use of I/O devices) to a.o.ewprocess.

3) Authentication: The identification of tbe user who will oontrol the new

process.

4) Domain Changing: The assignment of a Principal ID, which will be used

in determining the process's access to objects in the file system, to a

new process.

5) Environment Initialization: The initialization of mechanisms needed to

support the computation performed by the new process.

As can be seen from the above list, process initiation includes a wide

variety of functions. Some of these functions :aust enforce security

constraints, while others are unrelated to security. In the Multics computer

Chapter 1 Page 1

utility, and in ma~ others, the mechanisms that implement the functions that

we include in process inltiation are poorly . organized and h£,avily

interdependent. Tl:ds interdependenc* not only makes all of these mechanisms

more difficult t~ prove correct, bUt-alaomakes the security of the computer

utility dependent on a larger set of DI&Cbanlsms than the minimum set that is

necessary to implet~»nt the desired security COf1Straints.

The primary goal of this thesis. is to devise an organiza-tion for the

mechanisms that impQ.ement process irritiation that is simple and minimizes

unnecessary dependetmies. New mechanisms will be developt=~d to perform some of

the functions listed above in that organization.

A second goal of the thesis is to pz•oduce an organization for process

initiation that can' ,easily be usfld for any situation in wtlich · pr-Oce•ses must

be created for users. Processt~s are a powerful tool for structuring

c011putation and a process initiation m4tol'tlm1n that is simp.le and inexpensive

encourages the use of processes. An iJDPlem•nta'tion of· prooes.s initiatj,on foF

the Multics computer utility will be used to test the proposed organ:ization.

1.2 Method Q[Attack.

We will be most interested in reducing the number of mechanisms on which

the security of the compute1• utility depends, and in reducing the complexity

of those mechanisms. We extPnd the notion of a security kernel [Sc75] to a

kernel with several layers. Each layer is responsible for enforcing a

diff~r~nt set of security constraints. All of the mechanisms that must

function correetly to enforce a particular set of const1•aints are inside of

the kernel layer for that set.

Page 8

The principle of least privilege [Sa75] is used as a tuide to dP.termine

the functions that are implemented in each kernel layer.
I : ·~ •

Thia principle

states that each mechanism should be given only those l?orivileges qeeded to

perform its function. Thus, each kernel layer should contain only those

mechanisms needed to enfol'ce the security constraints ,for.wh~ch that layer is

responsible. The principle of least privilege reduces unneqessary . ; ~

dependencies.

Another important structuring techni_que used in this thesis is to

implement each function with a small p1•ogram module, and to minimize the

interactions between modules. By clearly definin~ t~e function performed by
:: ,.•

each such module, we make each module easy to verify. By minimizing the

interactions between modules, we make th~ structure of the system simple and

thus easy to verify.

An important goal of this thesis is the minimizat·ion br common mP.chanism.

By this we mean making the set of mechanisms on llhibh all users must depend as

small as possible by removing mechanisms that dbnft mted to bP. shared and by

simplifying those that remain. Such common meohanisu '·must be included in . the

security kernel. Any mechanism that a user need not ~'epend on need not b~

certified, as a user who is not satisfied that such a mechanism is correctly

implemented can avoid using it. The structu1•e presented for process

initiation in this thesis has very little mechanism on which all users must . '

depend.

Chapter 1 Page 9

1 ; 3 Results .

This thesis «emonstrates that the security kernel of a computer utility

can be simplified by making process creation unprivile~ed. The authorization

for process creation is provid&d by tbe domairi changing mechanism, which

forces a new process to begin execution at a controlled location. An

' ' ·~·

unprivileged process can thus be uaed to create a process for a potential user

in that user's domain. Authentication of the user is performed by an

unprivileged initial procedure in that domain. The remainder of this section

describes thea€ results in so~what greater detail.

A security kernel with three layers is used in the thesis. The layers

provide:

1) Access Control: Restrictions on the operations that processes can

perfol'm on objects.

2) Prevention of UnauthQri~~d DenW of Service; A. ~uar~tee . that each

user receives A faj,r,, sha,r~ ot, the ava:qflb~ resources.

3) Confinement.. A g~antee , that ... , ~pfor,mation. sto~4., in the comt>uter

utility is . pel~sed only to users who are .au,thorized. t.o see that

information.

-· ..
The thesis partitions process initiation into the five functions

mentioned above: Process creati;~, r'esource control, authentication, domain

chan~ing, and environment initialization. Each function is implemented in the

kernel layer that provides the least privilege required to perform that

function. The thesis considers three of the functions (domain chan~inQ;,

authentication, and resource control) in detail.

Pa~e 10 Chapter 1

The domain changing mechanism for proc~ss initiation, whiQh contt:Qls a

newly created process· s access to objec~s !: mu~t perfp~m ~ .· s~mi),.ar function to

that of mechanisms used to control the calling of protected subsystems.
, . .,.,

The

desired characteristics for a domain chan~in~ mechanism tQat will serve both
• • • • T. ' "'· : ·,_: ;·; f" .)- . . ~

purposes in an access control list oriented sys~em~ such as Multics, are

presented and discussed. We present s~vera+ domain changing mechanisms that
~ i . '

can be used for both purposes.

The thesis shows that authentication can be removed from the access

control and denial of service layers of the kernel .
. · - '

This removal.qan be

accomplished by allowing each user to select his own ..
procedures. The thesis also shows how authentication can be removed from the

•' '(

confinement layer by allowing different authentication mechanisms to guard the
. ' ' ~ . ' ··•. :

release of different pieces of confined informationt.

The thesis also presents the concept of authentication forwarding, which

allows information obtained through authentication to be sh~red in a secure

way. Authentication forwarding is a natural model for deal~ng with

authentication information. Authentication forwarQing allows processes to
'J. ,\r; .

make use of authentication procedures performed by the syst~m without forci~g
• • ~ ~ • • I • ,;..

every user to be dependent on the cor·rectness .of such procedures.

The t€st implementation of process initiation done for thE" Multiqs
. I '· ,' '.

computer utility demonstrates that the functionality of P,rocess. initiati~o,n

provided by Multics can be achieved with a much silll;Pler structurE> than that

currently used. The implementation also makes the s~t of PfO(rams that must

function correctly in order to enfor•ce a particula.t:' security constraint much

easier to distinguish.

Chapter 1 Page 11

1.4 The:sis Plan.
't"'l

The first thr .. sections of this chapter have provided a brief overview

of the work done in this thesis. The remainder of this chapter discusses
' I

previous work in· tne areas of computet security and process initiation.
. ·. . i

The second chapter presents the ~odel for computer protection mechanisms

that is used-in tttis thesis. This 4del is used to derine.more precisely the

notion of a laye1·ed aecuri ty ker~l, ~nd to define clearly the layers used in

this thesis. The !ive functions of p~o~ess initiation are described, and each

function is asaiiJfted to ~· layer-~f the kernel according to the privileges

required to perform that function.

Chapter three considers the prob~em of authentication. We show that

authentication falls outside the ac~ess control and denial service layers of

the kernel in our protection model, a~d shoW how to re~ove authentication from

the confinement layer. We present th~ concept of. authentication forwardin~.

and discuss the functions that · '~st be performed by an authentication

forwarding mechanism.

Chapter four corisider~ the probl~m of resource control. We discuss the

issues involved in p~rforming; resour?e control, and show how many policies of

resource control can be implemented bt programs executing in an environment

that does not provide ·privileges-· t~at would allow those programs to violate
I

''the constraints provided by the acoes~ control lay~~.

Chapte1; five presents- four mecha~isms for authorizing domain chan~ing.

P1·operties of domain -changing mechantsms desirabl~' for process initiad.~n and
I

·Pl'otected subsystem calling are discu~sed. The advanta~es and _disadvanta~Ses
.::. '

of each of these mechanisms are eval~ated, before choosing the mechanism used
!

in the test implementation.

Page 12 Chapter 1

:-... .; ~-:;._ ~.·. . . '

Chapter six discusses an implementation of process .initiation
. . ·' ~

for .the

Multics computer utility. A brief description of Multics is presented, with
';': ·,, . f: :·,·

special emphasis on the properties of the current proc~ss initiation,.. sct1eme .
. ;• ' •' \' ''

We describe an implP-mentation of process initiation for Mult:J_cs based on our

model, and show that that implementation is substantially simpler.than the one
' >. "' } J ,. ~ ~ :.JB. . ,.

currently used. A more detailed description of the implementation app~ars in
... ' . ' ; ~ ·,.._

Appendix A.

Chapter seven evaluates the usefulness of the model in structurin~
;:: . : '· .z.

process initiation. The model is compared with two common process initiation

schemes in three situations in which. a process is created. The chapter

summarizes our conclusions about the model and discusses topics for further

research in process initiation.

1.5 Related~-

This thesis draws heavily on previous work on computer protection

mechanisms. The concept of protection domains introduced by Lampson [La74]

forms the basis for the access control scheme used by this thesis. The desi~n

of a confinement mechanism for the thesis was influenced by much previous work

on the confinement problem [An74,Be73,La73,Ro74,Sc75.We69]. The domain

changing mechanisms of Jones (Jo72] and Schroeder [Sc72] strongly influenced

the design of the mechanisms for authorizing domain chan~es in the thesis. A

study of these two theses first lead to the idea that process creation could

be made unprivileged.

This thesis is part of a research effort described by Schroeder [Sc75] by

the Computer Systems Research group of the M.I.T. Laboratory for Computer

Science to simplify the security kernel of the Multics computer utility. The

Chapter 1

Multics system [Or72] is ideal for such study because it contains

sophisticated hard•r.e and software protection mechani8111a. Somf' recent thP.ses

[Br75,Ja74] have shewn that various funetions could be removed from the

security kernel. Other work (~73,Re76,Hu7"6] has demonstrated that the
. .. ·-

security kernel can be substantially simplified by structuring the functions

that ·it performs.. This thesi.a snows- that some o'f thE' functions of process

' initiation can be v:emoved from the kerne-l, an'Ci presents. a structurE' that

simplifies those tbat remain.

Pqe 14 Chapter 1

.A MODEL FOR PROGESS INIT:fAT ION

In this chapter, we show how to perform process_ i~,itiation in a Sf!cure
-. ·,1 ;<.:·. '--:_

computer utility. First, we define more orecisely what is meant in this

thesis by "secure", by defining three security goals. We thenexamine briefly

the mechanisms used to enforce those security goals to see how they in_tf!r~ct
l ' ' ~ j' \ .:.. ·, ~

with process initiation. We show that the security ~oals can be enforc~d by a

security kernel with three layers. Finally, we examine each of the five

process initiation functions and show in which layer of the kernel each

function should be implemented.

2.1 Security goal§.

In this section, we define three security goals for a computer utility':

1) Access Control - The control of the operations that can be pe1•formecl on
.... -.. ,,

objects in the computer utility.

2) P1•evention of Unauthorized Denial of Service A guarantee that.
. ~ . ' ~· :

authorizf!d operations can actually be performed.

3) Confinement - The prevention of the release of information stored in a
, '

computer utility to users not authorized to see that information.

Chapter 2 Page 15

---··--· ----

Access Control.

As stated above, the ~oal of access control is to provide control of the

operations that can be performed on objects. Such control allows the user or

users responsible for an object to ,,p:r~:et the inte~rity of that object. To

provide access control, .we u~e tbe ooncep.t ot pr.ote-cid.on domains [La 7 4].

Each process in the computer utility is associated with a protection

domain by a prOCf!s:-49Jp.ain bing~ng, a binding made in a system-wide context.

The domain of a process determines the operations that that process can
.,

perform on objects in the computer utility. The domain of a process

re_presents the authority responsible for the activities of that process.

The details of how the operations that a process can perform are

determined from the domain of the process are not important in this chapter.

We oan imagine that there is a two·dimensional matrix, which for each domain

and object specifies the operations that a process in that domain can perform

on that object. ·In chapter five, we consider access control ~ehanisms in

greater detail.

In order for such an access control mechanism to provide protection for

objects, the association of a process with a domain must be controlled. If a

user could obtain control of a process in any domain, then the access control

mechanism could not deny that user the use of any object. This thesis refers

to the pt•oblem of authot•izing changes in the process-domain binding as domain
";L··

changing. Domain changing is descr•ibed in greate1• detail in a later section

of this chapter and in chapter five.

Page 16 Chapter 2

Pr€vention Qf Unauthor~zed Denial Qf Servic~.

The goal of prevention of unauthorized denial of service is to keep one

user from interfering with the use of the computer utility by other usP.rs.

One common example of denial of service occurs when a user can exploit a flaw

in the operating system of the computer utility to cause the computer utility

to fail. Such a failure denies service to all users while the system is

restarted, and may cause work in progress at the time of the failurP. to be

lost.

Many less severe examples of denial of service ~xist. In .some computer

utilities, one user can capture a sufficiently large_ percentage of the

available computing power or memory, that the use of the system by other users
' .-

is impaired. In this thesis, denial of service generally refers to the denial

of the right to use a process.

Confinement.

Simply stated, the goal of confinement is to provide control over the set

of users who are allowed to observe a piece of information in the computer

utility. (1) Confinement has been used to prevent the release of classified

military information (We69]. Confinement has also been used to protect

proprietary information that must be read by an uncertified. program (Ro74].
)'i' ~ . " ~ ; ' ,

There are two definitions of the confinement problem:

confinement and total gonfioement. Message confinement (An74] consists of

preventing the transfer of confined information:~ to unauth'Orized users through

--~------------------
(1) The term "piece of information" can represent a wide variety of things.
It can mean· . the . contents of an object· such as a til~; or· the' name or an
object, or even just the presence of an object. Any of these may convey
information that may need to be concealed from some set of users.

Chapter 2 Page 17

~~-------- -------------

the operations per~rmed on objects. Total confinement consists of prf'v~ntin~

the transfer of cofifined information to unauthorized users throu~h iD.I m~ans,

however slow or Obscure. (This includes the covert channels of Lampson

[La73], which transfer information through the observation of the use of

~bared resources.) The mechanisms discussed in the next section are intend~d

to provide message confinement. In order to provide total confinement, the use

of shared resources must be controlled so as to block information transfer·

through covert channels. Several researchers have proposed mechanisms to

achieve confinement in a computer utility. [An74,Be73,Ro74,We69] These

mechanisms all tag the objects in the computer utility with some indication of

the confined information that they represent, and use the tags to restrict th~

distribution of information to users. There are two ways in which the tags

have been used to provide confinement:

1) The hi~h water mark. [Ro74] In these mechanisms, each operation that

modifies an object and may add confined information to that object.

changes the tag of that object to reflect the confined information that

could have been transfered.

2) The *-property. [Be73] In these mechanisms, an operation that modifies

an object·· is not allowed unless that object is already tag~ed as

containing any confined information that the operation could add.

For this thesi~,. the second type of m,-e.hal)iSJD is chosen. Rotenbera;

[Ro74] shows how the changing of the tags that occurs with the high water mark

m~~hanism can itself be used to convey.corifinf'd information. It therefore

seems extremely difficult to achieve total.~onfane•ent with a highwater' mark

mechanism~

Page 18 Chapter 2

The . model of confinement used in this thesis tags each object, process,
..

and user with a gonf!nement ~- A confinement set is a set of confinement

attributes. Each confinement attrigute is used to represent some class of

information, such as a military security classification, or a proprietary

project. The confinement set of an object identifies the confined information

that that object contains. The confinement --set':~t a p~.!IS indicates the

confined information that that process is allowW<F to ·c:>bse!'rve. The confinf!ment

set of a user represents the int'ormat4dn:~ttat t~ user 111ay :observe. Tl'lree

rules are used to enforce confinement:

1) A process is allowed to perform an operation that observes an object

(i.e. one whose outcome depends on the co~te~ts of the object) only if

the confinement set of the object is a subset of that of the procf!ss.

2) A process is allowed to perform an operation that modifies an object

only if the confinement set of the object contains that of the process.

3) A process can direct the output of an.objf!ct to a user only if the

confinement set of the user contains the confinement set of the object,

and that of the process.

These rules taken together enfol'ce wh1tt is refefr~ td!filsewhere :as the

*-property. (1)

Process initiation interacts with confint>mf'rit in. several ways. The

process initiation mechanism must assign a confinedlfiftt set to Pach newly

(1) Some mechanisms use a level and category set; similar to a military
classification, to objects, processes, and users. [We69]. By using one
confinement attribute for · each' ··level and'"' ~ioh oate!Ory, the · mechanism
presented above can ~ made- to enforce the same constraints as a level and
category mechanism .. ' the above meehari!.am waa' ehbiift'·)~tie the . rules '(·the
*-property) are significantly simpler with this approach.

Chapter' 2 Page 19

created process. This assignment must be done in such a way that confinPd

information is not Nleased. The process initiation mechanism must also

prevent the use of process creation as a signal to transmit information to a

user who is not authorized to se-e that information.

2. 2 ! LaYered S&cupa.ty Kepfl@l.

The set of mechanisms that must function correctly in order. to provide

security is known as the .lfsnarity lf1!1'JS?l· ~ ~~ign goal for a secure

computer utility is to make the set of mechanisms in ~he kernel small and

simple, thus making the kernel easier to verify. The notion of a security

kernel can be exteneed to a kernel with several layers. Each layer of such a.

kernel includes all of the programs needed to enforce a different set of

security constraints.

A ket•nel with multiple layers is useful because it indicates clearly the

mechanisms capable of violating each security constraint. The s·p.ecifications
~' - .

for each layer of the kernel need not include any indication that that layer

does not violate the security constraints provided by lower layers. This

reduction in specification simplifies the task of verifying the kernel~

In thi3 thesis, we .choose three kernel clayers correaponding to the three

security goals described above. The innermost layer of the kernel pr.ovides

access control, the second lay~r prev.ent.s denia;l of a,P~:J.o.e, and the outer

layer provides c<D:nfinement. The layers .. wertL cho88n to minimi:z;e the number of

mechanisms that fall in each layer.

The access coBt,rol l~yer is placed below the denial of service layer

because the denial of service layer. can make better J.lse of the functions
'

provided by the access control layer than .vice ~ersa. The q~nial of service

Page 20 Chapter 2

layer must provide some form of access control in order to keep the actions of

users from interfering with each other. The access control lay~r need not

prevent denial of service. (1) Thus if the access control layer. is placed

below the denial of service layer the denial of service layer can be

simplified, as it can make use of the access control provided by the lower

layer. For this reason, we place the access control layer below the denial of

service layer.

The confinement layer is placed above the denial of service layer for a

similar reason. The confinement layer must prevent some types of denial of

service.. A denial of service cannot be allowed to convey confined information

in violation of the •-property. For this reason, we place the denial of

service layer below the confinement layer.

The layers chosen in this thesis are by no means the only choice

possible. Other researchers [Be73] have chosen to place at the core of the

kernel a layer that co~tains a simple access control mechanism that enforces

the *-property for operations performed on objects Cmessage confinement).

This layer does not enforce total confinement, as actions such· as denial of

service can still be used to convey confined information in violation of the

*-property. These so-called covert channels [La73] can be used very

effectively in many computer systems.

(1) Interruptions of the processing done by the access control layer' (either
through denial of service or thr·ough failure .of th'fl' hardware) must not result
in the failure of that layer.

Chapter 2 Page 21

2.3 !·Model fQt Pr01f85 Initiation.

We now describe a model for process initiation mechanisms. Such

mechanisms change the set of Pl'OCf'SSf's; the sf't of domains,. and the

process-domain binding. We want the model to be as genet•al as possiblP., so

that it can easily be used for any· situation in which processes must be

created.

Our model separates process initiation into five functions: process

.£.!::U.!!.Qn., domain chcanging; reseurce control, authentication, and enviro.nment

initialization. In this chapte-r, we discuss briefly what each of these

functions does, and.~ in which of the kernel layers pre.viously discussed each

mechanism lies. Later chapters consider some of these mechanisms in greater.

detail.

i

Process· creation consists of <Wea:tinl!l• an. initdaJ: pt-cesa state. Ai

process. state de-Bcribes ttte-, char.a.eter.d.s.tics· Qf- a:· ~esa·.l A• oroc-ess· state

contains the domain· of tbe. process., thft confinement aet ot '~e process.. the

execution point of t~ ·procestt, .. thE!' maohine> r~st1ft"S of ~ process . acd a:

description of the~ addre·SS• spaoe ot! th:e process. I

Because process creation alters· the pioooeaB...ctomai.Rl.bindirg, it must· be

performed within the kernel layer that Pf'ovides access cpntrol. A se-eond

reason for including process creation in the kernel layer fori access control

is that each process may at SO~· point in its lifetime rxecute functions

inside the access control layer. If the process state of suer a orocess is

not correctly initialized by process creation, then that pr,·· oces~ may not be

able. to perform tho~ functions properly. j

I

I
!

Page. 22 Chapter 2

Domain Changing.

Domain changing in this thesis really means the autho~izat~o~ of domain

changes. The process creation mechanism actually makes the domain ch~nges by

altering the process-domain binding according to inst~uctions received from _,

the domain chan~ing mechanism. The problem of authorizing domain changes has
' ;, ~ : .,

been extensively studied. Schroeder [Sc72], among others. concludes that a
""i,

domain changing mechanism must insure that the first procedure executed by a
~ ' ~~.:

process that enters a given domain is an acceptable initial procedure for that

domain. This is the only function that the domain changing IMCbanism · must

perform in order to provide access control. (1) Chapte'r five dicusses the

details of controlling dolliain chttnging.

The domain· changing function· must· be· performed in'the kernel layer that

provides access control. The domain changihg function · needs to alter the

pvocess-domain binding, and thus could Viblate aocess control constraints if

not correctly implemented.

Resource Control.

The resource control function assigns the.resources necessary to begin

the execution of a process. In the Multics computer utilit.Y•, these. resources

consist of CPU cycles and memory pages, as well. as the c.~?ice of whether or

not to allow a process to be created at all. The ass~nment of resources to
'.- 1 ••

processes is made according to a resource control policy that attempts to

insure that each user receives a fair share.

(1) The initial procedure . can contr·ol the computation performed by the
process, and thus prevent misuse of access rights or resources available to
the domain.

Chapter 2 Page 23

Resource control clearly lies within the kP.rnel layP.r for prevention of

unauthorized denial of service. The resource control mechanism can deny a

user the right to create a process by refusing to allocate the needed

resources. In the· design of many curt·ent systems, the resource control

mechanism also lies within the kernel layer that provides access control. In

chapter four, we show how the resource control function can be implemented

outside of the access control layer, thus simplifying that layer.

