PROJECT ATHENA TECHNICAL PLAN

Section E.2.1

Kerberos Authentication and Authorization System
by S. P. Miller, B. C. Neuman, J. |. Schiller, and J. H. Saltzer

KepBepoo; also spelled Cerberus. "n. The watch dog of Hades, whose duty it was to guard
the entrance—against whom or what does not clearly appear; . . . is known to have had three
heads. . ."

—Ambrose Bierce, The Enlarged Devil's Dictionary

This document describes the assumptions, short and long term goals, and system model
for a network authentication system, named Kerberos, for the Athena environment. An
appendix specifies the detailed design and protocols to support these goals, and a set of
UNIX! manual pages, not included here, describes an implementation for Berkeley 4.3
UNIX of both user interface commands and also library interfaces for clients and servers.
The next section of the technical plan, E.2.2, describes a set of network applications that
use Kerberos for authentication.

Definitions

Accounting Measuring resource usage attributable to a particular client.

Authentication Verifying the claimed identity of a client or service.

Authorization Allowing an authenticated client to use a particular service.
Client A program that makes use of a network service, on behalf of a user.
KDBM Kerberos Data Base Manager, a system that maintains and provides an

interface for update of authoritative Kerberos data consisting of
principal identifiers and private keys for both clients and services.

Kerberos Aside from the 3-headed dog guarding Hades, the name given to the
Athena authentication service, the protocol used by that service, and the
libraries used to invoke the authentication and authorization services.

KKDS Kerberos Key Distribution Service, a network service that supplies
tickets and temporary session keys; or Kerberos Key Distribution
Server, an instance of that service.

Principal A uniquely named client or server instance that participates in a
network communication.

1UNIX is a trademark of AT&T Bell Laboratories.

Kerberos Authentication and Authorization System 27 Oct 1988
Copyright [0 1985, 1986, 1987 by the Massachusetts Institute of Technology

Page 2, Section E.2.1 Athena Technical Plan

Principal identifier The name used to uniquely identify each different client and server.

Private key An encryption key between a principal and the KKDS, distributed
outside the system, with a long lifetime;

Seal To encipher a record containing several fields, in such a way that the
fields cannot be individually replaced without either knowledge of the
key or leaving evidence of tampering.

Session key A temporary encryption key used between two principals, with a
lifetime limited to the duration of a single communications "session".

Ticket A record that authenticates a client to a service; it contains the client’s
identity, a session key, and a timestamp, all of which is sealed by
encryption using the service's private key.

The term "principal,” being somewhat formal, is replaced with the word "user” in this
document wherever the context permits that usage without confusion.

1. Introduction to Kerberos

Purpose of This Plan

Most conventional time-sharing systems require a prospective user to identify him or
herself and to authenticate that identity before using its services. In an environment
consisting of a network that connects prospective clients with services, a network service
has a corresponding need to identify and authenticate its clients. When the client is a user
of a time-sharing system, one approach is for the service to trust the authentication that
was performed by the time-sharing system. For example, the network applications Ipr and
rcp provided with Berkeley 4.3 UNIX trust the user's time-sharing system to reliably
authenticate its clients.

In contrast with the time-sharing system, in which a protection wall separates the
operating system from its users, a workstation is under the complete control of its user, to
the extent that the user can run a private version of the operating system, or even replace
the machine itself. As a result, a network service cannot rely on the integrity of the
workstation operating system when it (the network service) performs authentication.

This plan extends the conventional notions of authentication, authorization, and
accounting to the network environment with untrusted workstations. It establishes a
trusted third-party service named Kerberos that can perform authentication to the mutual
satisfaction of both clients and services. The authentication approach allows for integration
with authorization and accounting facilities. The resulting design is also applicable to a
mixed time-sharing/network environment in which a network service is not willing to rely
on the authentication performed by the client’s time-sharing system.

Goals of Kerberos

Authentication

Authentication is not an end in itself, but rather a tool to support both integrity and
authorization. Its basic purpose is to prevent fraudulent connection requests. The goal of
Kerberos is to support both one-way and mutual authentication of principals, to the
granularity of at least an individual user and specific service instance.

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 3

Authorization

Authentication can imply a coarse-grained authorization—for example, some services may
allow anyone who can be reliably authenticated by the local Kerberos to use the service. In
cases where more selective authorization is needed, the goal of Kerberos is to allow
different services to implement different authorization models, and to allow those
authorization models to assume that authentication of user identities is reliable.

Accounting

Given an authenticated client, the goal of accounting is to support either quotas charged
against the client (to limit consumption), e.g. disk quota, and/or charges based on
consumption, e.g. $.01 per page printed. The goal of Kerberos is to permit modular
attachment of an integrated, secure, reliable accounting system.

Requirement Examples

Some examples of network services best illustrate the requirements of user
authentication and authorization:

* Printing—Only members of a certain group may use a printer that belongs to that
group, an expensive and relatively scarce shared resource. On a more public
printer, users may be billed for printing, and may have a priori limits on their
use.

* Remote File Access—Only designated users may perform operations on a given
remote file system or virtual disk. Different users may have different permissions
allowed, e.g. only the owner may write, while others may read.

« Remote Login—Only authorized users may rlogin to centrally-managed hosts, or
to a private workstation.

* Window system—The user of a network-driven display may want to limit the
ability of others to create or manipulate windows on that display.