Authenleication.

An authentication mechanism is reap.pn.Uble for <Jetermining the. ide~t.j.ty

of a user. If a user can contt-ol the o~r.at1oos .~f.or~ by a process {by

communicating witb a command interpreter ~U.ns iR ~P#~ proCQat), then the

user must be identified to iqsure ttlat be 1s .a~~horized t<> use the, domain of

that process. In the Mul~ics q<?~QPuter utUitYt. a process that is created to

serve a user has an initial procedure that calls a c~nd processor to give

the user control of the process. Th~ identity of the user is determined

through authentication before the process is created.

In chapter three, we show how to remove authentication from all three

layers of our security kernel. This removal is accomplished by allowing each

user to choose his own authentication mechanism. An error in one user's

authentication mechanism is no more serious than an error in any other program

that that user chooses to call. Each user can protect himself from failures

of the authentication mechanisms of other users. Chapter three describes how

the three sets of security constraints can be provided without depending on

authentication.

Page· 24 Chapter 2

Environment Initialization.

Environment initialization consists of the initialization of mechanisms

that support the execution of a process. In the Multics system, environment

initialization includes the creation of certain working stOrage· segments for

the process, the initialization of error handlin~ for the process, and the

initialization of stream I/0 for that process. Environment initialization is

performed by the initial procedure of a process, and the procedures that it

calls.

Environment initialization requires no special privileges ~cause all of

the functions that it performs are local to the process being created.

Environment initialization need not be included in the security kernel.

Summary.

This chapter has presented a brief des.cription of the five functions that

are included in process initiation. Each function has been assigned to a

layer of our security kernel based on the privileges required to accomplish

that function. Table 2.1 summarizes these assign~nts.

Chapter 2 Page .25

Table 2.1

Pro.ceas Initiation FuncUons in the Security Kernel

Process Creation

Domain Changing

Resource Control

Authentication

Environment Initialization

Kernel Layer:

Access Control

Aocess·Control

··.Denial of Service

(none)

(none)

These assignments were made only on the basis of least privile~e. The

implementation described in chapter six shows that each of the functions can

actually be implemented in the layer shown above, without undue complexity.

Such an implementation insures that each kernel layer contains.the minimum

number of process initiation functions.

The next three chapters of this thesis explore three of these functions

(Authentication, Resource Control~ and Domain Changing) in greater detail.

These chaoters describe mechanisms that can be used to provide those functions

in the kemel layers shown above.

Page 26 Chapter 2

CHAPTER 3

AUTHENTICATION

This chapter discusses how authentication is related to prOCE':SS

initiation. The chapter begins with a discussion of the properties of

authentication mechanisms. These properties shape the attitudE': toward

authentication that is taken by this thesis. We show that authentication need

not be performed by the
J

tythentication forwardipg,

security kernel. We also p:~s~nt the concept of

which can be used to allow the sharing of
-.·Jo . '

information obtained through authentication. Authentication forwarding can

reduce the number of times that a user must undergo authentication, by

allowing the information obtained from the user's first authentication to be
, ~ r,. ,

shared among the processes with which he must communicate.

In order to discuss authentication, a model of how users communicate with

a computer utility is needed. For this purpose, we adopt the concept of a

stream. We use a stream to represent a two-way communication channel. We

refer to the user who communicates with the computer utility through a stream

as the sourge of that stream. The timE': during which a user is communicatin~

with the computer utility will be refered to as a ~~p,iog .
. -

3.1 Properties 2(Autpenticatiqn M§chanismr.

An authentication mechanism is a mechanism designed to determine the

identity of an unknoWR t~set-. ' , Such mechlrlins usua11y··requ1re' the user to

Chapter 3 Page 2,7

produce some piece at' data (password. encryption key, etc.) that must match a

value kept by the ~mputer utility. Protection mechanisms enforce security

constraints withi• a computer utility. while an authentication mechanism can

be used to identify us-er·s for the R~~; executing on the computer utility.

Three important properties of authentication mechanisms are:

1) No authenticatioo mechanism is perfectly reliable. An authentication
! ;'•, {;f' i ~-· ., .

mechanism ident:l.f:.tes a us.er by a S6(1Uence of bits (password or encryp.tion
.. ;_ .=:~-·s ·f.·:~---, · ·3;_ .;--~:.7l<.;~::·iq

key) supposedly tmown only to that user.. Beoauae any user can produce such ..
~-, .'f · ,i -!t·} ... f.t:i JDd~~ ~-~r.:'if'~~? ~;\~.~ .. 2t~:~.:>d.+t elr'J ;.,:_:3 n:".~11r.,i LL Jl'?.!<; r:.~-,,t.:.~~~·· ~ .. ~:-··,. , -: ..

a sequence, any suen mechanism can ~ fooled into misidentifying a user.
·:~.~ ~ ·-~:.. ·~.· . . ;:::t=::3;·:q ~·:<·, ;G ">~~ • ~t.c;~·~~·;-1

2) A security conse.:ious uaer c.an allfaf8 cteviae an authentication mechanism

that is more reliable than a syst .. proviftd authentic.ation mechanism. The
·: , •

2
• .• ~· : l- :~· B'J .t ,)' !1"-;:·;.-~ -'.: .\\ . i 10 [·I· .t?:~;!, J r-; ~). ri;;; lJG"lfi :t h .-:o["i }. L :~ :·" -,·. ~ :.: ... : ,·,;~. ·: -~~

probability tbat a U3er wUl be able to fool an authenticati.on mechanism by
'·~.t ·~~ 1 ~t, S:·:.~; 1 ;~s .,,::' .. ,r~~~ ''i-'.?ul.' I:: ·;,;.-;~~t ~:·~f'l_:_L·t ·,,., ·,._>!_1~!:~ ·rr· ·~· .. · ·-··~

g\ressin~ the · pas·swovd. or key dec.reases as the length of the password or key
~.: ol t· •.• -·.-,J;·L.~:·:~.~~t.:h j~~ .. -rx.':t t..;···!::,.;~.::J ":V~!s mc~·(J b~r:r.t.sJ~jo C1C.i~.L-.l::'L.JI·.-~:~~ -~ri-J .~.·:·,~ .. "' 1 i;

is increased. Thus a security c.onsc.ious uaer can obtain greater

reliability by uaing a longer pasaword or key, at the expense of having to·
.. ~ '. ,., ·::;:~: --~. c.:.:·:;:~: :J \,.[('• ~-,~ ·:: ._· ~

remember more in,formation.
1', i I\ I ·:-,·!~ '-~.;::.·.·~ ;y~; .·::~l~Oq'lLl(f ~-~.tt.: 'lC-t.~ ~b~::b;J·~:d~ .~~~~ 1 i.·~: __ ~ i~- ··; •·. ,!: •. :·)) L

3) Each use of an authentication meebanism releases information that aids an
(: .-.. : ~ :. :". ' - :·~. · -~ ! ·: r:-. ~-; .l ;·u rrt~m ~; .'; \ ~:~ ~4-~ cyw· :t

imposter in determining the password or key. In general, the stream
t. -t ~ :.: , ' 1t, ... • '; l:tJ~Jf .. ~~·L. •t .. -J.),.J(!tn('~) ;_~fLt l·,.JJ:w· !:1.~~:}BDtr"?.tmi!rJC.::·~ Of~h '}.;-:;~,' ..")i.' : : ~r.-:··~:.:''?

through which a user communicates with the computer utility passes through
··~"'.P .. [:!C:'·-. _,,;:;·~~.-.-:·~·<: ;::.~· ·~~J""';\\• --. ~:it.., f~r-,,.: "Sii',~,-~--.:~~ ..:~;vt:t ::,:rff .. mi:;.~;f,j}; :ii2.fi i ir} ·.::·y·;_~ .. ;·:_;;_·. ·1

some insecure . c;·harme'f ' (such as a "telephone .line) that an intruder may be
_f1(·t.e~~·.,c; !:~· .. ,I~ c~.,r f>·:'~""i'l-1''1 :Jd fJtw· '{-.Li.Li:.--;~· ··~-.:;,·.Yt.:quJ~;:~:- t::··~ <.! '<

able to monitor. E"riCFypnon based schemes are less vulnerable to such

(.1 , T~~s~ tpf~fr,·llt~lf:~~,s :~~+~: ~~,;¥ay .iA~i-.~~1.• tQ.~is deals ::w,ith

authentication. Points one and two suggest that it is not necessarily

Chapter 3

desirable for all users to rely on one system-wide authentication mechanism.

Such a mechanism cannot be guaranteed always to make correct identifications,

and no matter what mechanism is used, a better one always can be found.

Point two suggests that different users might want to use different

authentication mechanisms. Different users have different security

requirements and thus some users might be willing to spend a ~reat deal (in

terms of extra communication, extra computation, and the overhead of

remembering more information) to insure that they cannot be impersonated. All

of the users of the computer utility might not want to pay the cost of the

security requirements of these few.

Point three suggests that authentication should be performed only when

necessary. Thus the results of authentication should be remembered, so that

each new process or domain that encounters a stream does not necessarily have

to perform authentication. Authentication Forwardin~ is introduced to provide

this memory.

Avthentication !nQ Security.

In this section, we examine how authentication must be used to enforce

the security constraints of our three kernel layers.

1) Access Control.

The innermost layer of our kernel is responsible for p'roviding protection

for objects in the computer utility. The def:Hiition of the security provided

by this layer of the kerMl was carefu~ly chciten to avoid the notion· of a

user. This layeJ' of the kernel insures that objee'ts can be accessed only by

authorized domains. This constraint can be enforced without using

authentication to identify users.

Chapter 3 Page 29

-·
By ensuring that a process can enter a domain only throu~h a controlled

·'

initial procedure., we allow the initial procedure to guard the domain. The

initial procedure a:an authenticate a user before allowing that user to control

the process.

In many computer utilities, each user is authenticated soon after he

An autbenticat:ed user is then allowed to change the

authentication procedure to be used for future sessions (by changin~ his

password,) and to.' specify from his termina-l the operations that the computer

utility will perfor.m for him during the current session. In the organization

used in this thesis, a user who cont.a,cts a comp~ter must choose an initial

domain. He then must satisfy whatever authentica.tion mechanism is us-ed by the

:Lnitial procedure a£ that domain. Even at'ter successrul authentication. the

initial procedure may impose limits on the operations that will be performed·

for the user.

The organization used in this thesis allows a user who reqU-ires a high

degree of secu1•1ty to specify his own auth-entication ,rw9oedu-re in the . in±tial

procedure for the domain that he wiJil use (u wil1 be sQ.own in chapter 5). It

also allows for limited service users,. a concept that. has proved usefu-l in

current computer utilities.

2) Denial of Service.

Whether or not authentication is required t-o prevent unauthorized denial

of service depends on whether the utility gJ,J.aran-te&S service to users,. or

whether it guarantees service to domains. If' a comp1,1ter utility guarantees

each user a fair share of the availab-le resources, u-sers must b-e authenticated

to insure that one user cannot monopolize the·. resourcea of the computer

Page 30 Chapter 3

. ·. -~.

utility by requesting services from many terminals simultaneously. Domains

can be guaranteed a fair share of the available resources by imposinF

restrictions on the resource use of processes. The resource controller need
' ~

not be aware of the fact that some of the processes are performing operations

on behalf of the users of the computer utility.

The initial procedure of a domain can be used to allocate the resources

~uaranteed to that domain to users, much the same as the initial procedure is

used to insure that the access rights granted to that domain are not abused.

The Multics computer utility uses a resource control scheme that assigns

resources to processes based on their principal ID. As we show in chapter

six, this resource control scheme can be implemented without relying on

authentication.

3) Confinement.

Authentication is required in some form ·in order, to aChieve confinement.

This is because the purpose ot con.finement ts to prevent a .Yl!£, from obtairiing

information that he·ia not entitled to. There are severa·l waY's in · which

authentication oan be incorporated into the'· ··llecha.nism that enforces

confinement.

One way to provide confinement is to autttenticat'e 1'each user who · contacts

the computer utility and to insure that ellch ~roces8 wlth which the'uaer

communicates has a confinement set that 1s.amaller ·than' that of the user.

This scheme has the diBadvanta:~e of · ·syfitem-wide · ·authentication schemes

mentioned before, namely that it does not allOw dit'f~rent authentication

mechanisms to be used for differe&t u~rs w!tff.><tiffef'ent security needs.

Because different e:onfinement attributes prott>et 'difft>t'el"it information, it. is

Chapter 3 P;age 31

likely that some of that information is more valuable than the rest and

therefore a user should be forced to pass a more rigorous authentication

before gaining access to such information. The following scheme allows

different authentication mechanisms to be used to obtain different confinement

attributes.

Each terminal that contacts the computer utility is initialy assigned an

empty confinement set. A process that wishes to communicate with a terminal

may discover that it cannot do so because the confinement set of the terminal

does not contain the confinement s~t of the process. The process must call on

an authentication mechanism to identify the user at th~ terminal. After the

authentication mechanism has identified the user, it changes the confinement

set of the terminal to include the confinement set of the authenticated user.

Each authentication mechanism is only authorized to supply some of the

~Sible confin•ment attributes, so that. dif,~ent auitbentication 11e0hanisms

can be useo to grant aifferent conf11l8tii!Jftt :attributes •

.. This scheme also bas the advantage that .ttie l'e.Sp.orud:bility for devisin~

.and maintaining the authentieation · mechand:8'11S can be d'.tstribUted among the

users who wish their information to be protected by confinement. The-computer

utility need only provide- some- , •ans of allocating the · ClOnf.inement set

attributes and establishing tne authorized·authentiaation mechanisms.

The major disadvantage. of the above scheme ia -that a user with a large

confinement sets may have ,to be .. aut}lenticat.eQ• ·ae'leMll times durin~ the same

.session in order to obtain access to ail of the information that he needs.

Current applications of confin~nt meo&aniSm$ do rnot ·tend to have users with

large confinement ~s. Also, a user rarely ·needs accps to all of the

information that he is potentially entitled to in any one session. Making it

Page 32 Chapter 3

awkward or costly for a user to obtain access to all of the information that

he could potentially see may have the beneficial effect of encouraging each

user to obtain only the privileges that he needs for his current task.

Encryption.

Much 1•ecent work on authentication has been deYC)ted to the developement

9f authentication mechanisms based on encryption •. · Such .schemes have the

advantage over passwords that the senaitive identifyin;~ ·information (password

or encryption key) is not sent thro~ theatream,. and thua is less vulnerable

to being stolen. .SOIJ!e of the protocols requw tbat ~eaon ·process that talks

to a stream know tbe encryption key for that stream. The scheme developed by

Kent [Ke76] uses one key for &\tthentication and one .keY ito provide securP

communication thrO\lgh the stream once. authenti-cation .U.s been performed. The

second key must be known by eacn proeese tbat communicates with the stream.

The authentication forwardins mechanism (iescribed· below is well suited for the

distribution of such keys.

3.2 Authentication Forwarding.

We say that a process that relies on a previously performed

authentication to determine the identity of the source of a stream is using a

forwarded aythentication. Thus in most computer systems, where a system-wide

mechanism authenticates users when they first contact the system, each process

r·elies on a forwarded authentication (from the system-wide mechanism) for the

source of the stream from which it draws comaands.

Forwarded authentications are a very common phenomenon outside of the

computer utility. Identification cards represent forwarded authentications.

Anyone who determines the identity of a person from an identification card (or

Chapter 3 Page 33

(!river's license ,or credit card) is actually relying on the authentication

performed by the iuuer of the card. Unfortunately, identification cards can

be lost, stolen, or forged. Forwarded authentications maintained inside a

computer utility can be protected. makin~ them unforgeable and unsteal·able .•

ThePe are two fwta thn .;any :proo.esa :us!l~ a · forwat-ded · authentication

used. Both of :these \f:a:ots oan • be.·' provd.~' by aH:oWinp: a pro~ess that

uSE\:r. In order U> ra:UCw <bbe :at~i~ti•:tt..Oh, mecmabiem ·~sEtd to be determined,

and, th.e time of reo~ . This 1ftte>rtat1~n aU . .ws·.:. au·'f>!'"Oce'Ss that uses a

forwarded.. au.then.ttoe.tien · :to iun·U.f!S' 'il\el&~t.nn~i"tl~n· 'lfleimantsm · ~ed, just

as the distinctive format of an identification card alloWs the iuuer· of the

card to be identified.

Identification cards sometimes become invalid, due to changes in the

information that they contain. In the computer utility, a change in the
f,. .l:·~:i·>\:',~ ~.:',~~c· -';.

source of a stream invalidates previous authentications for that stream. The
i :.-·' .

computer utility cannot always detect each case in which the source of a

stream changes. (1) In the case of streams with finite lifeti'lles, such as

telephone or other network connections, the computer utility can det~ct wh~n a

user's stream has been disconnected, and should forget any authentications

Cl) One .ca-&e in 'Wll:i'Qh.;.i·t 'ff cll±ft'::l.cult• to •:.de:teot ~'~tln~'..!in ~'the ·source of a
stream occurs when a user walks away from a terminal and a second user takes
over without either one informing the computer utility of the change.

Page 34 Chapter 3

performed for such a stream. The authentication forwarding mechanism should

delete the forwarded authentications for a ·stream when that stream is

disconnected. A stream can be disconnected and reconnected between the time

when a process performs an authentication and the time when that process

records the authentication, leading to an incorrect forwarded authentication.

One solution to this problem is to have the computer utility maintain a

count of the number of times that a stream has been connected. The process

performing authentication can then . obtai:n tmis connection count before

J)ftrforming authentication and present tbe connection count to the

authentication forwarding mechanism along with the forwarded authenticat~n.

The authentication forwarding mechanism oan then obtain the· current connection

count in order to determine·whether or not the forwarded authentication is

valid. The connection count ts used as theeventcounts of Kanodia and Re;ed

[Ka76].

A forwarded authentication for a stream is .ueeful only to the process,es

that can read from or write to that stream. ~t therefore s~ms desirable to

allow only those processes that can read or .write, a stream to ·read the

forwarded authentica·tions for a stream. We also allow only those processes

that can read from a stream to record forwarqed authentications for that

stream. These restrictions allow the compu·~ utility ·to limit tbe resources

expended in keeping forwarded authenticat.ions, by limit;ing the number of

authentications kept for each stream, without allowins one process to

monopolize these resources by recording forwarded authentications for streams

that it canfiot use. The above restrictions are not neo.essary for security

r·easons, because the information recorded witb a fOP.;VIU'ded authentication

identifies the author of that authentication and pt-e.vent-s forgery.

Chapter 3 Pa~e 35

We must, however, keep authentication forwarding from becoming a covert

channel for confined information. This can be done by assigning a confinement

set to each forwarded authentication and forcing the reading of for·warded

authentications to obey the •-property. Each fo1•warded authentication is

~iven the confinement set of its author. (1)

3.3 Example.

The following section shows how processes are created for users of a

computer utility using the ideas on authentication of this chapter. The

scheme described is compared with a more commonly used scheme for

incorporating authentication into process creation.

A user who contacts a computer utility for service informs the computer

utility of his identity.· Based on this iden~ity, the computer utility selects

a domain in which to create a process to serve the user. The computer utility

may or may not authenticate the user to verify his right to use the requested

domain, perhaps by demanding a password. If authentication is performed, then

the result of that authentication is recorded as a forwarded authentication

for the stream that represents the user's terminal. A process is then created

fo1• the user, beginning execution in the ch~n domain in one of the valid

initial procedures for that domain. It is the responsibility of the initial

procedure to determine whether or not to serve the user. This decision could

be based on the forwarded authentications recorded for the user's stream.

(1) An alternate scheme would be to give each forwapded authentication the
confinement set of the corresponding stream. This scheme would not work well
for a system in whieh the confinement sets of streaft'i ohanged, such as the
authentication scheme described above where a stream gains confinement
attributes after its source is authenticated.

Page 36 Chapter 3

If the user desires access to confined information, ·then he must make

contact with a process with the desired confinement set (either by specifying

that his initial process be created with a non-null confinement set, or by

asking his initial process to try to chanqe its confinement set or give his

stream to some process with the desired confinement set). Such a process will

discover that it cannot communicate with the user, and must select one or more

authentication mechanisms to call on to identify the user, depending on the

attributes that the confinement set of the user's stream is missin~. Each of

these authentication mechanisms in turn records forwarded authentications for

the user's stream, and some of these mechanisms may rely on authentications

forwarded from others.

We contrast this scheme with the authentication scheme used in most

computer systems today, which uses a system-wide authentication mechanism to

identify each user who contacts the system. An authenticated user can then

create and control processes in any domain that he is authorized to use.

Notice that the scheme presented in this chapter can be made to behave

like the more common scheme (by performing authentication for all users who

contact the computer utility, and having all initial procedures make use of

the forwarded authentication from the system-wide mechanism). Thus a user who

does not require a high degree of security need not generate his own

authentication mechanism and can instead rely on the system-wide mechanism. A

highly privileged domain, however, can be guarded by an arbitrarily secure

authentication mechanism.

One of the most important differences between our scheme and the more

commonly used one is that the process that responds to a user who contacts a

computer utility (called the listener, logqer or monitor, in some computer

Chap-ter 3 Pap;e 37

systems), needs no special privileges in order to create processes for users.

We therefore can remove this process from the security kernel. This process

generally executes complex programs, because it must be capable of dealin~

with several users concurrently, and work with a large variety of ports on the

computer.

Notice also that several processes can be used to wait for users to

contact the computer utility. Different processes can be used to respond to

different types of streams (telephone connections versus network connections),

and thus the complexities of dealing with a particular type of stream can be

isolated in one process. A utility with parallel processing capability may

also want to make use of multiple;processes to increase the rate at which new

users can be handled.

In chapter six, we show how this authentication scheme can be implemented

fot· the Multics computer utility. Chapters six and seven summarize the

advantages and disadvantages of this scheme.

Page 38 Chapter 3

CHAPTER 4

RESOURCE CONTROL

This chapter discusses how resource control 'is related to process

initiation.. We begin With a discussion of ·the issues inotolved in·- controlling

resource · uae · in a oomput&r utility. 1te then present a set of o~rations

through which the use of resources in the eomputer utility ·can be cOntrolled.

and show that the use of these operations oan not violateaccess control

constraints. · The chapter concludes with ll discussi·ori of' the kinds of res-ource

control policies that can be implemented using our set at' o-perations, and the

security constraints that can be' violated throUgh the use of these operations.