* Mail—Only the addressee should be able to pick up his or her own mail at the
Post Office.

* Service Management service—Users may be authorized to create, modify, or
destroy records that control various services. For example, system administrators
may have unlimited privileges, while the teaching assistant for a subject may only
be allowed to authorize use of the libraries belonging to the subject. A user may
be able to add or delete his or her own name on a public mailing list, but not to
affect any other user’s record in that list.

Other Requirements Assumed by the Design

* The authentication requirement is two-way. That is, the service learns with
confidence who the client is, and the client, if it wishes, can be certain that the
correct service is being used.

* No cleartext passwords should be transmitted over the net;
* No cleartext passwords should be stored on servers;

» At clients, cleartext passwords should be handled for the shortest possible time
and then destroyed.

Kerberos Authentication and Authorization System 27 Oct 1988

Page 4, Section E.2.1 Athena Technical Plan

» The design should confine any authentication compromises to the current session
or the current user.

« Authentication has a limited lifetime, of the order of a single login session, but
may be re-used within that lifetime;

* Network authentication should go on largely unnoticed in normal cases; the
traditional model of password-mediated login should be the only point that the
user notices that authentication is occurring.

e The design should minimize the effort needed to modify network services that
previously used other means of authentication.

Future requirement possibilities

The following are not currently considered essential, but may be re-evaluated as
experience increases:

* Forwarding of authentications, so that one service can do part of a job, then
invoke another service to complete it, under the credentials of the original client.

« Revocation of authentication or authorization within a login session.

2. Assumptions Surrounding Authentication

Assumed Physical and Operational Security Environment

From a security perspective, the environment will include:

* both public and private workstations. Public workstations are in areas with
minimal physical security; private workstations are under physical and
administrative control of individuals with no responsibility to central network
administration.

« a campus network without link encryption, composed of local nets of varying types
linked by gateways to a backbone net; the local nets are widely dispersed
physically and thus are very vulnerable to security attacks; the backbone and
gateways are in locked closets and therefore are moderately secure.

« centrally-operated servers in locked rooms, assumed to operate under moderate
physical security with known legitimate software;

« a small number of centrally-operated servers, such as the Kerberos authentication
server, that operate under considerable physical security.

Relevant Threats and Risks

The environment is not appropriate for sensitive data or high risk operations, such as
bank transactions, classified government data, student grades, controlling dangerous
experiments, and such. The risks are primarily uncontrolled use of resources by
unauthorized parties, violations of the integrity of either the system’s or user’s resources,
and wholesale violations of privacy such as casual browsing through personal files.

The primary security threats result from the potential of a workstation user to forge the
identity of another user in order to gain unauthorized access to data and/or resources.
Since a workstation, including its operating system and network interface, is under the

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 5

complete control of the user, the user can attempt to masquerade as another user or even as
another host. In lieu of the authentication provided by a centrally administered time
sharing system, an authentication service is required to counter such attempts.

Privacy of data being transported across the network is currently a low priority, except
where it is necessary to prevent subsequent violations of integrity, e.g. the transmission of
passwords. When the cost of providing communications privacy can be significantly
reduced, it will attain higher priority.

Traffic analysis and covert channels are not an issue.

Assumptions about Encryption

The private-key Data Encryption Standard (DES), when used in single-encryption mode,
is assumed to provide enough security for campus applications that cryptanalysis is not a
significant threat.

DES implementations are available in both hardware and software. Because system-
integrated hardware implementations are not yet sufficiently low in cost, it is assumed that
software implementations will be used for Kerberos except optionally at a small number of
sites (Key Distribution Servers) that do a lot of encryption.

DES implementations may not be exported from the U.S. without special license. For
this reason, the Kerberos design makes the cryptosystem a modular, replaceable unit. The
initial implementation of Kerberos is based on DES.

Global Clock Availability

The design of Kerberos assumes that system clocks are loosely synchronized—within a
few minutes—on all machines that run Kerberos-authenticated services, and that this
global time is similarly available to all workstations that use Kerberos. We do not assume
that all workstations correctly maintain the time, but in order to request authentication
tickets, a workstation is required to maintain its clock within the allowable margin.
Timeservers provide the official time, and other systems synchronize periodically, for
example, at system boot time.

Service Management System

This plan connects with the Athena Service Management System in a several ways. The
Athena Service Management System provides authoritative information for Kerberos as
well as the related naming system.

3. Naming

This plan assumes a means for numbering network hosts and service ports so that clients
may request connection to services, including Kerberos itself. If a naming system for
services is also available, it is important that the service names can be congruent with
Kerberos principal identifiers (defined in the next paragraph) that are used to authenticate
services. In addition, Kerberos clients can make use of such a name service to locate
Kerberos service itself. The design of Kerberos is modular; it can operate (somewhat less
conveniently) in the absence of name services, and it does not require that the name service

Kerberos Authentication and Authorization System 27 Oct 1988

Page 6, Section E.2.1 Athena Technical Plan

itself be secure. A general network name service, Hesiod, is also an Athena development,
described in another Technical Plan section.

In addition to such network host and service name spaces, Kerberos itself defines a name
space of authenticated users and services. For use in authentication the following simple
naming model applies.

Unifying Names

There isn't much difference between a client and a service. In fact, a service that wants to
use an authorization server must be able to authenticate itself to the authorization server
in the same manner a client would authenticate itself to a service. For this reason both
client and service names share the same structure so that they can be interchanged as
necessary.