4.1 Issues of Resource Contr91.

A resource is a service provided ·by the :compUter utility. Thus resources

can include· physical devi~s- · flY~ PI-inters, card readers ·etc.), abstract

devices (virtual processors, memorY-pages, etd}J;·· or·· evert .:p-rograms ·(matrix

inverters. etc.) . This chapter is most coftoet>Mtf lrith the resauroes needed to

initiate a process. In Hultics, these resources are the process itsPlf. and

the CPU cycles and memory pages needed to execute the in!tial proc~dure.

Resource control consists of the distribution of resources to processes, and

recording the use of resources by processes ror accounting.

In this section, we present some of the issues involve? in the control of

resource use in a computer utility. These. issues guide the way in which
.-}:

resource control is included in the model of process initiation. We consider

Chapter 4 Pa~ 39

two issues: The d~inction between mechanism and policy and the general

scheme of resource trontrol used (hierarchical or central).

Policy ~ Mechani§l.

Recent research [Jo72,An74] has stressed the importance of distinguishing

policies from the mechanism& u~d ~. in:aplement _thoae .polj.oies inside a

computer utility. The separation. 9f m~ and ;POli.oy is Particularly;

important in th.e area of resour~ cont.ro1_,. si~· . QU1er'tflt resource control

policies may be appt>qpriate for different res.ources of the same, system ..

Different policies. may also be neeped "for di.ffepent f,,ISers-. A flexible

resource control mechanis~ can implement~: wide vav~~~Qf policies.

This chapter is most concerned. w-ith ·tne interface . be~n me~ism and'

policy. The interface should be chpsen- so. . that the ~chan!em can be

implemented with a small, simple,. and easily verifiable set of program

modules. At the same time, the interface should. siippoi·t a· wide variety. of.

rasouroe con1;rol poJ.J.cies.,. wtpho~ ~~owt•~.t.ta. ,v;iaJ..at~ .or ~sa control

constrai.nts through. the, uae of tb.,, opera~ pn~ by thltt intertace .. Sqch•

an interface al)..ows the removal of the most ~lioated. af}d vari:~ble portion

of r.e~urce 9antr.cal (the polfQJJ f,noa the a.coesa, .()()&.tf'Olr lt&yer ot the "curitY'

kernel.

Resource Control Philosop~.

Two common apprOaches to resource control are the hierarchical and

centralized systems of control. In the centralized system, there is a central

authority kitown as. the .resourQe gontrol1fr that is · ~espon~ible for the

assignment of resources to all processes. In the hierarchical scheme, each

process is responsible for fulfilling the resource needs of the processes that

Page 40 Chapter 4

it creates. Thus each process acts as resource
'

controller
;i'

for its

descendents.

The hierarchical system has the advantage that the creator of a process
. •, •""'- .. i ' '~

has more knowledge of the anticipated resource needs of tha.t process than a
! : . . . ::.' ·:;'_'l

centralized resource controller, and thus can.make a better decision of the
' l ,: ~- ' f.-• . : ~·· .• ~. • •.

resources to assign. The hierarchical system is also quite flexible because
' r'', J. · jl

each process can implement its own policy of_resource control.
.. ~~ ' ,.,. (

However, the hierarchical scheme reql1ires.that each process that cret:f,t~s
·:l ,·~

processes perform resource control. This duplication makes it difficult to
• - ,,' :,, 'I'.·. t 1 :

add a new type of resource, because sever~~ alsorith'!u.' m~y n~e9 to be m~~ied

to deal with the new resource. In the central scheme, only the central
~-. . : ~ .

resource controller need be modified to add a new type of re~ource.
'I ·~ : ·,~ '

Duplication of mechanisms also increases the chance of error.

The hierarchical scheme does· BOt respond we11 -to p:ji $ef!t ;wJ.~- ~PI"$ tic,

time-varying resource requirements. Resources assigned· to meet a sudden

demand by sucH a process may have to Jjass through:resource control algorithms

in several processes. '·these algorithll~'may··~ unWilling or uriabie td llieet

such a demand.

Another disadvantage of the hierarchical scheme· iS that it·· does not

provide for a process and its creator to be rin.ttually ·suspicious. Each 'process

must trust its creator to assign the resources that that ~~ocess needs. In

turn, each process must trust its descenden;ts not to '!aste tt:te.ir a~signed

resources by not performing the desired task. The centralized scheme does not . ,. .. ,,,

share this difficulty, as each process dependent only on the central
. ;,_,.

l'esource controller• for• its l'esourcf's. A process aJ!4 its creator can be
}.'!- ·' il-

mutually suspicious, because neither must depend on the other for resources.

Chapter 4 P~ge 41

A fourth problem with the hierarchical
. , r ..

scheme is that it does not

interact well witn confinement. In a computer utility with hierarchical

control, the rea-ouH88 that a prdcess aasi~s "to' its descend~nts can be used

.t-- ,<

each process can sipal infor!.'ati~ to its.;~~ea.tor · th.r'o~gh its use of the

assisned resources:.,, Both of' t~~ae oh~~~~l~ ~~e d'itfioult to block with the
. 1. ~ ·') ~--· .,,·._;_:_(_;~_, ~";•rl() -~--~~- .,._ -~ -,_'!•

hierarchical resouree control. If neither of the channels is blocked, then
; , . ',. ·' ••• •! c.•.-, •, ~.:-.J~-_;.,: ,- =~:.~--~;-;• o

each process must be assigned the sasne conf·inement set as its creator' so that

neither.. channel oan be
r . .., -" ·:-'I j. • ~.; ,_.

ua-ed to' violate'confineaent. Such an assignment of
· :_: ~:_ ~ · . :' ~--- ·:z:-: ·,·c;·;· ~~~r~ :~ ii.~.:\~:_-.) . .L-·:;>·~~~:~~ ~~Gcr::·,ao ~ ~-;::-~ .. ~:(:.:·.__;-·1 ··'::· :':(.. .r r .. .
confinement seta would force all processes to have the same confinement set.
i -.:'· ~· _ ;·- \ ~ , ·-1;L·-~._!:j __ : ~ , ... - ··i····)· -:·'f_; t!l "){L .. l-(--~ · ~-----: •

Because mutual suspicion and confinement are bo-th considered important in

.. i ;_;

~ '"; 2 e~ait~y' . op.-~&a QQf t!r '· J!Uo.awmt·; Cgn\{!Ql,, ·4~.: ,:

,, i •. ~n. th,t.s ~~ct~qp.~ ·• .. w~ p,~~~~t,)a,nd d~~R"!,@··J.~,~-i! ot;c,RrM~ti"':·.~IM'r;attena

o~ra ~ion' .• ,; fqr~ ~n. , ·iP,~~r t;~c~ -.~ pe~y,~". 1"'q~an~"1~d PO.l.I.@Y .. tU!~cUIJ~Jed ,ab.ov~ ~­

We show that the operations do not allow the resource controllet :. . • t-~ ;,V:$.0:1,~1::•

distribution or
: :.: ~ •,

2) The resource c~ntroile~ wlll be allow~d ''"to monitor the use of all

resources'' by all processes.
' "') ' ' • '1 '(~·'

Chapter 4

3) The resource controller will be allowed to observe a fixed
1 "': ~,.,,

parameters of a proposed process initiation (such as the initial
~ •.) , , , .. .t• ::,"

procedure or domain), and veto the creation of a process •
.._ . ~ '--:- -,··

. '

4) The resource controller will be allowed to destroy any process.

The fir.st.ot' these operati.ons is clearly n.,~dedto implf111ent a resource

oontrol policy • -Dif'terent t11)e& of ·, coritilOf · ~re · 1\ftded for • differE-nt

apigned to a· process for 'a relativ$lY' long -'time pet"fod' ·(minutes at' 1:east L

Primitive operations . "-th.at-, a.Uow the res<:Rfrot!t' co~roil"" ···to assign · ·such

resources to processes should be provided. Some resou~~ 'such as the'use o'f

provide rapid response to requests from usetta'/ .: A e1Dal~, ''~!mple, and fast

control mechanism · is ·. generally provided~ r-or 1kieh ''ritsources. ·The resource

con~roller~ contro:-la the. cidstriJJution of SUCh' :tte-.ources·'b1 e~ify:f.ng . to this

c6ntrol mechanism the set of processes in contentiOn ror· t!b$ resource arid. the

priority of eac-h proeesa~.

The second operation allows the resou~'· eontrollef- · .. to observe the

resource use of each process, even if the actual assignment of resources is
>' .:_:

made by a lower level mechanism (as in the assignment of CPU cycles_ an.d_ memory
'.

pages described above). This primitive allows the resource controller to

record resource use for accounting.

The last two operations allow the resource controller to control the
·..- .-If:' .. ; .

total number of processes. Each process may consume~.s\)aoe _!!'} tables that
)'·· .. '" . '

contain the state of that process, and the amount of such space may be

limited. The performance of algorithms for multiplexih~ the available

Chapter 4 Page ~3

-.
processors and me10ry among processes degrades as the number of processes

increases. The resource control policy of the computer utility may therefore

dictate that the number of processes be limited. Another reason for limitin~

the number or processes is to provide ~ood response to sudden changes in the

resource requirements of pro~ases. If tbe ~eaolal'oes are divided amon~ too

.-ny processes, it .. Y be 4iffioult for th• resource oontroller to gather all

the resources ne.e.de~ to meet a .large 4emand by QMl process.. -.The resource

controllel' is a~lowed to. observe oertain ~et.rietio• of each process that

is created, so as :tp have solll8. buis for dec14trla wn.tber or not to allow th~

CH'eation of that prooeM. .,

We now show- tbat none · ()f tne four open tiona allows the resource

controller to violate the access contr.pl oonatraints or the kernel. This

property allows a n~aourQe oontrolleJ- that . :depends only. on the above

ope.rations in order .to perform control to be ~ted outa:ide of tbe access

control ~a-yer of ~·' kernel.

There are three ways in which one of our primitives miSbt violate the

constraints of the ~ceaa, contro}.-layer: -;\

1) It might perform an operation not authorized by the access control

mechanism.
;_

2) It might alter the process-domain binding.

3) It might change the relationship that determines the operations that
.,

' . ~'
each domain can perform on each object. (In the case of Multics. the

access control lists.)

Page 44 Chapter 4

-
The first of the primitives control~ the . assisn~ent of reso4rce• to

processes. The pri~itive does not alter the process-do~a~Q biQ9ing, nor does

it alter the set of operations that each domain is .'!-~lowed _to pe~,fq.t:~· It

therefore does not violate the constraints of the ~ccess control layer (1) . ..~ ' . -~·. . .. '

The observation of resource use clearly cannot alter access .control
,. ,J. • • '

information. It may, however, allow the resource cpntrollf!r to observe the

objects being used by a process even if the domain of the resource control~~r
' ·"-* ~'. ' . • "j

does not authorize the resource controller to see those Objects. This does

not violate access control, as no process c .. n be compelled to give aw~y
~ . . _,., . ~ . . '

information in this manner. It does, however, allow the ... resource .cont~.oller

to violate confinement, which is one reason that the resource controller "-"
~' : ' \ ~; ·. -

included in the kernel layer that enforces confinement.

The resource controller can change the proce~.s:-d~~·~ binding by
,_·,~ . .·

rejecting a process creation request, or by des~ro:y_~ng a_~ PfOO~-.Il'· Th~ chaop

does not, however, allow the resource controller _to e;ai~ u.n.-uth()rhed acce.ss
·.::,

to objects.

Thus the four operations do not allow the resource controller t;:oviolate •.. . . . ~ ' !": .

the access control constraints of the kernel. They ,do, . h9wever, ~j,. ye the

resource controller knowledge of the resour~e use <?,f.aU, processes, and tot~l

control of all resource allocation. These a~ilities a~~~~--• .. t~14e v~riety. ot . ~ .

resource control policies to be implemented.

(l) We must be very oare1'ul, howem, that :reaoui-ce · a-ssUWment·a do· not affect
the functioning of th~ access CC)ntrol lay~~ :~.n a '1:~~ with. f(rdistr,1J)u~4.
supervisor, th& ·withdrawal of resources ·may· stop a process. that is modifying
access control information, and may leave that information inconsistent.

Chapter 4 Page 4~

4.3 Limitations ~lesouroe Control Policx.

There are liaitations on the resource control policies that can be

implemented with these primitives. As noted before, the resourcE! controller

does · not know the identity of the users who control the processes of the

domputer utility. Thus the resource controller cannot base resource

allocation decisions on the knowledge of which user will control the process

that receives the resources. We suggested earlier that the resource

controller use the .initial domain of a process to determine the resources that

the process will receive. This seems a satisfactory substitute in most cases.

We have also made no provision for the resource controller to find out

the details of the computation being performed by a process. Allowing the

resource controller to observe more about the execution of a process makes it

more difficult for a process to conceal the contents of the objects that it

use·a from the resource controller. Such observation may be needed in order to

implement some resource control policies, such as a policy that grants higher

priority to a process when that process is perfoMling certain tasks. The

parameters that the resource controller is allowed to observe when the process

is created may help the resource controller to determine the task that. a

process performs, but they do not allow the resource controller to distin~uish

among several tasks performed in the same process.

4.4 ~eourity Limitations.

There are also limitations on the security constraints that can be

enforced without certifying the resource controller. Although we have shown

that we can remove the resource .o~troller from t,he kernel layer that

implements access control, it is .clear that· the four opEtratiQns. give the

Page 46 Chapter 4

resource controller the power to deny service, and thus must be in the kernel

layer that prevents denial of service. We also saw that the operations allow

each process to transmit information to the resource controller, and that the

resource controller can transmit infdrmation to any process through the

resources that it allocates. Because. of these irWOrllati'On channels. the

resource controller must be certified not to violate confinement.

A less obvious problem is that of revocation. The ability to revoke
./ ;;>,

access to objects may be very important to the functionin~ of a computer
.. :~

utility. A denial of service can prevent a process from revl)king access.
'·' .· h.·---·-'.

Although this does not violate the access control constraints (the right to

revoke access is not guaranteed), it may cause inconvenience to the u~~rs of
';.

the system.

Summf\~Y

We have shown how a centralized sCheme of resource control can be

implemented with four primitive operations. ·Tbfiiie OJ)erat~.'ons allow a wide

variety of resource control policies to be implemen~ed. The primitive·

operations do not allow the resource controller, which implements th~ resource

control policy, to violate access control oonstrairtt$, Chapter aix sho-.is how

the complicated resource control policy of the Multics'computer utility' can be

implemented in thi-s manner. This impleld6htation·substantially simplifies the.

access control layer of the kernel.

Chapter 4 Pag~ 47

CHAPTER 5

This chapter considers mechanisms to authorize· domain· changes in a•

computer utility. The chapter aasumee a list-oriented implementation or·

access control, suob- as that o-f Mult1cs [Or72]. The mechanisms discussed- use·

the access control mechaniam of the computer utility to authorize domain·

changes. Each I!Miehan~sla is evaluated for use in authorizing process

initiation and for-uae- in the calling. of protected subsystems.

5.1 Introduction.

The domain changing mechanism needed in process initiation per-fDPm&~;

Sill$ilar functions to the 1118ch~ ~<l- ~- authortz:e dme•c ca-11J.n8:·of a

prQtected subsys.tem ... _ We tlle,rl.efore dN1r.e• .t,o -baft·- one ..ohaa1'a that W'tll

serve for both- purpoaes •.

The rtech~n-iBm:s to be dea.cr.ibed all _..: uM< ·of:t'WO' special typee· or

objects irJ_ the computer utility,. stem••· ®de®a·, aftdr, dgpirf ~ obj~cts~

Access to, a domain gate object is ·requU'e<l-- in· ~v toucreate ao .. prooeu: or

call a p_r.ptected subay.st•~ while a.cc~': to-~, ~n .obbeo..-. :iis~ requi.re<t·:, for;

the creation of domain gate Objects. These special. objbtsHwe uaed: beoause

the access control mechanism of the computer utility can be used to authorize

domain changes, just as it is used to authorize operations performed on other

types of objects. There is a unique identifier for each doaai.n that we refer

to as a Dgmain Id!ntifier (Domain ID). A Domain ID is used to designate a

Page 48 Chapter 5

domain in the same way that Saltzer uses a Principal :tJ?- t~ d~ign~te,a .domain

(Sa75). Each Access Control List consists of a l1st Q.f terJDs. {A,CL urms) that
.·. •: ·- I. . .

specify a Domain IO and a set of access rights. A pr.ocesa '~ aocess ri8hts for
l • ' • ' ' I' ' . ~

an object are determined by the. term of the, _AC~ tor the object thaJ;. ~~ches

the Domain ID of the domain of the process. The •tcq.ing algorithm .. us.tt,d
~- .' ! 1 . . ~ .• ;.; > ; /· : • ' ••

depends on the particular domain changing mechan~s~ 4sed.
,· . ' ':: ,.:. '; .

The remainder of this chapter describes four mechanisms t_o_ control dom~.n
• ' . I : ' . . ' : . ;·~ - '• '. (t ··~ • ~ '.· • ' (

changing. These mechanisms represent a number. ,of_ waya .. to control dp~p

changing using the access control me9hanisms of the _cop~puter utility. They
' ' ·~ : ,_:. !' r ,' • '

include mechanisms ~esigne?. for process. ipiti~~i,o~ ~.,d t~ose desi~ed ft;>r.

protected subsyetem calls. Includ~d in. th~s s~,t, of 11~9tu•pi~ms are mecban.,_~

similar to those used by Jones. [Jo72] and Schroeder [~72,.1 to au~qori_ze domain

changes.

5.2 Four Mechanisms fgr Authqrizing Dgmain Cb&ng§S.

I have named the f'our mechanisms to: be. present_ed Exact ·specification,

Partial Specification~ tast · · C01Dponent' · Specffio;tion, and Append~g

Specittcation. Exact Specification. ·is the. Sialplest '"·&r the four mechanisms.

Partial Specification is slightly more complicated~ but can be used to

implement authorization schemes that ·AlloW 'se~eral authorities to share

responsibility for a domain, such as the scheme used in the Multics computer

utility [Or72].

presented in Schroeder's ttietsfs to contrql the t g~e·t~on .. ~nd .calling of

protected subsyetems. [Sc72] Appending Spec~t~.q4ti~n ,ie ,, JDUCh ,more :~~rie!'al

mechanism that allows the .entire call hietor,Y of .a .. p,rQQ.e,ss . t~. be used in

determining _the access rights or that process.
') ,..·,·:'

Chapter 5 Page 49

5.2.1 §xact spop•f&li~ton.

The · first 111t110banfsm ror (lomain entry control"to be discussed will be

referred to as Ex.~t SPecification. tach domain change is authorized by a

doillain gate object. A 49M1a sat$ object specifies "a Dc;..in ID and an initial
' ..

p~ooedure. A proc-.s •akes a call to a procedure in another domain by calling

the "domain call" Pt"1Ja1tive (an operation pJ'C)Vided by the security kernel) and

passing it the n8me of a doiaain gate ob~~L n). If the process has "call"

acoe$s to the domat.n sate object, the doeain' of the pro~e~s is changed b;"the

kernel to that spectfied by the doaain gate
(~ ~ . and the process e~ecutes the

specified ·' initial procedure . . To create a process, one must call the process

creation primitive J)Using it the n&DJe ora· ci~in gat~ object to which the

caller has "ct-eate" access.

The "call" and "o ate" accesses described above are determined from· the

AC~ of the domain gate. (2)

The creation of n~w <loma1n aate' i;~S, ~patrolled qy tbe cloma~n objects.

Each 4oma1n object speetfies a PO!IIain IQ.

by ~alling the "cre~te~ate" pr1~ttve,. pa~usf.qc .. ~~; t<b~ n~ of a dW~ta1n <Jejec~

anc1 the name of &fl. :1n1t#Al prQOt;tdure. The Pli~~~~ m~'t na~ ._ore.ete_sa••s"·

aooess to the specified 4omain ooJ•ct.

(1) If an attempt to call the gate di~eotly resulted in an error condition,
then the computer· .. u~ility Q.Quld <1et~ct at~~¥ to Q~.q c:t~in g•t.e~ ,and
invoke the domain call ·Primitive automa,tically. This scheme b similar to
dynamic linkine. . The <!.aU.!tl4 P~.C)Q.e<iure qQ.I,lld tb~. call tb.a p~ just. ;as it
would ca:ll any proc~dure !n the sa!le domain. ·

(2} As noted before, the: initial procedure for a ·domain can be used to guard
the access rights and resource~. of. _t~at 4,ol~Un •. ,t:~etore, t.be "call".~
"create" access rights are unnecesssary, ·and only serve as a convenience. The
iaportant function of the domain gate object is to bind together an initial
procedure and a domain.

page 50 Chapter 5

The creation of domain objects must be co~trolled, ~ince any p~ooess with

access to a domain object can create n~w gates for ~pe do,ain, that. is

specified by that objects. This control can. be aooo~QPlislutd oy allowing,. the

creation of a domain object only if the DomaiQ Ip specified by that doaa1n

object has not been previously used.

It is important to understand the syste!fl of c?ntrol being 8JI!ployed .in

this mechanism as it is common to all the mechanisms discussed in this
' . -·· ,· •;

chapter. This system of control is very s~mi1ar to tb•.~ q$d by Sohroe4er

[So72] to control the creation and, calling of protected a~Q8J$.tems. Tbe

creation of new domains is an unprivileged operation, as any process, is

allowed to create new domain objects, while the !JI'eA~ion of gates into a

particular domain is under the control of tJt• .c:tomain ob.ject for ~Jl•t, de>-'n .•
"· . ~ ' . -. ' . . .

Notice that access to a domain gate obJect i.s sufficietnt .tQ use a .domain

gate. Access to a domain object is not requir!!ld. ThU~: W.tl. Q41'1not, thrl;)ugh the

ACL of a domain object, revoke the right to use do~~~ai~ ·"~f,s th•t we.r• or.eate<t

using that domain object. Addi~g to the ACL or a.dQJDain obje~t is in s~

sense non-revokable. This non-revokability is true Qf all of the domain

changing mechanisms discussed by this chapter. We cQuld provide ~e

mechanism to destroy all of the domain ga~es created from ~ partiou~ do~1Q

object. Because domain gates cannot be freely transferred or-dupliea~ed. ~

can capabilities, it is easy f()r the computf?r, Ltt1~ity ~Q locate. all of the
' • ' •' ' '•, • .I • L,

domain gates that were created usin~ a particu~.ar dou~ object.

Exact Specification could be used for . bo~. <?all,ing and pt:>~sa

initiation, as it is capable of authorizing a do~~~&in cb.anse between any t~
, '.. ,, ·. '~ ·. . .-"

domains. It also seems relatively easy to iMPlement. th~f;., ara, h(),Wev~er.- two

disadvantages to this mechanism that make it less suitable.

Chapter 5

Using Exact Jpecification, a process that has "create_gates" access to a

domain otrject can use the corresponding domain by creating gates into that

domain. -Thus fr{ the cas• that there is a single authority responsible for a
:· "<, ~

'domain, that authority· can use the domain object to control the use of the

domain. Several computer systems, including Hultics, allow two or more

incfependent authortties to share'responeibilit:Y for a domain. The use of a
,,

ind•pendent approval of all of the

'authorities that :!hare. resPonsibility tor that domain. An example from the

Multics · computer utility · should help illustrate the use of such a system of

coritf401;
!';.'•

In the Multics ·computer utility. ·J?rfncipaf IDs (Domain IDs in our
·-~ .-•• ' f." \'~·: ,, ;·._ :·~·t:e>~> ~·.,··~.r ·t.';.'', :> ':-_·

·terminology) have · ·P'erson and 'Project components. The creation of a process
· ····:· _·- ..• ; , .,. .~ ~-~ \.f' .. j,. ~ :.:. ~ :1 ~ .~:nc:~:; .;.-.~ -! · : -·. · .. , , ·

With a particu-lar Mhc1J)al ID requires ·the· independent approval of both the
. 'I··< •, ·> , ~- . .:::, ·' >,·' ·~' ~--.·;('~ ~' :, ";>c·~;- Jj() ~~ -'-' ··~'<

u~r Who correspond!f to the Person component and the project administrator of
"' -: , .••. ·'·:. •• ~ { ... i '• '"' (' '; ~ "i ·::: 1 t5 ,·} ·j·:-t(y-; ::i'

the pro~et·' that col-'~espohds "to 'the . Project component of that Principal ID.

the correspondin~

"" . : ~ _: .. , ,., ,. ¥ (',< [}'!-'.\ '~··'·.) ~-;. '. '' '

ID ·or a process. Thus the term "Jones.•.• read"
::; (:+ . ', , . ,. c' '• ' ·, _,l.
Principal ID with a Person

eomportent or ·"Jones•. ·

Such. ,.ACL terms are· treqtitmt:Iy ~sed t6 'aiiJw''~ii of the users of a given

project to use a (;articular progP8m or :d~t4'''6;s~;' '~r t'o ;llow a user to have
.. ~- · . .·. ·;.;· , .• ·-.'"'~ ;· . .'"-!f:tl r;, j ~~: l.J(<" : · .1 . .';'~-- ,' .1"·.7

·. ·. •:'

a~ 'to h1s J)rtvate data·while working 'on any project. In order to preserve

ttl•: meaning '·at

Ch-anging, we must

·_.·-.~.1,;·,· ~: .. ·.::-.~- r::. ::~r':.'r J.~~ .. ~~·:.·-~~.r~ r_.~~ ~,_ "·.,,· · ..

sucn terms while using Exact Specification to control domain
. '

' :.•., : . '•r. _;, .. ~. . .: . ? . ~ :~ ' "1 \'' . ; . ."' :

caretully control the creation of a domain object with a

Domain ID that utches a 'previ~usly ore~ ted D~a-in ID in any component. For

Chapter 5

example, we could not allow the creation of a domain object with a Domain ID

of "Jones.new" if the Domain ID of "Jones.old" had already been used. This is

because the domain ''Jones .new" can gain access to objects throu~h ACL terms

with a Domain ID of "Jones.*" and therefore the use of that domain must be

authorized by the person corresponding to "Jones".

The above problem can be solved by allowin~ only a trusted system

administrator to create a domain object that specifies a Domain ID that

matches a previously existing Domain ID in some component. This solution,

however, overly restricts the way in which users may create and use domains,

and forces all users to trust the system administrators. The Partial

Specification mechanism to be discussed later provides a'.:.better way to allow

s~v~ral authorities to.,~are responsibility for a Domain~

A second difficulty wi~h the Exact Specification. mechanism 1s that ···it

does not provide the proper control for the calling.af protected subsystems.

When a process makes a call that changes ita domain of execution, the called

domain must have access to the arguments of ·the eall in order perf>Orm the ·

desired function: This access should be; revoked · whe~ the ealled domain

returns, so that the caller can· be assured that the· .aallee will not read or

modify the arguments at some later time. ln eddition. the callee should ha-ve

some way of verifying that the call.er has access to the arguments of the call.

so that the caller c~not trick the callee into readirur; or" · ntOdifying some

object tq which only the oa~lee has access.

A domain changing mechanism intended for the calling o~ protected

subsystems should require that the ca.llee and caller share some access rights,

thus providing some means to pass arguments. Exact Specification and Partial

Specification do not enforce such a requirement. Several researchers

Chapter 5 Page 53

-~···-·---------

[Jo72,Ro74,Sc72] present mechanisms designed specifically to deal with the

problem of passin~ arguments between domains. Any of these mechanisms could

be combined with Exact Specification or Partial Specification to form a domain

changing mechanism, by using the argument passing mechanism to control access

to arguments of oross-domain calls, and using the ACL mechanism to control

access to other obj«!ts. The Last Component Specification and Appending

Specification mechanisms discussed later in this chapter both provide partial

solutions to the problem of argument passing that may be significantly easier

to implement than tlte mechanisms of Schroeder and Jones.

5.2.2 .fH:llli Spegitieation.

The second mechanism for authorizins dO.ain ehan~es will be termed h~re

Partial Specification. Domairt IDs for this mechan!sm havtt··a fixed number of

components with implied meanings; just as did the Prinoil)al IDs of the Multics·

computer utility deseribed above. · These oomp(')n~nts repre~ent th~ independent

authorities responsi-ble for each dOmain. A 4omtiin object in this mechanism

specifies one component of a Domain 10. A Domafn gate specities a complete

Domain ID and an initial procedure as bet'ore. Domain ~ates are created by

passing to a kernel primitive the naDI&' ot a p.-ocedure and a list of names of

domain objects. Eadl of these domain objects must speo:tfy a different

component of a Domain Ill, and al1 of them taken to~ether' s~it'y the P>omain ID

of the gate to be created. Domain gates are used in erea.ting pt-ocesses and

calling subsystems .as befoz•e. New domain obj~ts tha:t s~cify previously

unused Domain ID components can be created· by calling the "create_domain"

primitive.

Page 54 Chapter 5

,-,r·'-·.,_-

Figures 5.1a and 5.1b show one way to use this mechanism to implement the

pattern of authorization used in the Multics computer utility as described

above. The figures show how the domain and domain gate objects could be

maintained in a hierarchical file system, such that each such object is under

control of the proper: authority~, two components,

corresponding to Person and ProJect. Domain IDs specifying the Person

component are of the form Person. •, while those specifyint the·""Project
.u

•o"-'<'>.f." r·?! .',_. ~~~~-' ;;;.· -~ ~

component are of the form •.Project. A Project is created ~Y '. creating a

domain object that specifies ·component. ot a ~afn fD. -~·-,new t.t"r can be
. ~· . ~::' ' .

registered by creating a domain object that specit'ies the Person component.
' t 't'·;_ '

ACL's on these objects determin" who may use them. The followinll; ',

abbreviations are used for access rights in the figures:

s - (status) Allows a process to obtain il'iiOrlaation about the objects

contained in a directory.

a - (append) Allows a process to create more objects in a directory.

m - (modify) Allows a process to mod¥Y ,, :tn(oratt<>ri in a c:f1rectory

(including the access control u.s~s for ttre Objects 1ft'"tlllt directory.)

Notice that the domain Looksmith.SysAdmin is given modify access to the

directory ">Users". This access allows a process executing in that domain to

obtain access to any of the objects shown in both figureS (by modifying ACLs).
,_ ··-'

The Locksmith.SysAdmtrr d'OID!n will ha·ve special uaes" .as; shown later.

Chapter 5 Page 55

Fig4re 5.1a

Domain andlDomain Gate Objects in a Hierarchical File System

Root

P 1 A4m1n. Ptoc:)J 1. sma
•.Proj1 s

PlAdm1n. i,'roj 1 c:trMte..:JL'ftes.
Jones.• create_gates·

·Jones.• sma

L.ecksldtb~SysAdmin sma
•.• s

\

•. ProJ1. ,.a· r---~,...,__..,.... __ .,._IMI!!IIIIII!I..-
Key:

ACL

Directory

Domain Object o---Domain Gate Object

Page 56

•

Chapter 5

Figure 5.1b

Domain and Domain G~te O~jects in a H~e~?aro:bical File System

2Admin.• create_gates
Jones.• (none)

Jones.•
*.Proj2

Jones.• call,create

In Figure 5. 1 a, Jones has been given free: f.l()@.tf · ~9 'Pro jet ~ProJ 1, as he

may create new gates into it from any domain with a Domain ID with his name as

Person component. The.se. gates oan be orea ted by . passing the obje~t

":>Use.rs>Persons>Jones" and the object ">UaeMJ<>Pl"'j l>Proj1 11 to tM create gate

primitive.

Chapter 5 Page 57

Figure 5. 1 b shows the hierarchy below the Proj2 directory. Although

Jones cannot create new gates into Proj2, he may enter the domain

"Jones.Proj2" by asing the gate ">Ueers·>Pi'oj2~Jones>gate". This gate had to

be created from the domain "Locksmith.SysAdmin", as this is the only domain

that has "create_gates" access to the domain objects required to create the

gate. The procedur'tls of "Locksmith.SysAd1ain" would presumably not create such

a gate without the approval oe both Jones and the administrator for Proj2.

The power of the Locksmith. SysAdmin domain should &e used carefully.

Notice that if at· any future time the administrator for Proj2 wishes to

allow Jones to create gates to tlle project.;; he can do so by modifying the ACL

on the object ">Users>Proj2:?1Proj2", w:t.tilout any help from Locksmith.SysAdmin.

Partial Specification models the aut.h-orizat:ton scheme currently used in

the Multics computer.q:tility quite well. It ts not significantly more complex
"• ~ ' --

than Exact Specification, and therefore should be almost as easy to implement.

This mechanism, however, has the saae d.rawbaok for subsystem calls as

Exact Specification.. The calling and called domain are not conetrained to

share access rights, so that· both the caller and the callee must take special

action in passing the arguments of a call, and both must be aware or the

domain change produced by the call.

5.2. 3 .tr.ru!.t CqDpontnt SD!SJificatJ.on.

The third mechanism to be discussed I' will call Last Component

Sp8cification. This mechanism cannot be used'· to authorize domain changes

between any two domains, and therefore is not suitable for use in authorizing

process initiation. The restrictions made on domain changing by Last

Component Specification do, however, make it a more attractive mechanism for

Page 58 Chapter 5

authorizing protected subsystem calls than the first two mechanisms considered

in this chapter. As before, Domain IDs have a fixed number of components.
~ ~ . ::' ''

Domain and domain gate objects specify only the last of these~ (1) A call to

a particular gate causes the domain of the calling process to be changed. The

Domain ID of the process following the call is formed by replacing the last

component of the Domain ID of the calling domain with the component specified
. .

. ' '

by the gate. Thus if a process executing in the doJlUlin "Jones .Proj 1.home"

made a call to a ga as its component, the process would begin to execute the

initial procedure of that gate in the domain 11 Jones.Proj1.editor". New domain
.,:,

objects can be created as before as long as they do not specify the same last

component as previously created domain objects.

This mechanism is very similar to that proposed in Schroeder's thesis

[Sc72] for controlling the calling of protected subsystems. The last

component of a Domain ID can be used to specify a protected subsystem that

could be changed by calls during the life of a process. The other components
'., ~.

of a Domain ID can be used to specify attributes that remain constant

throughout the life of a process, such as the Person and Project components of

Hultics. All of the subsystems called in a single process are executed in

domains that share some access rights (all access rights tha~ can be obtained

by the process through ACL terms with "•" as their last component). Although

this does not totally solve the argument passing problem discussed before, 1t

does help somewhat by guaranteeing that all of the subsystems in one process

share some access rights.

(1) W.e c®,ld allow t;hel} to apeqify any one oaaponent• , :!bt~ · epeotf!ication ot
only the last component will, however, be adequate tor the intended use of the
mechanism and simplifies the description.

Chapte1• 5 Page 59

5.2.4 Appending Specification.

\The last me0han1sm I will refer to as Appending Specification. This

mechanism is not well suited to process initiation. as it cannot authorize a

domain change between any two domains. The domain and domain gate objects

s6ecify only one component of a Domain ID, as in Last Component Specification.

The Domain ID of the target domain of a call is formed by appending the

component specified by the gate to the Domain ID of the calling domain. A

return causes the last component of the Domain ID to be dropped. Thus if a

process in the domain "Jones.Proj1.home" made a call to a gate specifyin~

"editor" as its Domain ID, the domain of the process would become

11 Jones.Proj1.home.editor".

We can see that Domain IDs can have different numbers of components with

this scheme. We therefore need to auqment the rules for matching of Domain

IDs and ACL terms.to specify what happens when the Domain IDs bein~ matched

are of different lengths.

The component "**" has special si~ificance in our matching algorithm.

and is used to allow an ACL term to match Domain IDs of various len~ths.

Before comparing the Domain IDs of the process requesting access and the ACL

term, the matching algorithm cheoks to see if the Domain ID of the ACL has a

component of "**"· If so, and if the Domain ID of the process has at least as

many components as that of the ACL term, then the "**" component is replaced

by one or more "*" components so that the Domain ID of the term and that of

the process have the same number of components. If tbe Domain ID of the ACL

term has more components than that of the f)rooeas, the tile "'**• component is

Page 60 Chapter 5

deleted. We allow each ACL term to contain at most one " .. " component. (1)

If the Domain ID of the ACL term does not have a nein component, or if it has

more components than that of the process, thenthe following two rules may

apply.·

1) If the Domain ID of the Process .1a l~pger tM-n that of the. ACL term.

then they do not match.

2) If the Domain ID aJ the ACL terJP is lOOJer thari: th~t of the .process,

then . they match only if all of.· the "extrlil". compopents of the ACL. teriJI

are "*"

Table 5.1 illustrates these matching rules.

Table 5. 1

Examples of ACL Term Matching

Pro£esf bomain ID
• (cC~

ACL term ID a.b.c.d I a.b.c'. I a.b.d I c l
I I I I a.•• rpatch I · match · I matgh ! no I

••.c
a. b.•

I i

A process can grant access to an :ObJ.ect a,bol.lt to be, passed by a call by

puttipg a term with the Dom~in ID of the domain abo~t to b' called followed by

(1) Allowipg Qlore than one "**~' coll1j)o.nent ~kes t.be matp_hing; ~lgorithm m~cb
more complicated, and makes it difficult for.a user to see which Domain IDs
match a given term.

Chapter 5 Page 61

"·**" on the ACL of the object. In this way, the object will be accessible to

the subsystem to be called and any subs~stems that it calls. The ACL term

need not be removed following the call, as all of the domains that it matches

can only be reached by calling the same subsystem again. Thus in a sense the

Appending Specification mechanism automatically revokes access followin~~; a

call.

This control of access to arguments is made possible by the way in which

Appending Specification assigns a protected subsystem to a domain. Using

Exact Specification or Partial Specification, each protected subsystem is

assigned to one domain. Any call to a particular subsystem always enters the

same domain independent of the domain of the caller or the process in which

the call is made. Thus using either of these mechanisms, -thf' caller must

grant access to the callee prior to the call and must later revoke that

access. With Last Component Specification, the domain that a particular

subsystem enters depends on that process it is called in, but not on the

subsystem that makes the call. Thus some objects remain accessible to a

process throughout the life of the process, and can be used as arguments to a

call with no speo-ial handling. With Append-ing Specificat-ion. the domain in

which a protected subsystem executes depends-on the aubsystem that called it.

This allows very precise specification of the access rights to be given to

each invocation of a protected subsystem.

There are, however, some undesirable effects of not assigning a

particular subsystem to the same domain at each call. As each subsystem can

be invoked in several domains in each procese. lrppendinp; Specification will

tend to use more domains than the other mechanisms. Each domain requires a

certain amount of local storage for local variables. In addition, in a system

Page 62 Chapter 5

that performs dynamic linking, such as the Hultics computer utility, the
·,

processor time required to link a subsystem in each domain may become

expensive.

In addition to the economic objections to not· assignin~?; a subsystem to
',·-.···:

one domain always, one might argue that the environment that is provided by
.·.·,

Appending Specification is more difficult to program in.
' One can have objects

J. '

that are accessible only to one subsystem (by using ACL terms of the form
J. '. ': • ; •

.subsystem), only to one person or project (Person.••. or •.Project.),! or
,_

only to one invocation (by specifyinQ; the exact domain of that invocation in
. ·,

the ACL term). A user must be very careful in deciding the access that he

desires fo1• the working storage of the subsystem. Current programming

languages do not provide an easy way to specify all of the possible storage

classes. For these reasons, while Appending Speci'fication is the ~st natural

of the four mechanisms to use for the calling of protected subsystems, it
j

might not be suitable for all computer utilities.

In this section, ,we discuss two asp,~t• of .ciQDUdtl changing in a -computer

utility that provides confinement. We f~rst. eol'ltifl•r how to \lse the:doiD&in

changing mechanisms of the computer utility to control the · assignment . of

confinement sets to processes. We desire to control the confinement set ~hat

a process receives because that confinement set partially determines :the
. .

objects that the process can read. In some applications of confinem,ent

mechanisms to military security, the confinement set of the . process may be

the only form of access control.

Chapte1• 5 Page· 63

To control the confinement set received by a newly created process, or

newly called protected subsystem, we include in the domain gate object the

specification of a confinement set. The confinement set assigned to a newly

created process or newly called protected subsystem must be contained in the

confinement set specified by tbe gate that was used for J>rocess initiation or

calling. In addition, we require that the confinement set specified by a ~ate

be a subset of that of the creator of that gate. These two rules insure that

the assignment of a confinement set to a process is properly authorized. They

do not, however, prevent the domain chan.ging mechanism from releasing confined

information.

We now consider how to keep our doDtain changing mechanisms from being

used to release confined information. Lampson [La73] suggests that the

channels that aan be u.sed to transfer confined information be enutMJrated, so

that they can be individually closed. In this section we enumerate the

channels provided by our four doma·$n cbang.in8 mechanisms, and suggest ways teD

prevent these channels fr~m being u.sed to l"'el._.. . .enr.lmtd :t.a.forlla-tiort.-

With each ot tae four· aeei:lanisu.., there at"e six ~rations that could be

uae4 to release col'tfined 1nforma.t1oo:

1) Domain object creation.

2) Domain gate object creation.

3) Process initiation.

4) Calling of protected subsystems.

5) Deletion of domain objects, or domain gate objects.

6) Modification or access control information for domain objects or domain

gate objects.

Page 64 Chapter 5

We now enumerate the channels produced by these si:x; operations.

Domain creation can be used to transmit information in two ways:

1a) The domain object created could carry confined information.

1b) The Domain ID used could carry confined information, and could be observed

by other processes ~ttempting to c~ate doaain objects.

The first of these channels can be effectively blocked by forcing the

creation and use of domain objects to follow the •-property. We assign to
;

each domain object the confinement set of the creator of that domain object,

and require that a process have a confinement set that contains that of the

domain object in o1·der to use that domain, object to roreate gates. (1) ·

The second channel is more difficult to cl~e. as all of our mechanisms

depend on the fact that the Domain ID in a particular domain object is

different from the Domain IDs in all other domain objects. One possible

solution is to partition the space of possible Domain IDs amon~ the possible

confinement sets. We require that the Domain ID given to a new domain object
;;-

be a member of the set of Domain IDs assigned to the confinement set of the

creator of that domain object. This can be done by including some designation

of the confinement set of the creator in the Domain ID. Partitionin~ the

Domain ID space among confinement sets in this manner prevents the observation

of the use of a Domain ID by a process with a confinement set not equal to

that of the user. Thus the use of a Domain ID cannot release confined

information.

______________________ _. ________________________________ ~--------------

0~ r If;· .. "-~liJ9Dllin,t•ruh••a:ut~LObJMt.:r~es taePtt"'r tro~•, htel'3NlhUa'botiiel
sywt.em, •:, t ~eA: ~" ~h•.t .t #Oitf...,._nte, "' Nt:; f)fr) .t the:; di~l: biDRtaillidSJ a 4otaad:;al ot'E
<l9IMJ.it·:J8fteo~an P.1•e<hri.O -,OYU'Ie~::tilliaf~Mftbvod£ b:'iour)(n.7n t t·J;:: ':; ~.,,,, ~ot'1:1v'>

Chapter 5 Page 65
.- .· ,) .

Gate creation presents one channel for the release of confined

information.

2a) The gate that is created could carry confined information.

This channel can be closed in the same manner as tbe channel described in 1a

above was: by enfoPcing the •-property for the creation and the use of domain

gates. (1)

Process initiation presents an additional channel for the release of

confined information:

3a) The gate chosen for process initiation can convey information, even if the

cl"eated process has no means of comun1c&t1ng with it'S creator.

To block this channel, we must require that the created process have a

confinement set that contains that of the creator. There is no way to prevent

the gate chosen for process initiation from conveying information. On the

other hand, our mechanisms provide no way for the creator to obtain

information about the created process. Therefore. there is no reason to force

the confinement sets of the creator and created process to be equal.

(1) Note that the confinement set associated with a gate in order to enforce
the *-property is different from the confinement set specified by the gate.
The confinement set specifie.d by a gate was int!"Gduced earlier to control the
assi~nt of a confinement set to a pr.cesa cNated with that gate.· The
confinement set introduced above controls the \18e (!If the gate. and prevents
the use of a gate as a covert channel.