A principal identifier consists of three components:
* a principal name
* an instance name
* a realm name
all three of which are strings of upper and lower case letters and numbers.

Each different client and service has a unique principal name, assigned by negotiation
with the manager of Kerberos.

The instance name is a label that permits the possibility that the same client or service
may exist in several forms that require distinct authentication; it is useful for both clients
and services. In the case of services, an instance may specify the host that provides the
service. For example, the rlogin service on host menelaus is distinct from the rlogin service
on host tartaros. For client principals the instance can be useful when one wishes to have
different identifiers for different privileges. For example, JLSmith operating as a
class-administrator may have different privileges from JLSmith operating as a normal
user. The usual case is that users operate using a name with the null instance.

To allow independently administered sites, such as Athena, the M.L.T. administrative
services, and the M.IL.T. Laboratory for Computer Science, to inter-operate using Kerberos,
a realm name is defined to identify each such independent Kerberos site. Thus a {principal
name, instance name } is qualified by the realm name to which it belongs, and is unique
only within that realm. Kerberos does not specify any constraints on the form of the realm
name; it can be defined to be an ARPA internet domain name which is itself a qualified
hierarchical name. That choice makes it possible to use the ARPA internet domain name
resolution system to locate the Kerberos authentication service for the realm.

As described below, authentication is accomplished by giving out tickets. Tickets are
labeled with the name of the realm for the service for which they are issued. Principal
identifiers included in tickets include a non-null realm only if it is different from the realm
for which the ticket was issued.

Workstations and service hosts have network names and network addresses, for example
those specified by the ARPA internet domain name system.

Each application protocol using the authentication service binds Kerberos {name,
instance} tuples for services to addresses using whatever means its chooses. It may use, for

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 7

example, the internet domain name service or the Hesiod service and cluster location
system.

Specifying names

The primary interface where the user will have to be concerned with names is when
"logging in" to a workstation. Normally the user would simply enter his or her principal
name, which might be the user’s last name. Optionally, the user might specify an instance;
if not specified, a null instance would be used as default. The realm is normally supplied by
the workstation as a default, but the user might override that default, in effect requesting
authentication by a different Kerberos server.

The principal name and the instance name are separated by a period ("."). If no "." is

included in the name, it is assumed that the instance is null. In order to include a "." as
part of the principal name or the instance name, it must be quoted with a backslash.

In order to specify authentication in a realm different from the default for this
workstation, a user must specify the realm preceded by an at-sign ("@"). The realm itself
may contain periods without the use of a backslash. As an example, consider the user who
desires authentication through the LCS.MIT.EDU realm using a system management
instance. That user might log in as follows:

Kerberos login: RLSmth.sysadm n@CS. M T. EDU

Local Names

The namespace used for Kerberos authentication and authorization is independent of any
particular host’'s means of referring to users or services, and any operating system specified
conventions. Each host may translate the Kerberos principal identifiers to its own local
user names as required. Local translation provides a convenient means of supporting
proxies—for example, Kerberos name {RLSmith,”} might translate to guest on a host
where RLSmith does not have an account. Berkeley Unix applications that are modified to
use Kerberos authentication generally support only the identity mapping from a Kerberos
principal identifier to the same Unix login name.

4. The Kerberos Authentication Model

In response to the requirements and assumptions sketched above, this section describes
the Athena Kerberos model for authentication and authorization, with provision for
accounting. This model is based on the Needham and Schroeder key distribution protocols,
modified with the addition of timestamps. Their paper (listed in the References section)
describes the basic protocol; a tutorial paper by Voydock and Kent provides a broader
introduction to the topic and explains the timestamp modifications.

The basic approach for Kerberos authentication is the following: to use a service, a client
must supply a ticket previously obtained from Kerberos. A ticket for a service is a string of
bits with the property that it has been enciphered using the private key for that service.
That private key is known only to the service itself and to Kerberos. As a result of that
property, the service can be confident that any information found inside the ticket
originated from Kerberos. As will be seen, Kerberos will have placed the identity of the
client inside the ticket, so the service that receives a ticket has a Kerberos-authenticated
opinion of the identity of the client. To help ensure that one user does not steal and reuse
another user’s tickets, the client accompanies the ticket with an authenticator, explained
later. (In addition, tickets expire after a specified lifetime, which is usually on the order of
several hours.)

Kerberos Authentication and Authorization System 27 Oct 1988

Page 8, Section E.2.1 Athena Technical Plan

The client obtains a ticket by sending a message to Kerberos naming the principal
identifier of the desired service, the principal identifier of the (alleged) client, and
mentioning the current time of day. Anyone could send such a message or intercept its
response; that response, however, is usable only to the client named in the original request,
because Kerberos seals the response by enciphering it in the private key of that client. The
response contains three parts: the ticket (which itself is further sealed in the private key of
the service), a newly-minted key for use in this client-server session, and a timestamp
issued by the Kerberos server.

A legitimate user will be able to unseal this message, obtain the ticket and session key,
and verify that the timestamp is current (thereby preventing replays of old responses). No
other user, without the named user’s private key, can correctly decrypt the reply to produce
the sealed tickets and corresponding session key.