Pa~e 66 Chapter 5

The calling of protected subsystems presents two possible communication

channels:

4a) The caller can pass information to th~ callee by the choice of a gate for

the call.

4b) There are a number of ways in which the callee might be able to pass

information to the caller.

The first of these channels can be ~l()C~ in the aame manner as channel

3a above. This means that performing a call to a proteeted subsystem will

never cause the confinement set of a prooess to decrease.

The problem of keeping a subsystem from releasing information to its

caller is shared by all calling !nechanisms. Lampson [La73] shows some subtle

ways in which information can be releaaed in this way. Rotenberg [Ro74J

studied this problem in detail and proposed a partial solution. · This thesis

does not discuss the problem further.

The deletion of domain objects and domain ~ate objects, and the

manipulation of the ACLs or these Objects are ' ·operaUons · that modify the

directory that contains the object being deleted or tbe ACL being manipulated.

Thus the confinement set of that d;l.rectory· is used to control those

operations. [Be73]

From the above discussion, we see that our mechanisms for authorizing

domain changes do not violate confinement. An examtnatioiiof the methods used

to prevent the release of confined infOMDatim reveals. however. that it is

impossible to create a gate that crosses confinem&nt s·ets (i.e. one that is

accessible to a process with a confinement· set that is different from that

specified by the gate}. As with other types of objects in a computer utility,

Chapter 5 Page 67

the confinement seta of domain objects and domain gate objects may need to be

changed by some trusted authority in order to make the system usable. Such

."declassification" J.s needed with existi~ confin.&J~Wmt Jll8(!hani.sms [Ro74,Be73]

as well. The intervention of a trusted authority {person) is needed because

programs lack the ju<ieeaent needed to decide whether or not Ute obje~t bein~

declassified conveye confined information.

5.4 £h901ing »oma.in Qa•ins Huh•itM·

Of the four doaain changing mechanisms tbat have been presented, we see

that none serves well both for autboriztQg· proceaa intttattcn ·and prote~ted

s4bsystem calls We ttave already ·Sug~sted one JletlU:>d of obtaininp: a domain

changing mech~i.sm tnat perforJDs both functions: by combintnSJ Partial

Specification with an argument pauir~& meobaniarl similar to those of Jones and

SobroedeJ;'. Sucb aeohan1•s. however, :are BOt easilY implHet'l~ in existing

computer systems.

A second way to obtain a domain changing mectlanism is to -oombine two of

our four mechanj.sms. Using Partial Bpeoif'icati"Ot'f for process initiation, and

Last Component Speci;fieation for calls, we obtain a aecmanism that "Performs

well for process initiation, and provifis some help in passin~ arquments.

These two mechanisms .can easily be combined. Such a combiriatlon does not

provide the argu~t passing capabilities of the mechanisms of Jones and

Schroed-er, but is significantly easier to impl:ement.

Another combination of <llomain cunging mechanisms that ie particularly

attractive is that of Exact Specification for p.P'ocess initiation, and

Appending SpecifiQation for calls. With this cOIIlbina·tion, all processes are

initiated in a domain with a one component Domain ID. Additional components

Page 68 Chapter 5

. ; I';.,~, .,.." - {'

are acquired by making calls to gates specifying those coDJponents. This

scheme allows each authority responsible for a particular domain to validate

attempts to enter that domain with the initial procedure for the gate that is

used to obtain the.component correaponoUlg to that authority. With Partial

Specification, all authorities mua.t agree on."a: s•le initial procedure to be

used in validating attempts to enter a domain. This scheme, however, has all

of the above mentioned problems of the Appendin~ Specification mechanism.
:' ~ •• ' < 'l;. -~

The variable length Domain IDs (which cause substantial complexity in the

implementation of Appending Specification) could be eliminated by restricting

the depth of calls, and thus the number of components that a prooess can
"

... ~ :·' '

accumulate. The current Hultics implementation of ACLs allows only three
". : '~ .. ,

components, and would require substantial btadifioation to increase that
. . .

number. Three components are not enough to implement the Person and Project
.,.· \. '

authorization of Hultics, and allow the coexistence of mutually suspicious

subsystems in a single process. At least four components (Person, Project;

and one for each subsystem) would be required. Any change in the number of

components would also require the modification of the ACLs on objects

currently stored by Hultics.

Because of the p.roblems mentioned above for Appending Specification, and
~fo ;~-.·

because Appending Specification would be very difficult to implement for the

Hultics computer utility, we have chosen to use the combination of Partial

Specification and Last Component Specification for the test implementation.

This choice was made primarily based on the characteristics of the Hultics
-· -.. "

computer utility, and should not be taken as an indication that this choice is

inherently superior.

Chapter 5 Page 69

' .

CHAPTEfi 6

· THE TEST IMPl.EMBif!'ATION

6.1 The Hultios Sxatem.

In this chapter, I describe a test implementation of process initiation

for the Multics computer utility, based on the model of this thesis. The

chapter begins with a brief discussion of the functions performed by the

present implementation of proce~s initiation for Multics, continues with a
J,

description of the test implementatiOl'l, and concludes with an evaluation of

the test implementation. For this discussion, It is assumed that the t•eader

has some familiarity with access-control-list based protection schemes,

segmented virtual memory systems, and multi-level security systems. No

detailed knowledge of Multics is assumed.

The Multics process is implemented as an execution point in a segmented

virtual address space. The segments are organized in a hierarchical file

system. Each reference of a process to a segment is validated by three access

control mechanisms: the Access Control List (ACL) mechanism, the Ring
; .. ' .. :~J ' _,,·

mechanism, and the Access Isolation Mechanism (AIM).

The ACL mechanism implements a list oriented protection scheme with
i .• ·.

multi-component Principal IDs. The two currently used components stand for

Person and Pro1ect, two independent authorities that must authorize the

creation of a process. The ACL mechanism is hierarchical, in that

modification of an ACL for a segment or directory is controlled by the ACL on

the directory that contains that segment or directory.

Page 70 Chapter 6

,.,;

The ring mechanism provides 8 protection rings within each process. The

sets of segments that can be read or written in these rings are linearly

nested, with ring 0 being the largest set. The ring mechanism is used

primarily to protect the Multics operating system.

The AIM mechanism implements a multi-level security system that attempts

to prevent the flow of information from a high classificati9n to a lower

security classification. The technique . used is ~o p~event operations that

spread information, as in our model of conf~ne.aent -.echani•lls. The security

classifications used are a combination of a level and a compartment within a

level.

Process Initiation in MYl~+QI!

There are three ty.pes of processes cr• ted by Hul tics:

1) Interactive processes, which are created to serve a user at a terminal.

2) Absentee processes, which perform a series of operations for a user from

a previously generated script.

3) Daemon processes, which perform system functiQns and cQIIIIIUnicate with

the operator.

All of these processes are created by a privileged process known as the

Initializer. (The Initializer is one of the Daemon processes and is itself

created when the system is initialized.) I will now discuss briefly how eaCh

of the five functions of process initiation are pertOMDed by Multi:cs.

Process Creation.

Processes in Multics are c1•eated by the Initializer process executing in

ring 0. A process is created with the Principal ID and initial procedure

Chapter 6 Page 71

------------ ----------

specified by the ID.itializer. A directory for the process in which temporary

segments for the p.erocess will be kept. and several se~nts in that directory

that will be needect to support the process are creat.ed at the time that the
·r'

process is created.

Ruource Control.

The following reso\:lrce control activitfes take place during process

initiation in the oarrent •Multtcs 1Jiplementation:

1) An account to fund the activities of the new process is located.

2) The Initializer determines whether or not the new process will overload

the system and degrade s.ervice to other pro-...a.

3) The scheduling prwameters, which det~e th ·ra~ at wh'ich a process

consumes CPU and memory resources, are determined for the new process.

4) The mechanism that monitors the CPU and memory usage of all processes is
...

informed of th-e newly created process.

All of these actJ.viti.es take place in tbe Initial!~ J)roeess :tn the current

implementation. Additional resources may be given to a process aftAr it has

been created. but such resource allocations will not be considered here as

they are not part of process initiation.

Domain Cbagg1ng.

The concept of a de>main corresponds most closely with the access rights

defined by one Principal ID on Multics. There is no single mechanism on

Multics that controls the Principal ID given to a new proc~ss. This control
. ··. \

is accomplished by a complicated set of programs in the Initializer process

that decide the initial procedure and Principal ID of the process to be

Page 72 Chapter 6

created. An interactive process can be created with a given Prin~ipal ID only

if a user who is authorized to use that Principal ID and has satisfied an

authentication performed by the Initializer requests such a process. An

Absentee process can be created with a given Principal ID only if an Absentee

request is received by the Initializer from a process with that Principal ID.

A Daemon process with a given Principal ID can be created at the request of

the operator.

Authent~cation.

As noted above, the Initializer must authenticate interactive users in

order to determine which Principal ID .to assign to the processes that are
. ·- . ;; ~ -

created for interactive users. This authentication is accomplished by a
,''

password check. Presentation of a correct password entitles a user to obtain

a process with any Principal ID with the Person component that is

authenticated by that password. Each project has a project administrator who

is responsible for controlling access to that project. The project

administrator maintains a list of users who may use his project. This list

provides the authorization for the project component.

EnyirODIItnt In1tial4ution.

The· standard initial procedures for I&t·eraetive, ·Absentee, and Dae110n

processes . perform the following enviroftiiMlnt< in±ttal'iation· funcUons:

1) Initialization of the error condition handling for the process.

2) Attachment of the terminal channel or Absentee script to a command

processor.

Chapter 6 Page 73

The proposed removal of the dynamic linking and name space management

algorithms from the security kernel of Multics would add the initialization of

these mechanisms to environment initialization. [Ja75,Br75] In addition to

these activities, one function of environment initialization is currently

performed by the Initializer. before a process is actually created. The

Initializer createB a home directory for a process if such a directory does

not already exist. The Initializer creates the directory, because the process

itself does not in general have sufficient access ri~hts to do so.

As can be seen from the descriptions above, the mechanisms of process

initiation for Hultics are highly interdependent. Resource control, domain

changing, and authentication are all performed by the same set of programs in

the Initializer process, and all use the same data bases (a list of authorized

users and their attributes, a list · of authorized projects and their

attributes, and the lists of authorized users for each project.) At least one
f'. -~ ·'·

part of environment initialization is also performed by the Initializer

process and makes use of the same data bases.

In redesigning process initiation according to o.tJr. 'P94~l., we attemp,t~J.t. te

keep these mechanisma aeparate, while •taM.tn~, .t.be functionality of the

current implementation wtterever possible. We wen partioulal'"'ly interested in

showing that process initiation for Hultics can be implemented in a

multi-layered security kernel as argued in the earlier chapters of this

thesis.

Page 74 Chapter 6

6. 2 An Implementation ~ PrQcess. InitiatiQD f2.t tfyltics.

In the test implementation, each of the five functions of process

initiation is provided by a small program module that executes independently

of the modules that provide the other four functions. A sixth module is used

to coordinate the ac'tivity of the other five.· We begin with an overview of

the functions performed by each module, and a brief description of how the

modules interact to perform process initiation,' Later sections of this

chapter discuss.the implementation issues in each of the modules. Appendix A

contains a more detailed description of the programs in each module.

The process creation function in the new implementat'ion is the same as
. -

that of the current implementation. Process creation is performed by the

Initialiter process in ring 0 as before.

Resource control in the test implementation is also very similar to that

in the current Multics implementation. '.the'four resource control functions

described before are performed in the Initializer process. The pro~rams

providing resource control in the test implementation have been simplified by

the removal of code that interpreted input from user terminals.

The partial specification mechanism described in chapter five is used to

control domain changing. It is implemented as a type manager for domain and

domain gate objects, and provides functions that create and interpret these

objects. Domain and domain gate objects are implemented as segments that are

accessible only in rings 0 and 1. (These will be referred to as ring 1

segments).

In the test implementation, authentication is the responsibility of the

initial procedure for a domain. The logger, which initiates processes for

interactive users, authenticates each user who contacts the computer utility

Chapter 6 Page 75

records the result as a forwarded authentication. The for service and

standard initial procedure for interactive processes uses the forwarded

to detet•mine whethet• or not the user is authorized to use the authentication

process. A security conscious user can write his own initial procedure, with

whatever authentication mechanism he desires.

Forwarded authentications are also stored in ring segments. They are

managed by the authentication forwarding mechanism. The authentication

forwarding mechanism restricts access to the forwarded authentications for a

stream to those processes that can read or write that stream.

Environment initialization is performed by the initial procedure as

before. In addition to the functions described earlier, the standard initial

procedure also scans the forwarded authentica.tions as noted above.

In addition to the above modules, there is a coordinator module that

coordinates process initiation. The coordinator serves as an interface

between modules, which allows the modules to function independently. The

coordinator gathers information from the resource controller, the partial

specification mechanism, and the process that requests process initiation (the

creator). The coordinator distributes this information to .the process creation

module and the initial procedure for the new process. The information is held

in a protected data base while process initiation is in progress.

Figure 6.1 illustrates a typical process initiation.

Page 76 Chapter 6

Figure 6.1

A Typical Process Initiation

Creator's Process Resource Controller's Process

call
call

(Ring 4) (Rinp; 4}

- --- -.-- - - -- - -~'- ._;. -· -- - -

signal

'"

call

(Ring 1) (Ring 1)
.....-- ____,... __

(Ring 0)

Rinp:,O

Chapter 6 Page 77

P1•ocess init:Lation begins when a process that wishes to create a process

(labeled the cr~ator in the figure) calls on the coordinator module. The

creator passes to the coordinator two data structures and the name of a domain

gate object. One of these data structures describes the process to be

created. and the other contains information to be used by the initial

procedure of the new process in performing environment initialization.

The coordinator then calls the domain changing mechanism. passing the

name of the domain gate specified by ·the creator. The domain chan~in~

mechanism determines whether or not the creator has "create" access to the

specified gate. and if so returns the name of the initial procedure and Domain

ID of the gate.

The coordinator records the initial procedure and Domain ID in a

protected data base, along with the two data structures passed by the creator.

The coordinator then sends a message ·to -the res.ource controller (which

executes in the Init~lizer process) that specifies some of the

characteristics of the process to be created (including the initial procedure

and Domain ID). The coordinator then waits for the resource controller's

reply.

If the resource controller approves the creation of the new process, it

calls on the coordinator to complete process initiation. The resource

controller passes to the coordinator a data structure containing parameters

for the mechanisms that schedule the use of memory and CPU cycles by the new

process.

The invocation of the coordinator in the resource controller's process

combines the information supplied by the resource controller with that

obtained from the creator and the domain changing mechanism, to form a

Page 78 Chapter 6

.. ~ .

description of the process to be created. This description is passed to the

process creation mechanism. The invocation of the coordinator in the resource
•,,

controller's process signals the completion of process creation to the
• • • ;J • • ~ • -

invocation of the coordinator in the creator's process.
. ~

The above'overview leaves many unanswered questions about the functioning
·_;:·::!tr.: , .

of the modules. Later sections of this chapter describe each module in

gl"'eater detail, and consider the iiaplementat.io~· i~sue~>·in each mod~le.

Process Creation.

The proce:~ss crea.tion lllOdule . for., the, t~.t . .,.tm~l,~tati.pn waa taken

directly from the t;)Urrent ~lt~cs. 1mple~J)tat"-~~·· . The set of .funotiou

performed by the prQpe~s creation ll()duu of.; t.h,e ~J'ti'•J)t ~l.mentat~on was

exactly the de~ired :;set.

Domain Cbanging.

As noted before~ the current Multics implementation does not contain a

mechanism to authorize the use of a domain. The Partial Specification
,;·· ';•

mechanism described in chapter five was used for this purpose in the test

implementation. Partial Specification was chosen because it models the two

authority authorizatior1 scheme used in Multics very well. It also required no
')t_ • .

changes to the existing ACL mechanism, as Appending Specification would have,

nor did it require that the ACLs of objects already-in the Multics hierarchy
,,

- :: -~ ..
be modified. The domain changing mechanism of the test implementation adopted

#i ·.• ··;.

the strategies discussed in chapter five to prevent the release of confined

information by domain changin~.
,

The module that authorizes domain changes is small and Simple, and relies

on the Multlcs ACL mechanism in order to perform the authorization.

Chapte1• 6 Page 79

Domain and domain gate objects are represented by ring 1 segments in . the
II'~ '• ;' • •,

Hultics hierarchy. These segments are similar to those used to ~plement

other extended type objects, such as mailboxes and message ,segments.

Access Control List associated with a ring 1 se~nt determines which
'.• :-_ ·, '. ,; ~- ·. ~

processes can read or writ~ that segment While executing !n ring 1. Thus. the
'i \ :: , . ~

ACL mechanism can be used to contrql the ava~lability of d~main and domain
T''. . .. :::: ,

gate objects to processes, just as it was in our description of Partial

Specification in chapter five.

The· domain chan81ng mech2lnism thuS' pr6vides operations to create or

delete domain-and' domain sate 'Objects, lfhil~~CCe$'$ COntroi for these Objects

iS'· perfoMIIed by the aceeMI control· mechihil!lt tor segments. Choosing to

implement domain and domain gate objects has the diaadvarttage't&at each domain

or domain gate object must be allocated at least one pafte J36864 bit;s) ot

storage, while. in fact each domain object requires only 129 bits and each
~ :'

domain gate requires 1260 bits. The inef{tcie~~ u~~ of ~t~f~~ was tol,erable

for the test implementation, but may be a severe groblem in a system
··'·· {'.

that

supports a large number of domains.

A second responsibility of the domain changin(l: mechanism.is to insure the
,• ' > • I .

uniqueness of the Domain IDs in the d~main objects. For this pur~ose, the

domain changing mechanism maintains a data base that contains all of the

Domain IDs in use (contained in domain objects). _,The .data base is .Protected
';'" ·''

by a lock to prevent simultaneous updates that could cause duplication.. The
< - ~ ..- j --->3 -: -·- .

data base is implemented as a linear list of' par~iall.Y specified. Domain IDs,

corresponding to the partially specified Domain IDs that are used in the
. l.

domain objects. The linear list representation was chosen because searches of
~.., : I; I__J , < ., ~-·· ~ "'; ~ > e • .> ! : ; , i"

the data base are infrequent (because domain creation is infrequent) and

Page 80 Chapter 6

because the linear search is much simpler and presumably easier to vet•ify
~ ; '

correct than more efficient searching procedures.

Domain IDs are never deleted from this data base, so that they cannot be

re-used. This means that the Domain ID data base is constantly gr_ow1n&~ , u

more domains are created. The growth was .not a •~•· problem in the test

implementation, because the.amount of spae• reQuired for each- Doatain. ID 1:S

small (56 characters),; and. the creatiion or:1deletion of ·domain objects is

infrequent.

We need not maintain in the Douaain llb<iata.:base any Domain ID that does

assignment of such unused. Pomain, IDa t.o · .. tnew doaair& objeota · . cannot · oaU8fl

confusion.

which of the Domain IDs in tbe Doq•in ID"data baae were actuallY,. in use. S\loh

a check ~uld be inoqffi)Or.ated in tne :J)r~m that sou& the file a.yatq to

verify tq~ integr.ety pt the fi~ system.

In order to implement the multiple au.thor-it.y·authorbation schemeof

Multios, domain objects specifying .. only t~. :Pert!lllln ,,'OOJIPonent ··or only the

Project component are .. ~Jsed. A pi'Ojeot QoaaM1 cbJ,ect. by conventi~n is -kept in

the project directory for t~at project. .TbuJ. the prQd.eot administrator for a·

project can control the use of the project by modify.ing the ACL of •the dot!l81n

object. for ttuf.t project. The person 4omain objeo,ta prf8aent a more difficult

problem, because the h.i~arohical a.o.uss control o.t.:llbllitioe ..ates 1-t ditficalt

to give each u:Jer exclusive control ov..- the ACkot hts d-.in ob.ject. · In our

implem~ntation, tbe pe.t"son doraain-objects .,.. ail~Jc.ept in a single directory·

(>udd>pet•sons). Each t:l~ an ACL tb4t aU.owe :.only tbe eorr•sponding user'e

processes to create gates. Modification ot""tbe·AGL.o.f·a.pers&ndoaain:·Objeot

Chapter 6 Page 81 ..

requires administrative action. This use of the domain changing mechanism is

illustrated by figures 5.1a and 5.1b

Agthentioation.

The test implementation ~·f)rod.des atithent1cati6n forwarding as deScribed

in chapter three. and oonneot:tons ude tht-ough ttie:Arpa Network.

Chapter· three' notes that ~en· :forwarded·· 'autheiiti6at1on should bt:'

accompanied by identifying information, so that the user of a forwarded

authentication can :identify its <htthbr. ··:OUr ·iftq:ffe8f~ntati6n · o'f authehtication

to'I'Warding reoords :the.' PPlncipa.l :~ID ~· '·r11»g j:n\Jlifti'ett ~·~·and .~~ees~ ID 'of th~ author

ud ·.the .time of ·reeC~rdingLfor:eaeh<lfot!ward6d a\t~t'ioation. · The ·Pl'intjfpat IO

and ring number • :.tdenttfy the :di>Min' ;.~ th'~ ·auth~. vh:tle the orocess tD and

time form a unique . i'ndex lor otne· forWarded autbertt~icat-ion; • Althoupn · it would'

be desirable . t~: record ''the ·"i"Pf'>OC~~: that' "Pf-txH.t-ced eadh · "forwarded

authentication, this information cannot tbe'::.~t'Wi!iied).: · ~(l · Mult1'0s ;:,roo;edurei

cannot reliabl¥.ide.nt~ •its•·.oalar-~J).··.:·· .,... ..: ,:•.· u: ...

The forwarded;•·•authenttoattons:., ar& •·stored~ ·'iii ring 1 segments, so that

ac.oes.s to .forwa:rded·,autnentidat1orw;.::IOan ·b& •colltrolled~Orie''such' si~ent is usPd

tor each,,Ar.pa' NetwrJc ~oo·ketr or· ' 1'00&:1 ter'ld1nal : dttarinel ·that actually has

:•. 'i ,A .' .'' <' ' '

·: , The· use, :of ··nne~ · segmlintr:· :fW' ea;f)ll· ·ebatmel · all{,ws · the forwarded

Bl!:ti.hentica tions ·for .each: cbahnel· to: :<tJe "mo~ed· · -iftd~~ntty (yf those · for

ot.Mr channels .• c 'ftnm aj proe.e.ss'~nnt>t'' int&rfe'r-e'W!t:h the ~e of forwarded

a\ltbentioations :for ·aily oaannel t'hat''that· ·p~s'S: cihf' not use. Each forli'8rded

authentication. requ1.res approd.trJately~2000· b!ts; of stoNige·. Thus, up to'' 5000

f~rwarded authen·tioation& can• stot>e<A:··fOr: ea~h chahneL

Page 82 Chapter 6

As noted in chapter three, only those processes that may use a stream
,,·.

should be allowed to read or record forwarded authentications for that stream.

Control of forwarded authentications is accomplished in the test

implementation by checking the accessibility of the stream before recording or

1•eading forwarded authentications. The accessibility of a stream is checked

by requesting the connection status of that stream. The Multics

implementation denies status information about a stream to processes that do

not have access to the stream. . ..
Three strategies were adopted to insure that forwarded authentications

always refer to the current connection of a stream:

1) Each process that has access to a ~tt_....m •Y . ·.del,t• tbe forwarded

authentications for that stream.

2) The forwarded authentications for a stream. are automatically deleted

when that stream is disconnected.

3) A scheme similar to the connection count scheme described in chapter

three was implemented.

AJ1Y process that b~liev~ that the. forwar4~.aut~ent~cations for. a stream

that the process has bee,n using are no lQflPl': . valid . cane thus delete thpae

forwarded authentications. The seoond.~t~gy abov•·4.~ree that a forwarcled

au_thentication nev~r refers to a previol,ls connec~ion•of a stream.

The oonneotioq count is not implement•d e~aotly as, described in chapter

three. Tbis is because we do not want to ma~ntain connection counts for

channels nQt in use, as. there are many apon. cb&nDeU• Instead·, the time at

wtlich the last call to connect a channel wa11 ••de is .wsed· ias :the connection

count of that cqannel. The ti~e 18 expressed wj.th. s~;fi.oient precision that

Chapter 6 Page 83

two connections cannot be made to the same channel at the same time. The use

of the time of connection as the CGnnection count avoids the necessity of
Ji

maintaining information for channels that are not connected.

The implementation of forwarded authentications very closely follows the

description of chapter three. The programs that implement forwarded

authentications are all small and simple.

Authentication Forwarding is used to allow the initial procedure of an

interactive process to make use of the standard system authentication

mechanism. The logger process authenticates .each user who contacts Multics,

and records the result as a forwarded authentication. The initial procedure

of an interact! ve p.roeess ehoo8ea ·whether or not' to believe · .. th'e forwarded

authentication.

Resource Control.

The resource controller for the test implementation was adapted from
"! ·~ .

current Multics implementation of process initiation. The Multics resource

controller was adapted to communicate with the coordinator module (described

later) r-ather than with a terttr1ha1 ehanfttH, Abiseftt&e' t-equest, or the operator.

This change did not affect the. fun~tion performed bj tt\e resource controller,

bu.t merely changed its aource of' 1nf'Oi"iftat1mL

A second series of ohan!M -s made> to· maRe tt\e 'resource controller

reject a process creation request that contai~d unaccei;table parameters,

rather than attempting to correct those parameters~ ·This change was mad~

primarily because the ruc>urce contl"olle!' cannot alter some paratheters, 'such

as the initial procedure and· domain of a neif process. This ctiange'does not

alter the resource control eonstraints entorded b1 the·rfisource·controller. ·

Page 84 Chapter 6

The resource controller makes use of three privileged operations in order

to implement resource control constraints.

1) The resouroe controll:.er is allowed to lllOilJitor ·the CPU .and taemoey · usage

of all . processes.

2) The 1•esource controller can destroy any procen ...

3) The resource controller determines. the scheduling p8remet:ers, ·,which

partially <leteM!Qne the rate at~ pr~s ooneulMPresouroea·;.

These operations do not allow the resource controller to violate access

control constraints, as shown in chapter 4.

The Multics resource controller implements a very complex set of resource

control constraints, which are designed to.give each user a fair share of the

computing resources of Hultics. The fact that this complex set of constraints

can be implemented with only the above three operations suggests that our

model can be used for many resource control policies.

The resource controller is a very complex set or programs. Some of this

complexity arises from the fact that the resource controller has been adapted

from the current Multics implementation, which had other responsibilities in

addition to resource control. A great deal of the complexity. however, is

inherent in the nature of the constraints bein8 implemented. It is clear that

removing this complexity from the access control layer of the secur.ity lceri'WJ-1

will result in a simpler certification of tftat layer.

~nvirooment Initialization.

In our model, each domain is responsible for .initializing its

environment. Environment initialization for a domain is J>erformed by the

Chapter 6 P~ge 85

initial procedure~ for that domain, and therefore is under control of the

authority responsi~e for that domain. An initial procedure for interactive

implementation. Thiis initial procedure is intended as ra ,'demonstration of

environment initializaticm :tn. our 110del. : .

. The .J.nitial procedUr.e pe~o.rma all cJf tm. 'environment 1n1t18li2!ation

functions mentioned ab'ove (in!.t.iaJ.iza.tton. ot error< hattdl!.ng anct attachment of

the terminal • stream to the command processor). In addition, it checks the

forwarded authentications for the source of the stream that represents the

terminal channel. The forwarded authentications are checked to insure that the

identity of the source of that stream had been verified by a trusted

authentication procedure, and that the authenticated user corresponds to the

Person component of the Principal ID of the new process. The procedure that

was implemented trusted any process with the same Principal ID as that of the

new process, and also trusted the logger process.

The environment initialization performed by this initial procedure is

very simple and straight forwarded. Notice that any desired authentication

check could have been made, rather than relying on the forwarded
.-\-

authentications.

I.BaCoord.iutor~

The coordinator gathers 1rlfot'mation from the dema:tn aun~ing raech3nism,·

the resource controller, and the process that requests process initiation (the

creator). This information is combined to form the parameters given to the

process creation module, and to the initial procedure of the new process. The

coordinator allows the creator, the domain changing ~~echaniam, the resource

Page 86 Chapter 6

controller, and the new process all to function independently. Sev~ral

strategies are adopted by the coordinator in order to insure this

independence.

Each parameter produced by the coordinator is derived from the

information presented to the coordinator in a well defined manner. Thus the

domain changing mechanism is given control of the Pt•incipal ID, rin~ number,

and initial procedure for the new process, the resource controllel' is given

control of the parameters that detera:tne ·tlt~ rat:e at whioh the new pi!OQess can

use CPU and memory resources, and the creator is allowed to pass additional

parameters to the new process such as int'-or118U:on about the- task that that

process is to perform.

As can be seen from figure 6. 1, th~ coon:tinator :gatbers inforJJQtion in

both the creator's process and the resource controller•' s process. The

creator's and the domain changing mechanism>'s "inputs to.p~ooess- ini~iation are

copied into a ring 1 data base before the resOUI"'Ce controller is notified of a

process initiation attempt. Thus process 1niti.1ltion oan be complet-ed even,if

the crea~r 's process is destroyed b~fc:>re the resoure'e controller acts on · the

request.

The resource controller is given a limited time to act on each request

before the request will be aborted and the information related to it purged

from the- ring- ldata base. The time limit insureS' that the eoordinator will

not have to keep a request indefinitely. It· also insures that the resource

controller cannot cause confusion by delaying a Jjrocess initiation attempt

until the task that that process was to pet?form is no longer relevant.

A unique index is given to each procesa··tnitiation request so that the

resource controller and the coordinator do not become conlused if two requests

Chapter 6 Paqe 87

----------------------- --- ----~-----

are made for processes with similar characteristics or if the resource

controller attempts to respond to a request that the coordinator has ~iven up

on and aborted.

The coordinator is a large program, but is simple in structure. The size

of the coordinator is primarily due to the number of parameters that must be

generated from the available information.

6.3 Conglusions 2n ~ ~ !molementatlgn.

This chapter has shown. how process initiation was implemented for the

Mult ics computer utility. In this l!lection, we compare thu new implementation

with the current implementation of process initiation for Multics, to see the

advantages and disa'd'lantages of our· model.

Three advantages of the model are iDUDediately apparent. The first of

these is the reduction of the amount and complexity of the programs in each

kernel layer. In the current Multics system. any program executin~ in the

Initializer process could pot-entially cf>E!ate a prooe~ w:l;th any desired

initial procedure and Principal ID. Thus all of the programs that execute in

the Initializer process must be considered to be in the innermost layer of the

kernel. These programs include not only all of the process initiation

mechanism. but also other complicated progvams such as those that handle the

scheduling of Absentee requests and those that implement the Telnet and FTP

protocols of the Arpa Network. Also included in the programs executed in the

Initializer process ~ numerous programs that bad been removed from ring 0

with the intent of removing them from the security kernel. In our

implementation, the set of programs in each layer of the kernel is well

defined and in each case smaller than the set of programs that are in the

Page 88 Chapter 6

Initializer process in the current implementation.

Tables 6.1 and 6.2 show the impact of the model on the size of the

Multics security kernel, both in terms of lines of PL/I code, and in terms of

the number of modules. The tables include all of the modules related to

process initiation, and all other pro~' tbat are only included in the

kernel because they execute in the Initializer process. The figures for the

kernel layers are cumulative. (1. e. The figures for the Oeftiai ot Serv1ee

layer include those for the Access Control layert and the figures for the

Confinement layer include both the other layers.)

The first line of each table shows the currentsize of the kernel.

Because Multics currently has a single kernel layer that implements all of the

security constraints, og).y c;me nu111.ber is shown. The .second . line l!epr.e.aents

the size of the kernel layers as measured in the test implementation. These

figures show a great reduction in the access conrol layer, because many of the

programs in the Initializer process need not be included in that layer.

The test implementation did not take tuU., attftntage of the simplification

that could be achieved by making process initiation unprivileged. Many of the

functions performed by the Initializer process in the test implementation 'do

not need to be performed there. The third line of Tables 6. 1 and 6. 2

estimates the size of each kernel layer in an implementation that took full

advantage of the model of this thesis, by removing all Unnecessary projframs
~ .•

from the Initializer process, and by recoding those that remain to remove

functions not related t9_ res0urce con.trol.

Chapter 6

Table 6.1

The Impact of the Model on the Number of Lines of PL/I Code in the Kernel

Current MultJ.cs
Implementation

The Test Implementation

A Full Implementation
of .. ~he Ideas oftnts
Thee is

Unprivil...O ·Aec.e.as
Control

Denial of · Confinement
Service

150 <-·--·-·--- 12000 p----------->
1150 825 10050 10050

6600 825 3500 3900

Table 6.2

The Impact of the Model on the Number of Programs in the Kernel

Current Multiqs.
Implementation

The Test Implementation

A Full Implementation
of the Ideaa of tbia
Thesis

Unprivileced

3

5

17

· ,Aooess•
Control

8

8

Dea.ial:of
Service

43

23

Confinement

43

27

A second advantage of the model is that every process can request the

creation of a new process, whereas only the Initializer can create new

Page 90 Chapter 6

processes in the current implementation. This limitation is the reason that
.. ''. ~

·,

functions such as the Absentee system and the Telnet and FTP protocols of the

Arpa Network must be implemented in the Initializer process. This can result

in a substantial reduction of the kernel, as approximately 3000 lines of PL/I
' .. ,._-~ ··-

code are used inthe current implementation to provide these functions. These

functions, and any new function requiring the creation of processes, need not
•'<' .· :~'

be performed in the security kernel in an implementation of process initiation

based on our model.
.,

A third advantage of the model is that the authority responsible for a

domain can control the use of that domain thr~ugh the 1nitialpro~edure of the
">-1':'

domain. The mechanisms for such control are less apparent in the current

implementation.

The test implemeritad.on does, however, have several disadvantages. We
' .,,. •'

have already noted that the implementation of domain and domain gate objects
·'i : .·'

is very wasteful of storage. At the time of this investigation the H.I.T.

Multics system had approximately 2000 users and
,t, • I '

250 projects, and would

require a total of perhaps 5000 domain and domain'gate objects. These objects
<

would ocupy about 5J of the available permanent storage space. The storage

requirement_ could be substantially reduced if the domain and domain gate

objects were supported by the mechanism that implements directories. The data

contained in a domain or domain gate object could be placed in the directory

containing that object, thus eliminatin~ the need to have a whole segment to

hold the representation of such objects. Such an implementation would add

some complexity to the programs that implement dire~tories. due to the
r· . , .

problems of maintaining the large central data base.

Chapter 6 Page 91

The implementation of forwarded authentications also makes poor use of

storage if each stream has only a small number of forwarded authentications.

This inefficiency i$ tolerable, because few streams are connected. to, Multics

at any one time,. and forwar-ded authentications need be maintained only for

connected streams.

The implementation based on the model is sli-ghtly slower tt)an the current

Multics implementation of process initiation. Each process initiation

requires about .1 CPU seconds more in our i!Dplementation. The extra time is

due to the time required to merge the data structures and the time required to

format and transmit the message to the resource controller. The total time

required for process initiation on Multics is approximately 4 seconds. (Most

of this is spent by the resource controller.) The test implementation is thus

not significantly slower than the current Multics implementation of process
.,)"I ~ '

initiation.

The hierarchical access control structure of Multics is i~ some ways

inconsistent with the access control needs for domain and domain ~ate objects.

This inconsistency leads to difficulty in modelling exactly the authorization

scheme used in Multics.

Overall, the model has substantially simplified the layers of the

security kernel and provided some additional functionality at the cost of

using more storage and CPU time, and of forcing users to be careful of the

effects of hierarchical access control. Because security is an important ~oal

of the Multics system, this cost can be justified. The following chapter will

evaluate the model in the more general context of its use for any computer

utility.

Page 92 Chapter 6

CHAPTEfl7

EVALUATION AND CQNCLQSIONS,

In this chapter, we evaulate our· model as a whole and draw some

conclusions about its usefulness in structuring process initiation. We be$in

with a comparison of the model with two otner .. pl'OC~es :f;niti~tion schemes.

Following ttl is comparison, we s~JIICDarize the •' coflclus~ons ,.bout the. model.

Finally, we discuss topics for further research· in the area of process

initiation.

7. 1 Comoarbon.

In this section, we compare our model with two common schemes for process

initiation: A hierarchical scheme, such as that used in the CAP system

[Wa73], and a scheme with central control such as the current Multics

implementation of process initiation. These are the most commonly used

schemes in current computer systems. We compare the ease with which. these

three schemes can be used to create processes in the following situations:

1} Creating a process to act for an interactive. user at a terminal.

2) Creating one or more processes to carry out ~~ parallel processing

algorithm.

3) Creating a process to execute a subsystem that is mutually suspicious

with its caller.

Chapter 7 Page 93

In the hieraFChical scheme, each process assigns a subset of its

resources and a subset of its access rights to each process that it creates.

Each process is totally dependent on its creator for resources and access

rights. Each process is destroyed when its create>r is destroyed. In the

centrally controlled scheme, ~nltlone~p~ocess is allowed to create processes.

This privileged process controls completely the aecess righ~s and resources
~ .. ' -~ . " ~ . . ~ ·- .:

gr:anted to all processes. The privileg&4 pro~sa never terminates.
·~~ ~')>. •

Process Creation !2£ Iriteractfve Users.

The creation o~ proce~ses tor intera~t!ve use~s was e~tens1velY studied

in chapter three. · Both the mcklel and the cent~ally i ciCritrdlled scheme handle

this situation well. The model, however. offers more flexibility than tl'le

centrally controlled sctleme. With the model, different processes qan b.~ used

to create processes _for users of different terminals. This capability is

useful if the protocols used to talk to different different.

These logger ppooesses need not b,e certified corz:o,ct in qrder to achieve the
' I -• ,' ., . '£""~,'J •)- '~' :-\ •'. • ''• "

security goals of tbe computer utility.
. l . .

Th~ . ~del also allows a se9.urity

~~:mscious user to protect ~i!!selt' .~gainst malfun~t~~s of .1110st of the proct-ss

initiation mechanism.

The hierarchical scheme of process initiation can also easily be used to

create processes for interact! ve users~ The pr6eess; that respond·s to requests

tor pr·ocesses f'rom interactive users · (the., ·~6~r prooess) must. however,

manage all of the resources required by those users and must be. given access

to all objeets needed by those users~ The''hiera.rcti!ca:t scHeme is not readily

extended to allow more than one process to create processes tor users, as is

our model. The hierarchical scheme does not allow the security conscious user

Page 94 Chapter 7

----~----::- --·--~·---~ ·-----'.

to protect himself from the logger process, because the logger has complete

control of the resources and access rights of user processes.

Parallel Progessing.

The hierarchical scheme of process creat~ handles the creation of

prooesses to perform parallel proce.ssiJlg for a sinal~ user .very well. Once an

initial process has been . ereated for an +nt.waotiv.e uqr, that process can

create additional processes for the u.s.er to pertorm parallel pr.ocessing. The

resources and access rights assigned to the .user's first proce$8 oan ~

distributed among these processes as needed.

The central scheme requires that each process be created by the

privileged process. The privileged process may not provide the resources or

access rights needed by the user, as it has less knowledge of the task to. be

performed than does the user's initial process. The central scheme does,

however, provide a better opportunity to control the total number of process

in the computer utility. As noted in chapter four, such control is needed to

insure that the resource controller can respond rapidly to demands for

z•esources. Most current computer systems impose limits on the total number of

processes.

The model shares some of the drawbacks of the central scheme, but

provides somewhat more flexibility than that scheme. Like the central scheme,

our model has one central resource controller that is responsible for all

resource allocation. As before, the central resource allocator must

participate in each process creation, and may not provide exactly the desired

resources. The resource controller can, however, control the number of

processes in the computer utility, as in the central scheme.

Chapter 1 Page 95

Access rights in our model, however, are not under control of a central

authority. The domain changing mechanism provides precise control over the

creation of processes, and over the assignment of access ri~bts-to oroo-esses.

Thus the use of parallel proeesse-s by a user can t:Je controlled by controlling

access to the domain and domain gate obje-cts· for that ·user's domain. The

availability of p~U"&llel p-rocessin~ to a use!" may also depend on- the task to

be performed, as the initial procedures s-peeifie-d by the ~a-bes into the user's

domain may restrict the tasks that the user can perform.

Mutually Suspicious.Subsyatems.

The protection of mutually suspicious subsystems is one of the most

interestin.~ and difficult computer protection problems. Schroeder presents a

mechanism that allows mutually suspicious subsystems to cooperate in a shared

process. This mechanism does not guarantee each subsystem a fair share of the

resources of the process, and thus one subsystem may deny service to others in

the same process. By providing separate processes for such subsystems, we can

eliminate the problem of denial of service.

The model of process initiation of this thesis is ideal for the creation

of processes to execute mutually suspicious subsystems. The domain changing

mechanism allows the owner of a subsystem to control the calling of that

subsystem, while the central resource control mechanism allows the resources

of the caller and callee to be separately managed. Thus neither the caller

nor callee need trust the other.

In the central scheme, all processes are created by the privileged

process. Thus each creation of a process for a protected subsystem involves

communication with the privileged process. The privileged process must

Page 96 Chapter 7

implement some control over the creation of processes for protected subsystems
.. - ~

similar to that of our domain changing mechanism. There must also be a secure

communication mechanism that allows each process to communicate requests for

processes to the privileged process. All protected subsystems must trust the

privileged process to provide the correct access rights and resources. The

central mechanism allows the caller and callee to be independent, ' as does

model.

The hierarchical scheme for process initiation is the most difficult of

the three to use for the creation of a process for a protected subsystem.

Because in the hierarchical scheme a proceaa is totallr dependent on its

creator to provide resources and access rights, a pzoocess cannot directly

create a process for a subsystem with whi.ch it is mutually suspicious. Each

process must instead appeal to some process tha-t the subsystem to be executed

trusts.

Figure 7.1 shows a process hierarchy including two processes that are
r

mutually suspicious. Subsystem X (in process 3) could not directly create a

process for subsystem Y, because they were m1,1t1Jally ,CJUOPicious. Subsystem X

had to locate a process that both it and subsystem Y t!ruste9 (process 1 in the

example) to create the process for Y.

Chaptez• 7 Page 97

Figure 7.1

Hierarchical Process Creation for Mutually Suspicious Subsystems.

As with the central scheme, secure communications are needed, and each

process that creates processes for protected subsystems must implement some

control scheme. If only the process at the top of the hierarchy creates

processes for mutually suspicious subsystems, then this scheme reduces to the

centrally controlled scheme. The hierarchical and central schemes for process

initiation are both more awkward to use for the creation of processes for

mutually suspicious subsystems than the model of this thesis.

Page 98 Chapter 7

. • .< .• ·~ •

1.2 Conclusigns ~ ~ Mgdel.

In this section we summarize the advantages and disadvantages of our

model. Some of these observations have been discussed at length in other

sections and are only briefly mentioned here.

As can be seen from the preceding section, the model handles the creation

of processes for interactive users and for mutually suspicious subsystems very

well. It provides more flexibility than the other two schemes considered,

while forcing users to rely on less of the process initiation mechanism of the

computer utility. The model performs less well than the hierarchical scheme

for the creation of processes for parallel processing. The model does,

however, provide control that the hierarchical scheme does not. The resource

controller of the model can easily control the total number of processes so

that it can respond rapidly to changing resource requirements, and the domain

changing mechanism can be used to control the tasks for which each user may

use parallel processes.

Another benefit of our model is that it separates the mechanisms that

perform the five functions previously identified: Process creation, domain
,.

changing, authentication, resource control, and environment initialization •
. d.;

This separation allows each function ~o be implemented in a small program

module, independent of the other functions. The structure achieved by using

small independent modules is easy to verify, and easy to modify.

The model also shows the security constraints that can be violated by the

programs that implement each function. Thus we can clearly see which of the

modules must be certified correct in order to achieve the security goals of a

given system. In the test implementation for the Multics computer ·utility, we

Chapter 7 Page 99

saw that the siz~ and complexity of the programs that must be certified to

achieve the security' goals of Multics are both reduced in the implementation

based on the model.

Another benefi·t of the modularization of the model is that it allows any

process to create processes. Unlike the hierarchical scheme, the sets of

resources and access rights of a process are not restricted to be subsets of

those of the creatorof that process. Thus any application that requires the

creation of processes can easily be implemented in a computer utility using

our model, without mbdifying the process creation mechanism, or the security

kernel.