Once a client obtains a ticket and sends it to a service, and the service has identified the
client, further use of the fact of authentication is specific to the protocol of the service. One
application might use the session key (Kerberos seals a copy in the ticket) for secure end-to-
end encryption, while at the other extreme, another application might throw everything but
the source network address away and assume that all further requests coming on the
connection from this particular network address are from the same user.

The authenticator mentioned above is a simple mechanism designed to discourage
attempts at unauthorized reuse ("replay") of tickets by someone who notices a ticket going
by on the network and makes a copy. The authenticator consists of, among other things,
the client’s principal identifier, network address, and the current time of day all sealed with
the key that Kerberos minted for this session. After the service decrypts the ticket, it uses
the session key found in that ticket to decrypt the authenticator. If the principal identifier
of the authenticator matches the one in the ticket, the network address in the authenticator
is the same as the one that sent the packet, and the time in the authenticator is within the
last few minutes, the authenticator is probably not a replay, and the service accepts the
associated ticket. It is because authenticators expire in a short time that all the clients and
servers in a Kerberos realm need to have their clocks loosely synchronized.

If a private key is compromised, another party may successfully pose as the principal
until the private key is changed and all tickets previously issued under it expire. If a
session key is compromised, another party may successfully pose as the principal until the
previously issued tickets expire.

One more mechanism rounds out the complete Kerberos scenario. If a client uses several
services, a distinct ticket is needed for each. Not all the services to be used may be known
at the beginning of a login session, but that is when the user provides the password used as
a private key to decrypt tickets. To avoid storing the private key in the workstation
memory for the entire duration of the session, at login time the user obtains a single ticket,
useful only for a service provided by Kerberos itself, the ticket-granting service. Whenever
the client goes back to Kerberos for an additional, service-specific ticket, the response is
actually enciphered in the session key of the ticket-granting service. Thus the private key
is needed only for the initial ticket, and the workstation software can immediately destroy
its copy of that private key after that single use.

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 9

Authentication Scenarios

Here, at the next level of detail, are more complete scenarios of authentication using
Kerberos. These scenarios omit several options described in the next section. The reader
not interested in security protocols can skip this and the next section without missing
anything needed later. The reader interested in full detail will also want to consult the
complete protocol specification (in the Appendix to this section), which includes provision
for errors, key versions, and protocol versions, and which manipulates timestamps in ways
not apparent in this simplified description.

Scenario I. Getting the First Ticket.

1. The user establishes a principal name N .t @and a private key, K jicnt:
through some channel outside the system, for example, by walking up to the
system administrator, and presenting his or her identification card. The private
key Kient DECOMes the authenticator between the user and the Kerberos Key
Distribution Server. The Kerberos Authentication Server stores the user’s private
key encrypted under its own master key, K, .« FOr the purpose of campus
security, a one-way encrypted 8-character secret password serves as the user’s
private key. (One-way encryption of the original password serves the function of
assuring that if the user’'s Kerberos key is somehow compromised it does not
reveal the original password, which the user may also be using on other systems.)

2. The user initiates a workstation session by invoking a login command, giving
as one argument the principal name of the client, N

User —> WS Njient

The workstation knows the name of its default realm, R. The login command
makes a request to the Kerberos Key Distribution Server for realm R, asking for a
session key and a ticket for the Kerberos ticket-granting service.

WS —> KKDSg {Ngjient@R, Nigs: T

where ths is the name of the ticket-granting service, and T
date and time.

client

clien cu rrent}

current 1S the current

This request crosses the network in cleartext to the KKDS for realm R.

3. The KKDS looks up Njigne @nd Ny,
creates a new temporary session key, K

finding private keys Kgjone and Kygq. It
, for use in this session, and

temporarytgs
prepares a ticket for the ticket-granting service:
- R - - K
TICketth' {Ktemporarytgs' I\Iclient’ ths’Tcurrent' WS, Lifetime} s

where the notation {X}¥y means that message X is enciphered using encryption
key K,,. The value WS is the network address of the requesting workstation. The

value Lifetime is the ticket lifetime chosen by the KKDS. An explanation of the
rules for the ticket lifetime appears in the next section.

4. The KKDS sends a response packet:
KKDSg —> WS {K Nigs: Lifetime, T

Note that authentication has not yet occurred—a sealed response containing a
further sealed ticket comes back even if the user has misrepresented his or her
identity.

. K.
current’ TICketth} client

temporary,,’

Kerberos Authentication and Authorization System 27 Oct 1988

Page 10, Section E.2.1 Athena Technical Plan

5. At this point, the workstation asks the user for the password.
User —> WS <password>

and the workstation runs the password through the one-way encryption algorithm

to produce K ;ont- 1t immediately destroys its copy of the password.

6. The workstation decrypts the response from KKDSg using Ki.ne @nd checks
its authenticity by comparing T, on@Nd Ny in the response with the
corresponding values in the initial request. If the response passes this test, the
user knows for certain that the response was prepared by the Kerberos Key
Distribution Service, because that is the only other entity in the universe that
knows K ient- The response is current rather than a replay of a response from

yesterday, because it contains T, ont- A fraudulent user finds that the response
(including the sealed ticket) is a worthless set of random bits because it is
enciphered with the unknown private key of the legitimate user.

The legitimate user stashes away Kiomporary, @nd Ticket
tgs

workstation destroys its copy of the user’s private key K
be needed again during this login session.

tgs for later use. The

client: P€cause it will not

Scenario Il. Using a Kerberos-Mediated Service
To use a service S, the user must have a ticket Ticket
temporary session key for that service, K

service @nd the corresponding
Scenario | traced the acquisition of

temporaryservice'
one such ticket. Assume for the moment that the client now has a ticket and temporary
session key for service S. (Scenario Ill, later, demonstrates how the client can get

additional tickets without having to again present the user’s password.)
1. To use service S, the client first prepares an authenticator.

. K
service: {Nclient Teurrenty WS} temporary

where WS is the workstation’s network address, T, ent IS @ current timestamp,
and Ktemporary ~Is the temporary key that came with ticket Ticket
service

Now the workstation begins the protocol for the target service S. The protocol has
one difference from the corresponding, non-Kerberos protocol for the same service:
it is prefaced with the authenticator and the ticket.

Ticket

2. When the target service receives this request, it first decrypts the ticket using
its private key, Ko ice- Since the only two entities in the universe that know
Kservice are the service itself and Kerberos, the service can be confident that if the
ticket deciphers properly it must have been originally prepared by Kerberos. The
test of whether or not the ticket deciphered properly is whether or not the next
step works. A correct ticket decipherment exposes the temporary session key, the
client's name, and the timestamp. The temporary session key allows the service
to decrypt the authenticator, exposing its data. If the client's name and network
address in the ticket and authenticator match, the ticket's timestamp has not
expired, the network address in the authenticator matches that in the incoming
packet, and the authenticator timestamp is sufficiently recent, then the request is
taken as legitimate. The service knows for certain the identity of the requesting
client and the service and the client now share a temporary secret key. This
authentication remains valid for the lifetime of the client-service connection.

Authenticator

service

service*

WS —> Service {Authenticator

service’ service}

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 11

3. Finally, the application protocol begins, typically by transferring an
application request from the client to the server, perhaps at the end of the packet
that contained the ticket.

If a client has a ticket for some service, that client may reuse the ticket as often as
desired, until it expires. Each reuse requires constructing a new authenticator, one that
contains a current time stamp.

Scenario Ill. Getting Additional Tickets

If a client wants to use a service for which a ticket wasn't obtained as part of the initial
encounter with Kerberos, the client invokes the Kerberos Ticket-Granting Service. The
Kerberos Ticket-Granting Service is simply another protocol for talking to the Kerberos
Authentication Service, one that makes use of the ticket-granting ticket passed in the
initial encounter, rather than the user’s private key, to establish authenticity.

1. The client first prepares an authenticator exactly as before, though with a
current timestamp and using the temporary session key that came with the
ticket-granting ticket.

Authenticatortgs: {N T WS}Ktemporarytgs

Now the workstation sends the authenticator, the previously obtained ticket for
the ticket-granting service, and the name of the service for which a ticket is
wanted to the ticket granting service.

WS —> KTGSR {Authenticatortgs, Tickettgs, Nservice@R}

2. The ticket-granting service goes through the same procedure as does any other
Kerberos-mediated service, first decrypting the ticket with its private key, and
using the temporary session key found inside to decrypt the authenticator. If all
the authenticity checks verify correctly, the ticket-granting service knows for
certain the identity of the requesting client. In addition, it has recovered the
temporary session key which is known only to it and the client; this session key
can be used to securely return a ticket to the client. KTGS looks up the service
name Ng.,ice IN its database and finds the private key, K for that service.
It now prepares a ticket:

Ticketservice: {K
where K

client* " current:

service?

Lifetime}Kservice

temporary . ice' Nclient’ Tcurrent’

t is a new temporary session key for use between this client
emp_oraryservice
and the service; it then sends the response:

KTGSg —>WS {Kiemporary,, .+ N T

Note that the form of this response is identical to the form of the original response
of the KKDS when it returned the ticket granting ticket.

H K
Ti cketse rvice} temporary, .

service’ ' current’

3. The client, knowing the value of Ktemporary, decrypts the response, verifies
its authenticity as before, and stashes away the ticket for the target service.
Scenario 11l emphasizes that the ticket-granting service is simply another example of a
Kerberos-mediated network service. The form of the messages in step one of scenarios 11

and 111 is identical, once one realizes that the last field in the second message of scenario
11 is the application request mentioned in step three of Scenario 1.

Kerberos Authentication and Authorization System 27 Oct 1988

Page 12, Section E.2.1 Athena Technical Plan

Some Options

As mentioned, the three scenarios above follow what is expected to be the most common
form of use of Kerberos authentication. There are several optional possibilities available
for applications that use Kerberos:

* The examples specified no values for the instance name of either the client or the
service; those values are optional and default to the null instance.

* An application client may include in the sealed authenticator an application
authenticator, such as a checksum of data to be sent. Calculating that checksum
is, of course, feasible only if all the data to be transmitted is known at connect
time. As an alternative, an application could devise a commit message that
appears at the end of the protocol, and that includes a checksum sealed with the
session key.

« If the application requires mutual authentication, it sets an option in its service
request, and places no application protocol information in the initial packet. The
application server responds by adding one to the workstation's request
timestamp, encrypting the result using the session key, and sending the
encrypted result back to the client. Once the client receives and decrypts this
handshake response, it can be certain that the server is authentic, and the
application protocol may safely begin.

* The application server may retain state (timestamps) about previous use to aid
detecting replay attempts.

» The application may use the application authenticator and the session key to
continue a session in which every message is both completely encrypted and
authenticated.