One of the primary drawbacks of the model is the problem of maintaining

the domain and domain gate objects for the domain changing mechanism in an

efficient manner. In our test implementation, we chose to use very simple

management techniques that wasted a large amount of storage. Objects with

small representations are inefficiently supported by current hardware

technology. This f~ces the implementor to abandon the hardware protection

mechanism for small objects if they must be efficiently implemented.

Providing equivalent protection in software greatly increases the size and

complexity of the programs that manage such objects.· Newer hardware

organizations, such as that of the CAP processor [Wa73], make better provison

for small objects.

A second drawback is that the controls provided by the model over process

initiation may be somewhat awkward to use. We saw in the test implementation

that the hierarchical access control mechanism of Multics made it difficult to

give each user complete control of his home domain. Each user must be very

careful in creating domains and gates. The accessibility of all of the

Page 100 Chapter 7

---- --···-·-~- ~-~·-·
- • . ~.).; ' .f•

directories above a given object must be considered in determinin~ the

accessibility of that object.

The initial procedure of a domain must also be carefully coded to ensure

proper use of that domain. The authentication forwarding mechanism allows the

initial procedure to trust a central authentication mechanism to ensure proper

use of the domain. Our model achieves a smaller and simpler security kernel

by allowing the user to protect himself. Thus there is a greater probability

that the protection facilities of the computer utility will be misused and not

provide the desired security constraints.

Finally, the argument that authentication and environment initialization

can be removed from the security kernel in our model is someWhat deceptive.

Clearly, in the test implementation the security of the entire system depends

on the authentication and environment initialization performed by the initial

procedure used to enter the Locksmith domain. The existence of such

privileged domains forces all users to depend on the programs that execute in

those domains, much as the security of the entire system is dependent on the

compilers and editors used to produce the programs of the security kernel.

The privileged domains are infrequently used, and auditin~ the use of

privileged domains may be sufficient to provide security.

Chapter 7 Page 101

7.3 Topics f2t Furtner Research.

This thesis leaves several problems in the area of process initiation

unsolved. In this section, we briefly describe those problems.

Our model identifies five independent functions of process initiation.

The test implementation demonstrates one way in which these five functions can

be coordinated to :perform process initiation. We did not explore extensively

other organizations. (One such organization would require that each process

begin execution in the domain of its creator. All domain changes would be

accomplished by cross-domain calls. Such an organization may provide an

implementation of process initiation that is even simpler than that chosen for

the thesis.)

This thesis did not consider many of the problems associated with

allowing users to create processes. We did not present a resource control

scheme to insure that receives a fair share of the available resources,

independent of the number of processes that he is using. The resource control

mechanism of Multics does not provide this guarantee. Developing such a

resource control scheme, and demonstrating that it can be implemented in our

process initiation structure would be an interesting research project.

The thesis presents a novel authentication scheme for confine~e~t

systems. The test implementation did not test some of the ideas presented.

In addition, it is not entirely clear how this scheme interfaces with

authentication mechanisms based on encryption. A recent masters thesis [Ke76]

investigated the use of encryption in providing secure communication channels.

The protocols developed fit well with the authentication scheme of this

thesis. Some further work may be needed, however, to bring together all of

the ideas about authentication in these two theses.

Page 102 Chapter 7

AE~ENlllX A
DETAILS OF THE ntPLEMEN1'Afl{)N

This appendix presents a more · dtttcti~d deaort.pt.ion ,-.of. , ~ test
implementation than is given in the t~t. The awendix -is or,;anized in
sections, each secti-on d"'voted to one.,ef th• f1Qietiau of, prooeu initiation
discussed in the text. Eacb sect!~ dQ'Cf"i;bee:til&· p~ms taat U.l•ment the
corresponding function and the dat& structuresH''tbat: . are · ·.\fHd.· bY'' those
programs.

Each of the programs described is a PL/ 1 prooedur~ :.PQ&sib.J.Y. ~
multiple entry points. The function performed by each entry point is briefly
described, along with the function of the entire program. The contettt• .of,_;;ttte
data structures are deacr1-bed, but not tee ,t-.aU•d !'ormat. .. '•• ..

Appendix A Page 103

Process Creation.

{!rogrps :

hphcs_$create_proc:
This is the &Jlltry to the Pf'O«NO -that actually create processes. As
stated in the text, this fUnction of process ·initiation was taken from
the current implementation. This program takes. two data structures as
ar:gtlments, c...-.te.;.:.info, an4 pJ;-tmsg. 'l'b4t or$ate~tilfo 'structure describes
the proceaa t.d · be oreated and is d&MJrttl&d be-loW, while the pitms~
structuf'll is ri~ •uaed ·dllr~ prooen · c,...~t'<m :UH~' · is passed to the
prosr-aa :t:aat ~Mtrf'ot'll •nvir.,..nt• ittltlel'i~ion. 1'be piitesg structure

' will ther.efore be GMcribM in ttae ttJW!lr0111Ntnt 'ltlit·ial!zation section.

Nt Strqgt.ure:u
'::-

el"eate _into ..
The create_info structure ooatain-a the follovtnc·int"ormation:

Principal ID for the new process,

Initial and highest ring numbers for prooeas,

AIM clearance for process,

Maximum AIM clearance for process (not respecting the li11it requested when
the process was created),

Audit checking flags,

Process ID for new process {half specified by creator and half filled in by
process creation) ,

Process ID and trouble report channel,

Pointer to and length of the pitmsg structure for this process,

Record quota for storage in the process directory for the new process,

Location and maximum length of the linkage offset table. combined linka~e
se8lllent , and known segment table for the new process.

Scheduler work class for this process.

Page 104 Appendix A

~nvironment Initialization.

Programs:

user init_admin_:
This is the first program that gets called in the user rin~ in a newly
created interactive pro~8. ~t is, ·&ni ..-bl~; ;laniJWla fl!"'JJnuJ:· whose
only function is to call user _real_init..,.admin_ and process_overseer_.
These calls are performed because the first p.-ogram oalle~:ktn a process
cannot return until the process terminates, and therefore leaves a frame
on the stack for the life. of the process. ls , ·.00· , ,c£ j tbe ' lftmk . of
environment initialization as is pOSsible is done in programs that can
returp and th,us re~~ thc:dr;. ~taQk, (t'Nie. · · ; , ,

'.,. ,_·_

user_real_init_admin_:
This program obtains a pointer to the pitmsg structure for .tta.. pr,~aa.
(This structure was placed in the process directory by process creation).
The pro~ram also initializes the procesa 'a co....,•t.1UJtdlanrtel ·t,o; the
user that requested the process, and finds the system process_overseer_
program, or a user specifif)4 pp~e»A!PIIr.~ ... u.,.~l~t:Ladmln~
also establishes error handlers for certain error conditions that are
handled by the same programs t~u~ -~; lifec:~· Rf: t..;a,~:pl'oeeas.
user_real_init_admin_ makes use of the information in the pitmsg data
structure that is described be,l.ov. . :;;. 1: '

process_overseer _: . ,, , u;, ·, ,.
This is the standard initial procedure for interactive processes. It
first estab;J,iabes ' ha~.4~~r for :~:Y f!r.r~JOMd:UMP~t'~~-:~oecur·, .dur.ing
the life of the process and are not handled by other pr~••~ lben, it
scans the list of forwarded authentications for the communication channel
of the process. If an autbentiof't~oQ,ttl&~0.,,wv·: ~trf~: :either by· a
trusted system procedure, or by a process with the s-.e Principal ID as
that of the new process can be found, and if that authentication
identifies the correct user (the one who matches the first component of
the Principal ID of the new process}, then execution proceeds. Otherwise.
the process is terminated.

If the authentication check is successful, then process_overseer~
prints the system message of the day, and eXecutes the users "start up•
commands. process_overseer_ then calls the command listener to wait for
commands from the user.

Appendix A Page 105

Data Stryctures:

pitmsg
The pitmsg structure contains the following information:

Process type (:tntef'at)tive • absentee, or -daearon),

Home directory,

Process creation :time,

Login time (may tte different f1"0111 above 1.f seveNl piroceas are created for a
session with.one user),

· Login line,

Name of tel"'linal obatmel,

I/O JDOdule needed to use tel"minal · ehunel,

AIM access class of tet'lblnal ~&1,

System control attributes of this process,

Load control information for this process.

Summary of previous U8age of the processes accoUnt (supplied by the resource
con troll&.-~,

Add! tional infor~~&tion for· absentee processes.

Page 106 Appendix A

Domain Changing.

Programs:

dm_:
dm_ is a gate used to, call the do~~n ~pd QOII ... ~n S8~e 9bjec.t ~tanagers.
Below is a list or the entries to om~_apd Jh~ procrallls thatf,th~~ call.

entry program called

dm $create domain
dm:$createJate
dm_$interpret_domain
dm_$1nterpret.Bate
dm $delete domain
dm=$delete:gate
dm_$add_dom_acl_entries
dm_$add_gate_acl_entries
dm_$delete_dom_acl_entries
dm_$delete_gate_acl_entries
dm_$1ist_dom_acl
dm_$list_gate_acl
dm_$replace_dom_acl
dm_$replace_gate_acl
dm_$make_process

domain_manager _:
This program is the manager for o~jects ~r · ttPe :4.<?~•~Q,kand ,doJ!Uli~ ,gate.
The program has several entry points th•t ll1o1¥"tl'ie creation, deletion.
and access cont~ol list manipul.at ___ iof! ._Q.f ~)lese .Q~Je_ qt" The. PJ7_9~"" · l.l~~~
the domain, domatn_.ate, and d01Jlain ... l1st. -~_tru~tt;tf.e_, d~u~,cr,1b6d be~ow ~

' . ~ . ,. ~. - . '

'. :;,
domain manager $create (lomain:

Thii' entri-'P01nt -creates a dodiain'object. The entry' poirit takes the
directory pathname and entry name desired for the domain object to be
created, the desired ring number, and the desired Principal ID. The
Principal ID is checked to insure that it does not duplicate a previously
specified Principal ID in any component. For this purpose,
domain_manager_ maintains a list of all Principal IDs currently in use in
the domain_list data base. . If the Principal ID is acceptable, then a
segment is created in the specified directory with the specified entry
name suffixed by ".domain". This segment is accessible only in ring one
and contains the domain data structure described below.

domain_manager_$create_gate:
This entry point creates domain_gate objects. It takes as arguments, the
directory and entry name for the desired domain gate, a list of domain
objects that determine the Principal ID of the gate, a ring number, an
AIM authorization for processes created with the gate, and the name of an
initial procedure. If the set of domain objects correctly specifies a
Principal ID, then a segment is created in the desired location with the
desired name suffixed by ". domain_gate". This segment is accessible only

Appendix A Page 107

in ring 1 and is used to contain the domain_gate st1•ucture described
below. The gate specifies the given initial procedure, the maximum of
the caller's ring, specified ring, and the ring contained in each of the
specified domain objects. The AIM clearance spec~fied by the gate is the
minimum of the caller'~ clearance,,, th~ sp•ciried clearance, and the
clearan,c\s or all of the domain objects.

domain_manager_$interpret_gate,
doma1n_manager_$1nterpret_domain:

These entry point's return the information contained in domain and domain
gate objects, pr<?vid~a '· tbat .· t}'le ·oi}ler has the proper access ·(p ror
gates, and c tor d<?liJains). ·

domain_manager_$delete_domain~ domai~~~na~~r_$delete_gate:
These entry points delete domain and·dom-.1n_gate objects.

domain_mana~r-$add_dom_acl_entrie~,
domain_mariager_.add_:gate_aol_entries,
domain_manager _ $4e·~ete_:.dpm_acl..._1mtries,
domain_manager_$del:ete.,$ate_acl_entr1es,
domain_manager _$li8t_:,dom_ac+,
domain_manager...,$list_gate_acl,
domain_manag~r_$~place_gate_acl,
domain_manager ..:,$replace~dom_acl:

These entry points perform ACL manipulation for domain and domain gate
objec~_s. , !.hey . have similar interfaces .. to . the. entries· in bas_ that
perform ACL'manipu.latiori for segments.

' . . . -

create_Ciol!lain, create_gate, dele~_domain, delete....gate, stat\ilS...;.domain.
status_gate, lis't_acl_doaiain, list_acl_gate ~ set_:aol_domain, set_acl_~rate:

These are all entry points to a program that implement~.user commands for
manipulating domain and doma.in gate objectst 1'J'ley wp.l 'i:lo,t be described
·in detail~-

Page 108 Appendix A

Data Structures:

domain:
The domain structure is used to implement a domain object, and oontains
the following information.

Person component of Principal ID for this dom,ain (• means unspecified),

Project component of P1•incipal ID for this domain (• means unspecified),

Ring number of domain,

Creation time of domain.

domain_gate:
The domain gate str.ucture is used to implement domain ga~es and contains
the following inforution.

Person component of Principal ID of the domain of the gate,

Project component of the Principal ID of tbe domain of the gate,

Ring number of the domain of the gate.

AIM authorization specified by the gate,

Initial procedure of the gate,

Flag indicating whether or not the initial procedure should be called before
the I/O attachments and static conditioa handlers of the process are
initialized (before user real init aclaia is called). - ~ . - ~ ~

domain_list:
The domain_list structure is used to keeP a. record of the Principal IDs
currently in use. It has a header tut,.,8ntains a lHk and the nU!Iber or
entries. Each entry contains the following information:

Person component of the Principal ID,

Project component of the Principal ID,

Pathname of the domain object that specifies this Priacipal ID.

Appendix A Page 109

Authentication Forwarding.

Pro&rw:

asm_
a sm..:.. 1s a sate wsed to aeeese the authentiotltion "forwarding meotulnism.
Below is a list of entries to asm_ and th~ programs,that they calL

entry program called

asm_$tty_assert
asm_$tty_read_assertions
asm_$tty_delete_assertions
asm_$ncp_assert
asm...,$nllP:.;..read_asl!Jert.1ons
asm_$ncp_delete_asstartions
asm_$priv_net_assert

assertion_manager_$tty_a~sert
a.ssert1on_manatter_$ttyftad.,;,.~ssert1ons
assertion_.anaser_$tty_delet~-assertions
assertioa_manager _$nop as.sert
as~ion ·ama~ . fntip~ats 'assertions
assertion:--ser =~~te'"_ai5aert16ns
assertion •nager *'>riv net assert

.. _. '~·.~··

hcs_, net_, netp_: .
These are thJe' gates tht'ough which the primitives that manipulate local
terminal channels and ARPA network channels are reached. Several e-ntries
in these gates were changed to caH't:~trte• fh ~'tttY- lnatftad. Thi~ ·is
done to main~in the index data bases used by r1tty , and to notice when

.;>.- ' .._~ ·~ ,.'!" .,. ~ ·"'' '•. • .• .., . ~· •• • . • ; . - ~

these channels are connected and· <ft'$~ebt«d~· "thti~ toll'bWing entries
were changed:

entry

hos_$ttyJ.n<!ex
hcs_$tty_order
net_$ncp_a'Ctivate
net_$ncp_connect
rwt·; $flop: orrder
netp.;..$~tv_net_actiwrte

program called

r1 tty .$tty 'ind'ex­
r1~~Y~
r1tty_$ncp.:..activate
r1tty_$ucp_connect
r1ttj ·~· or• ·
rtt.oty-• ... r1; n~ · ~t1'viattr _;..v -

. ·: ~

assertion_manager _: .
This program manages forwarded · autberttf~ations". It does so by
~~~aintaining a segment for each channel connected to the system containing 
the forwarded authentioations for ttiat,: o&aiit•'i .·l< i ti tO'Miat of the.&e 
segments is described by the assertion seg data base. These segments are 
k~pt in the .· · dl:r•eoterte·a"'" :>ayst•m:eontrot:'1')aa~tions)t t y _se~, and 
>system_control_1 >assertions>ncp_seg, and are accessible only in ring 1. 
There are three entries to assertion_aanager~ for each runetion. one for 
local channels, one for network obannels, and one for privileged 
manipulation of network channels. 

assertion_manager_$tty_assert, 
assertion_manager_$ncp_assert, 
assertion_manager_$priv_net_assert: 

These entries record forwarded authentications. They take as input the 
name of a channel, the asserted user name, and an uninterpreted string of 
"extra'' information. They call entries in r1tty_ to translate from the 

Page 110 Appendix A 



name of the channel to the index for the channel needed to determine the 
state of the channel. The state, is t~en obt;ai~ in order to insure that 
the caller t)~s access to t.he channel ari.(1 -that tbe · .. channel is. still 
connected. If these condit.~ons ,a,re J¥t. the t~ded authentication, 
along with information identifying its author. 1a . recorded in the 
assertion_seg for the channel. 

assertion_manager_$tty_read_assertions, 
assertion_manager_$ncp_read_assertions, 
assertion_manager~$priv_net_read_assertions: 

These entries e-xtract the forwarded authenticattons _for a channel. They 
take the name of' a channel, and convert' and veri.fy.itaa.above. If the 
chan.nel is accessible, as many forwarded authentications as will fit in a 
list supplied by the caller. of asaertion_manager_ are ·ret.._rned, alon~ 
with a count of the total number of .forv•rded auth~tJ.ca1;iQna present. 
If the verification of the spe.cified, ()hpnel r.,eais that the channel is 
disconnected, the assertion_ses for'that chaanel 1s 4eleted, -and an error 
code is returned. · 

assertion_manager_$tty_delete_assertions, 
assertion_manager_$ncp_delete_assert1ons, . 
assertion_manager_$pr1v_net_delete_assertiona: 

These entry points delete the forward~ ,_,authen,tioation:s _ for 
They are provided to allow any·· -program that detects 
authentications are no longer valid .. t,Q. .d,ela,te ,, , them. 
verification procedure is used as · before, and the 
assertion_seg is deleted. 

r1tty_: 

a. cttannel. 
that such 
-~ ~e 

appropriate 

This program serves two purposes. First, it maintains data bases to 
translate between channel na~Des and channel ind~a. Second, .it notices 
requests to connect ·dhannels and calis assertion_aanager_ to delete the 
assertion_seg for any successful attempt. It maintains two data bases, 
>system_control_1>ncpxs, and >system_control_1>ttyxs, that are described 
below. 

r1tty_$get_ttyx, r1tty_$get_ncpx: 
These entries obtain the index for a channel name. If the named channel 
is not known to the system, an index of 0, whicn is invalid, is returned. 

r1tty_$get_tty_name, r1tty_$get_socket_num: 
These entries return the local channel name or network socket number of a 
given index. If the index is invalid, an invalid name or socket number 
is returned. 

r1tty_$tty_index, 
r1tty_$ncp_activate, 
r1tty_$priv_net_activate: 

These entries record the index assigned to a channel name. TheY call the 
supervisor to obtain the index. 

Appendix A Page 111 



r1tty_$n$tty_ord«r, r1tty_$ncp_order, r1tty_$ncp_connect: 
These entries- check for orders to conneot .channels. It such an order is 
made, the asS!iM-tion_seg f'or the · ohannei is ·deleted by a call to 
assertion_man~r_. 

Data Structures: 

ncpxs, ttyxs: 
These two data bases are used to PIB~tttain the index mapping. Each 
contains a look' a length' and' a list. of" entr:J.ea giving ~ name for each 

1 '~ ~ •, . "' 

index current'ty· in· use. 

asset-tion_seg: 
An a·ssertion_se·g is maintained for eacb ch~nnel with 
authentications. Ea:oh assert10nJeg_ conta~~s a lock, the 
forwarded authentioat:l:ons, follow~ by a lis;t of 
authentications. Each forwarded authentication contains the 
information. 

Time of recording: of this authentication, 

Principal of the N!cording pPocetiS, · 

Proces:s ID of the recording proce-ss, 

Ring number of the recording process, 

Authenticated user name, 

forwarded 
n!<lmber of 
forwarded 
followin~ 

Extra, unint>erpreted inf-ormation supptied by_ t~~ ~thor of the forwarded 
authentication;. 

Page 112 Appendix A 



Respurcu~ Contrgl 

f!~ograms: 

< ' '~ • c 1 

user_process_manager_: 
The current imPlelllentation of' resow-oe QOntrol tor Hultios was ·~·~~e$\l,~9 

run a~ .,,thtt:, ~a~.,.~l, .. CO~Jtro~~"&un o~.i~: ~'~-,,1 ·~··~ .t.~;e-,aa~tlon. 
user _procesa_manapr_ acts as the resource controller· tor ;~Ia' new 
implementation. It calls on the reaoqroe ooatrol prosra•s ot the old 
implementation to perform specific reaouroe oontrol. r~t.~qpe, .• ~'-' or 
~ho~ .. P"'?~l!f"f c'··f:~e ·:·1 bri•(~Y~i (Jtag~llt4 e.':.1Jh~·:;·¥~t.i .. ·,.-;non. 
use,r_pr;C)O&..,'-"A.q&pf•~ ~(1 a~~~,ot,~~e'ii:tR~ .. t~~s t,r · ~~'-'·· ,.r,~ource 

~:i:!~:::~:.~·:::!!~:!:~~~:.~~~~~i::~l::~~ 
usage statistics for that process. In addition, SOM,-~(. ~h• ,pr,»sr••s 

~:; >~AA .~! t:~oj!!~ .. a!,rni~~:~~~i:e~·~~~t1 ~~u;.~1:r~~::!,~~:~: 
resource control parameters for projects, qaers, and speoit~~ 

u~er •. ~oject: o~p~aiiPftli'· .:•:' ., •. ,, , .. . ,. · · 

U8~~~~!Jn,~i~~n;:r~cit2~~~~;::.u. 9iJt~~~~~-:~ 
process and to abort any process initiation attHpts in P~4R'•a~ ~:_ 

• j • - < {" • ...: ••• • • " ~ ~ ·;.! }~\ ',< • ·, ~ • t' • 

user:o_J.)r()Q.~S_..I!Ul~~J:'..,.$\li>P,l.,ie9ll~~t ;' .·.· . · , ·. ,: :: ... ., . ... .· " : , ... 
· This entry' ·~!nt · responds ·to a · reqtt.,t ·to cr.,~~ .,a,, .P~.oet!·~ It 

establishes an entry in the anawer_table tor thenew:~sa;:and·calls 
on other resource control progra•s to verify that.$!!E.(t,.;~sr.,f0 Jo~q~nt.. ~,to 

~::e ~~~ th~r~:·:~&:!a~0 ·:•:~:!i:?~~r~!r~=ir~:!rr:=t~;:ao~~ 
finish the creation of the nett ·i>~iiesj~ ' "' ~~- · ·. · · · · ·, · ·-

t.J~er ._P.rooess-.mana~i~~~"~"··"J>QIJ,Ve~t: . . , , , . . . , . , , : , . , . . . ,, •.:: . 
This entry po:inc responds ·to events re1evant, ,fe,"'~''·~~-,~ .n•.: that 
process has been created. It is invoked When .... _.a are reoieYed from 
a process • s trouble report event channel, Vhiob ~fi~.,~d -~''· r•~prt 
pr,qpesse~ ~het,)l~Y~; ~@119 . ~~ ,~q.r11.,1tf~;-f1=r·~·, ., .fl .. ~: also 

r:1:~!· ~!!:!::!~·~~r::!Prrt:=~-e~~~::: 
the creator of that process. . , .· 

'. 

;.:; 

Appendix A 
-•,_:.,. 

·Paie 113 



memory usage. There are two entries to lg_ctl_: lg_ctl_$upm_in, which 
is called by user_process_manager_ to check a process before it is 
created, and l&_ctl_$logout, which records the termination of a process. 

': ~ 

loaq_ctl_: 
This· progra~ limits the number of proc~sse!( on the system at any one 
time. 

load ctl $ldad ctl : 
This entry poirlt is called bY lg_ctl_' . for. each requ@st to create a 
pr()Cess. 'tt decides wHether· .·or not to· al1ow'tht! ·hew process to be 
created, and whet!ler or not to ~P~~mp~ exietlnl$ .rifiricesses ·. for the 
proposed new pi-ooess. '· . . . . . 

load ctl $unload: 
. This entry point 1$ oalle~ to recqrd the ,tertiirtation of a process. 

act_ctl_: 
This program records the resource usa~e of ail processes. The resource 
usage information for a particular process i' maintained in the PDT entry 
corresp~nding t~ the person a~d pro.ject_of''tl'l•~-~~· ~tti'ncipal ID. 
There are seve~l entry point~ to aqt_ctl_. 

act_ctl_$check: 
This entry point checks to see that a valid ~ccount exists for a proposed 
process. It al.so checks that the acc6unt ~f·~~· p~o§'§ed: process is not 

.· yet. out of funds. 

aot_ctl~$open_aocount: 
Thls entry point opens an account for updates. ·. It IDU!t be called· ·before 
acooun t for a 'lfrotless can be lnit ill ted. · 

act_ctl_$cp 
This entry point instructs act_ctl_ to beg:p'l1DOnitoring the_ resout>ce 
usage of a process. 

act_ct1_$update: 
This entry point updates the resource usage st,tistics for all processes 
being DIOni~ored. lt 'is called, per1o8ic:fR11y'in,-~ot'd'$r to keep 'records up 
to· date frf tne event -Q't a system fai1ure. .. ' 1

'' • 

act_ctl_$dp: 
This entry point informs act_ctl_ that a process has terminated and that 
it should no longer monitor ,that process. 

act ctl $'close account: 
This- ~ntry..,.. Point closes an ~tmou'!tt and makes' it unavailal>le for updates 
until it is re;..opened. r 

cpg_: 
' This pro~am constructs the ct>eate_info and pitlllsg structures for a 

process. It fills in the resource control control items in both 

Page 114 Appendix A 



structures from information available in the anawer_table, SAT, PNT, and 
PDT entries for that process. 

~Structures. 

answer_table: 
The answer_ t~ple. conta;f..ns one entr;¥ per pr.oce:s~ ... apfi ~s uses:t to record 
information ab~ut that prqcess.. It al.so. has· a heaeier · that ~~:>ntains 
miscellaneous information and will not be descl"lbed •. "Each ·answ~r _table 
entry contains the following inf.orm•tion: 

• • ••• • ' ~;:' ~· 1 

A state, that indicates whether the eJltry ~~ free, in u~e by pr~ceas 
initiation, or 1.,1sed by a process .that hcas already been created, 

The sizes and locations of the linkage offset table, combined linkage 
segment, and known segment table for this process. 

The trouble report event c)'lanne.l, 

The process ID of the process, 

The time at which the request for this process was received, 

Miscellaneous attributes of this process, 

A pointer to the PDT entry for this process, 

The scheduler work class for this process, 

The person and project components for this process, 

The name of the initial ~rocedure for this. process, 

The time of the last accounting update of this process. 

The CPU and memory usage of the prdcese up to theTast upda.te, 

The time to wait before preempting this proce~lftor another. 

SAT: 
The SAT has a header that contains parameters used by load_ctl_ to 
determine how many users to allow on the system. In addition, it has one 
entry per project that contains the following information: 

Project name, 

Pointer to PDT for that project, 

Number of users authorized to use this project,· 

Maximum number of such users, 

Appendix A Page 11~ 



Miscellaneous limits on users of that project, 

Default load_ctl_ parameters for processes from that project.· 

PNT: 
:rhe PNT ;t.s a t!~t ·q:r ·~1\ or'.~th,e' uj!er~~-W:h~_ ~1 4~e. Mf.qt:1cs. tt has one 
e tr er user' . thilt ooritain' .. "ths. fo~tow1'"J 1 1ri'to ' Q:i5ri: . n. y p . ... _•··.,c •. : . _. ..·· s ,, .. _. ,, .... ~ ... 1 :• ·l:'A. _, 

AIM authorization for this us~:·ahd·' ail.' his· processes,·. 

Use.r name. 

PDT: 
. : .·.>.L 

There is one PDT data structure fot,_~a~h..., PrPJ,~~t ... .- Ea<!h PPT contains 
entries describing the users who may lise tb1tt· pt-ciject and oha:rge to' its 
account. Each of these entries has the r,oJ~:~~ing l~t: ...• 

Name of user, , 
' -~ . : "; ·1 •. ' .... , • 

Number of processes that the user_ Ps~f!~~l,>j-_ ~~~~~--' 
; 

Miscellaneous limits on the uf!l~r -~~ P.fOQ~-N.J,e~, . v . t , 

Limited initial procedure for ~ ;~~~.uJ<;ap:.· Q!t; ~~A"!f~e~:t, QY: ._ ~!lfk ,Pf'P,j,ect 
administrator to limit the uaer s resource consumption. This does not 