« An application may request a ticket with a specified lifetime; if the requested
lifetime is less than the default ticket lifetime and less than that specified in the
Kerberos database for the service, Kerberos issues a ticket with the shorter
lifetime.

Application and User Interface

For the most part, Kerberos is designed to operate under the covers, without separate
actions by the user. For network applications that make use of Kerberos authentication
there is a library of Kerberos functions that simplify the obtaining of authentication. The
primary interface consists of three generic user commands and two generic subroutines
that are used by applications.

* User command kinit: This command asks the user for a password, obtains a
ticket-granting ticket, and destroys the password as soon as it has stored the
ticket-granting ticket and associated session key. Note that the function of this
command may be combined with the login command.

« User command klist: Displays the list of tickets obtained so far in this login
session.

e User command kdestroy: Destroys all tickets. The function of this command
may be combined with the logout command.

« Subroutine make_application_request(): Used by an application to get a copy
of, or if necessary obtain, a ticket and session key for a named service, to prepare

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 13

an authenticator, and return the result to the application for inclusion in the
initial service request.

e Subroutine read_application_request: Used by an application server to
validate a presented ticket and authenticator. It returns the identity found in the
ticket and a judgement about the authenticity of that identity.

Note that the actual names, arguments, and parameters of these generic commands and
subroutines are implementation-dependent. The Kerberos library implemented for UNIX,
for example, shortens some names, combines Kinit and kdestroy with login and logout,
contains about a dozen additional supporting subroutines for the convenience of
applications that are using optional features, and includes conventions about where to store
tickets in the UNIX environment.

Realms

Kerberos provides for partitioning authentication information according to administrative
divisions. All users need not be registered with a single organization. In addition,
organizations that share authentication need not trust one another. A realm is an
authentication domain. It is that part of the namespace of authenticable users and services
that relies on a separately administered authentication server (or set of servers sharing the
same database) for their authenticity. A service can accept credentials produced by an
authentication server only for a realm of which it is a member. Both users and services
may belong to multiple realms. Realm names within a network need to be unique. The
earlier-mentioned convention of naming realms with ARPA Internet domain names has the
side effect of guaranteeing uniqueness.

Realms can be either independent or semi-independent.

Independent Realms

Some users will want to access services from realms with which they aren’t registered.
Some services will be willing to provide services to users from other realms. These two
requirements lead to a mechanism to authenticate users across realms.

This mechanism is provided through the cooperation of the administrators of the two
realms involved. The Kerberos for each such realm is a client of the Kerberos in the other,
and shares a secret key for a cross-realm ticket-granting service. This mutual client
relationship between the Kerberos services allows a client of the Kerberos in one realm to
authenticate itself to the Kerberos in the other realm even though no information is shared
between the client and the other Kerberos service. Once a client has authenticated itself to
the Kerberos in the new realm, that client can request tickets for services issued by that
Kerberos.

As an example, consider a user in the LCS realm who wants to access a server in the
Athena realm. The user must first authenticate with the LCS Kerberos using the initial
authentication protocol. Once this authentication is done, the user can request a ticket for
the Athena Kerberos. The user presents this ticket to the Athena Kerberos which accepts
the user’s identity since the Athena Kerberos is a client of the LCS Kerberos. The user can
then request a ticket for an Athena service and the Athena Kerberos will comply. However,
the ticket that the Athena Kerberos issues indicates that the user is from the LCS realm.
Thus, all the ticket says is that the Athena Kerberos acknowledges that the user has been
authenticated by the LCS Kerberos. The client then presents the new ticket to the end
service which decides whether or not to accept it, based on its own authorization policy.

Kerberos Authentication and Authorization System 27 Oct 1988

Page 14, Section E.2.1 Athena Technical Plan

Semi-independent Realms

The realm mechanism can also be used to provide authentication services for off-campus
independent living groups. The problem is that the ILGs must have a way of
authenticating users to local services even when their connection to the campus-based
facilities fails. Yet, at the same time, there cannot be a copy of the Kerberos for the Athena
realm in the ILG since there would be no guarantee of its security. Instead, each ILG has
its own realm.

Local services accept authentication by either realm. Most services on campus, however,
accept authentication only from the Athena realm. When communication with the campus
network is operational, ILG users authenticate themselves to the Athena Kerberos, then
use the protocol described above to authenticate themselves to the ILG Kerberos. In this
way ILG users have to provide only one password (the one required by the Athena
Kerberos) to use both local and campus services. Users on campus who want to use services
located at the ILG will also be able to use this mechanism.

If the connection between the ILG and main campus ceases to function, ILG users
authenticate themselves directly to the ILG Kerberos and are thus be able to use local
services. This local authentication does not allow them to use all the services on campus,
but since they are disconnected it doesn’'t matter.

It is suggested that users choose different keys for the Athena Kerberos and the ILG
Kerberos since the ILG Kerberos may be much easier to compromise. We do not plan to
enforce such a suggestion, however.

More Complex Realm Relationships

The realm mechanism of Kerberos is not fully developed. In particular, the protocol does
not provide the target service with detailed information about the provenance of tickets
that have been authenticated in other realms. More work is required on security
implications of cross-realm authentication, so that a service examining a ticket can know
exactly whom it is trusting for authentication.

5. Management of Kerberos Data

The database underlying Kerberos contains a record for each user identity and for each
service (that is, for each principal) known within that Kerberos realm. In order to allow
security of the data to be the primary consideration when making operational tradeoffs
about management of a Kerberos service, the information that Kerberos stores is the
minimum required to accomplish and manage authentication. Thus, although a Kerberos
record is a kind of per-user record, it does not contain information such as telephone
number and office address, which are not used by Kerberos for authentication.
Nevertheless, if there are a large number of users, the Kerberos database can still be quite
large and it requires some tools for its management. The data management interface of
Kerberos is designed to be used in two ways:

* By a set of manual tools manually from a system manager’s workstation. This
approach is suitable for management of a Kerberos realm that has a small
number of users.

« By an automated Service Management System. This approach is intended for
managing a system with thousands of users.

In both cases, the management of the Kerberos service is accomplished remotely via the
network, using Kerberos-authenticated secure connections.

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 15

The information stored for each principal that Kerberos is prepared to authenticate is the
following:

» The principal identifier, including instance identifier.
* The private key (password) for this principal.

» The expiration date for this identity.

» The date that this record was last modified.

Identity of the principal who last modified this record.

« Maximum lifetime of tickets to be given to this principal.
Attributes (unused).

* Implementation data, not visible externally:

* Key version and master key version.
« Pointer to old values of this record.

One piece of information in each record, the private key, must remain secret. Kerberos
reversibly enciphers the private key fields, using a master key for this Key Distribution
Service. Encipherment of the private key fields allows a manager to remove copies of the
database from the machine and it also allows the Kerberos master to send copies over the
network to slave servers without going to extraordinary lengths to protect the privacy of
those copies. Kerberos does not store the master key in the database; it manages that one
key separately.

Kerberos Database Replication

The Kerberos database for a realm is managed and updated by a single Kerberos
Database Management server (the KDBM); authentication requests are handled by one or
more Kerberos Key Distribution Servers (KKDS's), each of which contains an identical
complete copy of the Kerberos database. Since all KKDS'’s have identical data any KKDS
can handle any authentication request; a client uses a name service to obtain a list of
KKDS'’s, and chooses the one that is nearest in terms of network topology. The separation
of responsibility between KDBM and KKDS's does not imply that several distinct host
computers are required; in the simplest deployment, one host can run both a KDBM server
and a KKDS. The purpose of separation is to simplify update of the database while
permitting replicated KKDS'’s for improved availability and performance. (Since many
other network services may depend on it, continuous availability of Key Distribution
Service is essential; continuous availability of update service is not nearly so important.)

With respect to the Kerberos database, all operations done by a KKDS are "read-only," so
the only coordination among KKDS’s and the KDBM is for the KKDS's to receive updates of
the information when changes are made at the KDBM. Again for simplicity, the KDBM
issues KKDS updates occasionally (e.g., a few times per day) and by copying the entire
database. Complete copying eliminates the need for considerably more complex update
procedures that would maintain update queues at the KDBM and recovery procedures at
the KKDS's. Because updates occur on a batch basis, the KKDS's may have data that is
slightly stale; update delay of a few hours is acceptable for this application.

The KDBM copies its database to the KKDS’s using a Kerberos-protected protocol. First,
using the Kerberos mutual authentication protocol, a secure encryption key is exchanged
between the KDBM site and a given KKDS site. The KDBM creates a checkpoint of the

Kerberos Authentication and Authorization System 27 Oct 1988

Page 16, Section E.2.1 Athena Technical Plan

data to be transferred, and calculates its (strong) checksum, seeding the checksum with the
session key. Then it transfers the actual data using a conventional file transfer protocol.
Recall that the data does not include any cleartext passwords or other particularly sensitive
information. However, its integrity must be assured. The receiving KKDS temporarily
stores all the transferred data, then recalculates the checksum of the received data using
the secret session key. It then compares the calculated checksum with the original
checksum, which was separately transmitted using the secure Kerberos protocol. If and
only if the two checksums match, the newly received data updates the KKDS database.

Updates to the Kerberos Data Base

Updates are done by an update protocol that runs between any authenticated client at a
workstation and the KDBM. If the KDBM is not accessible, updates are temporarily not
allowed.

There are several routine updates made to the Kerberos database.
1. adding a new user
a user changes a password
system manager changes a forgotten or compromised password
deactivating an old user

o A~ W DN

removing old user identities

In emergencies, a system manager can also tinker directly with raw Kerberos data for
repair and other extraordinary maintenance operations. Such tinkering must be done by
logging in directly on the host that runs the master Kerberos service.

Adding a New User

Adding a new user to the Kerberos database is accomplished by invoking the add-user
message type of the Kerberos protocol, which requires that the user doing the addition be a
previously-added user of the system whose identity appears in an add-user access control
list maintained by the Kerberos master system.