~~~c:r~~:c~s~~l!~s u~=-P~~r:~ld¥'Q.P.~-~~<J·,t;u~~f#' -~ .~~: :• u~.e . of 

Default home directory ·(Js~dc'oh:l}'Yf proc~:~~· ~~;~tJ~· i:JJJ~n ·f -s~cify ·a home
directory), .::· ~.. ... ··-' !;• .. ·:· ... ,

AIM authorizaAAQrl_ f~""'"'ep,'~ _p,rq~~s~~-~ ••.
i .. · . • . '' ~' '.. -· • ·.· • • . ' "'' \ ' ·.' " :" ·;,'.-t·'

'·'. ",

t!

Page 116 Appendix A

Coordination.

~r.ograM:

proc_creat_:
proc_creat_ is a gate used by the resource controller to call the
coordinator for process initiation. It is a<lQ'eaiJ:tltt only to valid
resource controllel' .proceues. Below. is a lbt. ··of the entries to
proc_oreat_ and th• PI'OIJNIN ·that they 511.

entry

proc_cre~t,.$initialize
proc_crea~~$~ot1fy
proo~creat~$create

program . call,ed.

in1tiate_pr~~~1nitialize
initiate_pJ"OO•-....;taoi;if'y
iottia~_proaess~toreate

in~ti.ate_prpoess_:

initiate...;process_ is the prograJD that pro;v1dea; oOQra!Qation a11100g the
modules ot. · prooetJs. 1ni~ia1iion. ·Tlt.S.·progra.ID, .,._.lee, c~te_41')to and
pi tmag structures, to ~ uaec:J , in cn-eatkig a J)t.rJCJOees ,, 1'1'• data suPPlied
by the domain c~nsing 1180baniatt..: th4t ·1!.....-ce Q()rltro:Her. ,and the
process that req~Htsted w.ooess 1n1t~~OQ-... ~r• . .-. four e¥J"Y. points
to 1n1t1ate...,Prooesa_ that are deaorJ.~ ~ •. · ·

initiate_process_$initiate_process_:
This entry point begins process initiation .. , It:> qan .btt called. by any
process (through -tbe eta.. ga~.) an4 ta.., tbree anguants~: a.~ or~ate_info
structure, a P4~sa s~~Lli'e .•... anc:l tbe ~of' • .~n...,sa~~ oQJeot.. The
entry point dm_$int..-JM"et.;..;,gat.e ia :oau..:t to· cle~ne •~ or not the
calling process has "P" access to the; ~. ancl'- to extract~ the Principal
ID and initial procedure from the gate. The supplied pitmsg and
crea te_info structures are then copied to a· .~.Qted JM.,..nt · ao .. that
they cannot be ~ lf))ile th$ rtts~e J.tOPtroller .lieo4.de:a. w~ber or
not to allott .the proc~ t;o.be ore~ ... ~ ,j~ trpa t~ ~.vc~ures
needed by the ~source . oontrQller · •n: , t~. ·9~4 .. : 4.Jl , • pr_rq ·.·data
structure and sent to the resource ~J.v,. {jN'OU&b .~he ua<e of the
Hultics message_segment facility). · · · ·

initiate_process_ then waits for a •ess-se from the resource
controller, or a timeout. Because initiate_prooess_ executes in ring 1,
this effectively blocks the creating process until the resource
controller is · finished. This blocking reduces the chance that the
creating process will terminate before process initiation is complete.
(The implementation recovers frolli such an occuranoe, but it is unpleasant
and clearly undesirable.) The signal sent by the resource controller
contains an indication of the success or failure of the attempt to
create a process. On receipt of the signal, initiate_process_ returns to
its caller. If the creation was successful. then the creatin~ process
must send a signal to the created process in order to begin its
environment initialization. A new process is blocked until it receives
such a signal so that the creating process can pass resources (terminal
channels in particular) to the new process before environment
initialization is attempted. If the creating process does not send such

Appendix A Page 117

a signal, the resource controller will do so eventually to prevent the
new process from staying blocked indefinitely. initiate_process;;...
maintains a list of all pending process initiation in the pending_creates
data structure described below.

initiate_prooess_~reate:
This entry point is called by the resouroe controller to finish the
creation of an approved proo-.ss. TlM ar~ments ta this entry point are a
create_info structure. a pitmsg structure, and the index of a process
initiation request. The p:itasg and orea:te_info structures supplied by
the creating process for the specified request are found and compared
with thoSe sUJ)plied by the NS0\11"'0& oorrtfiOller. All ot'- th• entrie~ that
represent information SU:,.lied to- tbe :resource controller in· tme pr_rq
message must match. Tkis atohins ta done to keep the resource
controller from becoming confused when requests are timed out by the
creating process. and because some or the resource controller programs
replace 11D&04eptable parallet6t's in a J)rooe'SS ·ot-eation request rather than
rejecting the req:ueat. 1'he r81kruroe oorrtf.'O'l· attJiri:bU:tea are then taken
from the resource oontroller~s pitugancf'oreate_:int'o data structures and
placed in the at1"'1:1<ttut-es coJ)i~d trOll tbOae'tsUpplied by the creating
proce&s. hpbos_tcreate_proo is tben cnilltld 'to ·ctteate the specified
process. If the oreatt.on is 11Ucoeutul, · then a s1~ ls sent tb the
creating process.

initiate_prooess_$notify:
This entry point is used by the rt!lsource ctontroller to abort an
unsatist'aotory request for process lnittatian·. let takes as arguments an
error code aM a rrequeat index. The ewor bbtfe !a signalled to the
creating prooeaa for that request.

in1t1ate_prooesa_$1nitial1ze:
This entry ia used by tb~ resoure& oontrOller to initialize process
initiation. It aborts all pt!lnding requestl!t t'.Ol' J)rooesi!reat and establishes
ttte calling process ae the resource cortt-p()l-ler '(ao that the ai~ale will
be sent to the prbper prOMo).

Page 118 Appendix A

•· \ ·"'

QMA Struqtures:

pending_ creates:

The pending creates data base is used by initiate_process~ to keep track
of pr.octas Cl'~tion reqt.~ests tb.Jlt h•v• .~ ,~ll.e4 to the re~e
controller and a~ anitins approval .. It baa. • header --that contains the
following information:

A lock to prevent simultaneous access,

The process ID of the resource controller for signalling,

The next index to use for a process creation request,

The location of a directory in which to keep pitmsg structures.

pending_creates also has one entry per pen<Jing request.
contain the following information:

A flag indicating whether or not this entry is in use,

The time at which this request was made,

The index of this request,

These entries

An event channel to be used for signalling from the resource controller to
the creating process,

~he process ID of the creating process,

A copy of the create_info structure supplied by the· creating process with
attributes obtained from the domain_gate replacing the corresponding
attributes supplied by the creating process.

pr:_rq:
This data structure is used to pass a request for process creation from
the creating process to the resource controller. It contains the
following information:

The index of this request,

The trouble report channel specified by the creator (the resource controller
forwards trouble reports to this channel),

The process ID of the creator,

Principal ID desired for the process,

Home directory for the process,

Appendix A Page 119

Initial procedure for the process,

Initial and highest ring numbers for the process,

Requested AIM authorization (minimum of authorization in the domain gatP and
the authorization requested by the creatin~ process.

Page 120 Appendix A

Terminal Hagdliqg.

Progrys:

qialup_:
This program creates, pr0Qft41ses for·· users wrtng. ·tlhe TBLNET· protocol of the
ARPA network to use Hulti.ca •. lt, J.a, ·~.1nol~'ded ·.a thiA" desori'J)td:cn of
process initiation as an example of how the process initiation mechanism
can be used.

dia~up_$att•ch:
This entry causes dialup_ to use a network virtual terminal channel. The.
number 9.f su~~ .. ~~~' .U. use at:..,•flf ~e.J'Itl.ne.a: .·the:· number~·~ of
simultaneous TELNET connections that can be supported. When a new TELNET
connection is made to Mult1oa, one · ol·. toe, uusecf v!J¢\1&1 tera:tnal
channels is selected to.be used for that connection.

dialup_$dialup_:
This entry point is ca.M•cl wbeeever a •tPLfieut event' occurs for a
terminal channel. dialup sends a greetinc message to newly connected
channels, and waits for a ~sponse. The response 1-a:;.pa.raedc: as . ·a ·login·
line and the name of a gate to be used to create a process is determined
from that line. Additional 1nfoMUlt;J.on· ill.;: tGe loeia 11•: is used to' N.ll
in create_info and pitmsg structures for a process. dm_$make_process is
called to create a process, and .if a~aetul, oon.trctl· of ttte· virtual
terminal is granted to the new process before the new process is
awakened.

dialup_$process_event:
This entry point is called when a message is received from the trouble
report channel of a process created by dialup_. one ·or tour possible
actions is taken, depending on the contents or that message. The
terminal channel can be hung up (if the process terminated voluntarily).
Another process can be created tor that terminal (it the message
indicates that the previous process was damaged). A new greetin~ messa~e
can be printed and a new login line accepted. Or, an error message can
be sent to the virtual terminal, if the trouble report message indicates
some error, or is invalid.

Appendix A Page 121

~ ~ctures:

ntbl:
Th-is structure is used internally by dialup_ to keep track of the virtual
terminal chm1!8l.:s aurrentl.y 'fn, use •.. 1 :It:'" .._. ·one~ · .ifttt-1 f'or each such
channel Whiob ·eonta:ins: ·tme: tol.l<N1ngl inf~~:· · ·• ··

Terminal name (of the form netxxx),

Terminal state (dialup expected,. login line expected, or hangupexpected).
•- ~

·' ;·

·Event ChMJtel f'of" terminal chan~l event&",

Trouble report channel for process,

bror code ·for· opi'N'at-10113 pet-f'OI"med f'ei"'3 tM.iil C!fttthwel',
:_:. . r ; ·, , 1 ~. ,

Index for· thd..a' ~hermel,

Home directory (taken tr-0. lO!'ift line) ,

Gate name.

Page 122 Appendix A

References

[An74] Andrews, G. R., "COPS- A Protection Mechanism for Computer Systems,"
Computer Sci. Teaqh,ing Lab., Univ. ot W~h~., Technical aepprt 74-07--12:,
July 1974.

[8e73] Bell, D.E., .and L.J. LaPadula. "Seo~e Psoaputer Syete~M~ .A M~them~t.1oal
· Model," The MI}RE Corporation, MTR-25l(.7; · :~1. II, N'O¥ember,, 1973. ·. ·

. ' ' . ': ·_l~.i~" . :

[Br75] Bratt, R. G., "Minimizing the Naming Facilities Requiring Protection in
a Computer Utility," M.I.T. Project,.MACtecbni~lJleport •. T~~156~ 1975.

[BH70] Brinch Hansen, P., "The Nucleus ~ a Mu].tip~~g1"'&11111Sing System,"
Communications Slf..lla !9f J.l, 4 (April 1970) pp. 238-241.

[Di68] Dijkstra, E. W., "The Structure of the •1fi.~"' ffultiP.r,9~a1pdng System,"
~unicatiogs Q.(~ !Ql.ll, 5 (Hay ~68), pp. 341-346. .

r Hu
76 in:~~::'"~ i. ~: ~P:~£!!~~r~re~e!~;i:~~~:~~t~: ":::1:mZ~~!:~S:te~~=:

June 1976. . .

[Ja74] Janson, P. A., "Removing the Dynamic Linker .from the Security Kernel of
a Computer Utility," M.I •. T. Proj~ct MAC Technical Report, TR-132, 1974.

[Jo73] Jones, A. K., "Protection in Programmed Systems," Ph.D. Thesis,
Carnegie-Mellon University, 1973.

[Ka76] Kanodia, R.K., and D.P. Reed, 11Eventcounts: A New Model for Process
Synchronization," (to be published).

[Ke76] Kent, s. T., "Encryption-Based Protection Protocols· for Interactive
User-Computer Communication over PhysicallY Unsecured Channels," S.M.
Thesis, M.I.T. Department of Electrical Engineering and Computer Science,
June 1976.

[La69] Lampson, B. w., "Dynamic Protection Structures," ~ Confsrenge
Proceegings J2., (1969 Fall Joint Computer Conference,) .pp. 27-38.

[La73] Lampson, B. W., "A Note on the Confinement Problem." COIIIJIUn+o!tions Q.(
the !Qt.l§., 10 (Oct 1973), 613-615.

[La74] Lampson, B. W._, "Protection," OperaU.f!S Sxstrep Rtvitw §, 1 (Jan. 1974)
pp. 18-24. .

[Or72] Organick, E. I., The Hultigs SYstem: An §xamipatiop Qt !1! Strugturc,
M.I.T. Press, Cambridge, Mass, 1972.

[Re76] Reed, D. P., "Processor Multiplexing in a Layered Operating System,"
S.M. Thesis, M.I.T. Department of Electrical Engineering and Computer
Science, June 1976.

References Page 123

--- -~-~. -._, -

... <•

[Ro74] Rotenberg, L. J., "Making Computers Keep Secrets," M.I.T. Project HAC
Technical Report, TR-115, 1974.

(Sc12] Schroeder, M. D'., rteooperat1on of Mutually Suspic-ious Subsystems in a
Computer Utility," H.I.T. Project MAC Technical Report, TR-104, 1972.

~

{S075] Sohroeder,.-M •. D., ~$tlgineerlng a ~curity ltern~l for Multics,"
Proou<linls, fifth· SJibCfa1Um 2!1. Ow:at!Da'Svatu· frinciPh!· November
1975, pp. 25-32.

',.

[Si115] Saltzer J. H. and M. D~ Schroeder, 11The Protect'ion of Inrorlllfltion in
~~~~~;da. Sys te.ms, " Pro~i~O, RL,, ~t !Dlll~ 9. (~ptellber 1975) PJh 

[Wa73] Walker R. D.,.H. "~he Structure of·" Well. Protec~ed Computer." Ph.D. 
Thesis, tJrliveNi1ty. of Cambridge, 1913'. · 

; . i ~ 

Page 124 References 



CS-TR Scanning Project 
Document Control Form 

Report # l < 5 -le:.-f f. 7 

Date : Jl:...! JJ I js_ 

Each of the following should be identified by a checkmark: 
Originating Department: 

D Artificial lntellegence Laboratory {AI) 
~ Laboratory for Computer Science {LCS) 

Document Type: 

~Technical Report (TR) D Technical Memo (TM) 

D Other: _________ _ 

Number of pages: 1)-.'f (1J..I -,'I'\ A'"~ 
Not to include DOD forms, printer intstnli::tlons, etc ... original pages only. 

Document Information 

Originals are: 

D Single-sided or 

~Double-sided 

Print type: 
~ Typeo.wter 0 Offset Press 

Intended to be printed as : 

D Single-sided or 

~Double-sided 

D Laser Prift 

0 InkJet Printer D Unknown D Other: ______ _ 

Check each if included with document: 

D DODFonn 

D Spine 

D Funding Agent Fonn 

~Printers Notes 

D CoverPage 

D Photo negatives 

D Other:----------­
Page Data: 

Blank Pages(by.,.lllllllber): __________ _ 

Photographs/Tonal Material (bypege number): ________ _ 

Other en- ..... ipliuo..,.. numberj: 
Description : Page Number: 

-r..rnf(ilf rt\&P '. (I - ll.fi ) U.Ni:t>;;:-1> TITU' f'l.l'"l" J ~ ... IJ..y 

Scanning Agent Signoff: 

Date Received: l'-1 J J I ~5 Date Scanned: _I I 1'-1 '1 ( 
---<l'l?} /v,-' 0 

Scanning Agent Signature: ___ ~--_;;...-+---~-;...::..:=--

Date Returned: _(_II! lli 



Scanning Agent Identification· Target 

Scanning of this document was supported in part by 
the Corporation for National Research Initiatives, 
using funds from the Advanced Research Projects 
Agency of the United states Government under 
Grant: MDA972-92-J1029. 

The scanning agent for this project was the 
Document Services department of the M.I. T 
Libraries. Technical support for this project was 
also provided by the M.I. T. Laboratory for 
Computer Sciences. 

darptrgt.wpw Rev. 9/94 