If an SMS is in use, a different approach is taken that is more suitable for mass
production. The intent of this different approach is that a user can choose a principal
identifier and register the chosen principal identifier and associated password without
actually involving a system manager. Each fall, the SMS is primed with a list of potential
new users (obtained from a list of all registered students) including for each user a full
name and a student identification number. A prospective user walks up to an Athena
workstation, logs in as an unauthenticated user (the user identity "register"”, with publicly-
known password "athena", is used for this purpose) and interacts with a user registration
program that obtains from the user his or her full name, student identification number,
proposed principal identifier and proposed password. The user registration program first
connects to SMS to verify that this user's full name and student identification number
match one in the list of as-yet-unregistered users. If so, it informs SMS of the principal
identifier that the user has chosen, and in turn receives an add-user session key from SMS.
The user registration program then opens an encrypted connection with the master
Kerberos service using the add-user session key. It supplies the user’'s chosen principal
identifier and password to Kerberos, which checks to see that the principal identifier is not
one already on record (rejecting the request if it is) and then records it and the password. If

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 17

the transaction with Kerberos is successful, the user registration program confirms the
success with SMS, which then commits this registration transaction.

This unsupervised registration scenario is a compromise that is only weakly secure,
because any one who knows another person’s hame and student identification number can
register as that person. There is some protection against such an attack, however, because
when the authentic person with that identity attempts to register, the fraud will be
discovered when both SMS and Kerberos reject the second registration attempt. The
legitimate user can then appeal to a real system administrator, who can sort things out by
forcing into the Kerberos database a new password known only to the legitimate user.

User-Initiated Password Change

The basic scenario for changing a password is that the user does it him or herself by
invoking the password-changing program at a workstation. This program demands the old
and new passwords, uses the old password to create a completely encrypted session with
the master Kerberos server, and sends the new password on the encrypted connection. If
the user has reason to believe that the old password is so badly compromised that it is not
safe to send the new password this way, the user may appeal to the system manager to
install a new password.

System-Manager-Initiated Password Change

Kerberos maintains an access control list, which consists of a list of Kerberos principal
identifiers of individuals who are authorized to act as system manager. When a user
reports that a password is forgotten or compromised, the system manager opens an
encrypted connection from the manager’s workstation to the Kerberos master server and
runs a password-installation protocol. This protocol requires that the invoker appear in the
system manager access control list.

User Deactivation

Kerberos maintains an expiration date and an activation flag for every principal identity
that it is prepared to authenticate. Kerberos always rejects attempts to authenticate
expired or inactive users, with an appropriate error response. The purpose of deactivation
is to provide a simple means of avoiding accidental reuse of principal identifiers, which may
continue to appear in access control lists for some time after a user departs from the scene.

There is a secure protocol message type by which the system manager can deactivate or
reactivate a principal identifier, or change its expiration date.

Removing OIld User Identities

Kerberos maintains a last-modified-date as part of each record of a principal identity.
Deactivation updates this date. One use of this date is to allow a system manager to
identify old identities that have not been in use for a sufficient period (e.g., one year) that it
is safe to remove them. A secure protocol message allows an authorized system manager to
remove any specific inactive identity, and to remove all inactive identities that have not
been changed since a specified date. This operation is designed under the assumption that
it occurs rarely, perhaps two or three times a year, so the only record of identities removed
is in the Kerberos log.

Kerberos Authentication and Authorization System 27 Oct 1988

Page 18, Section E.2.1 Athena Technical Plan

Keeping Synchronized with SMS

If a Service Management System is in use, it maintains its own records of registered and
prospective users; those records are correlated with the records of Kerberos by principal
identifer. Since the principal identifier is the only piece of duplicate information
maintained, the only synchronization problem is to insure that every principal identifier
that appears in an SMS record also appears in some Kerberos record, and vice-versa. User
registration, as described above, is the normal way of creating principal identifiers, and if a
user registration operation completes normally, both records will match. Failures, or hand-
tinkering, may unsynchronize these two sets of records. No special tools are provided to
deal with this problem; the system manager, if trouble is suspected, may extract from
Kerberos a list of principal identifers to sort and compare with the corresponding list from
SMS.

Database Backup and Reload

The Kerberos database is backed up by running a special backup program on the master
Kerberos server, which should be equipped with a private tape drive. The Kerberos master
key is not stored on the backup tape. A special reload program is also available, although if
the system is completely reset the Kerberos master key must be reinstalled by hand.
Reload of slave servers is done by invoking the usual Master-Slave update procedure, which
transfers a complete copy of the database.

6. Authorization Model

The Kerberos authentication model provides only a certification of the identity of a
requesting client; by itself it provides no information as to whether or not that client is
actually authorized to use the service. There are three forms in which authorization could
be integrated with the Kerberos authentication model:

* The Kerberos database could also contain authorization information for each
service, and issue service tickets only to authorized users of each service.

» A separate authorization service could maintain authorization information by
keeping access lists for each service and allowing the client to obtain sealed
certification of list membership. The client would present that certification,
rather than a Kerberos ticket, to the ultimate service.

» Each service could maintain its own authorization information, with the optional
help of a service that stores shared public lists and provides certification of public
list membership.

The first of these alternatives places the large, dynamically updated authorization
database in the midst of the small, slowly changing, high-security encryption key database.
Operational parameters such as primary and secondary memory size, degree of replication,
nature of backup, and physical security must be chosen as a compromise between the
requirements of the two services. It also locks in one particular authorization model for all
applications.

The second alternative separates the authorization database from the authentication
database, thereby improving separation of administration and making the authentication
service simpler and smaller, which should make it more reliable and easier to secure. But
this alternative leads to an extraordinarily complex (and therefore potentially fragile)

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 19

collection of interacting protocols among the client and the authentication, authorization,
and target services. It also creates a rendezvous problem, in that the client must know
which membership certification to request from the authorization server.

The Kerberos authorization model is based on the principle that each service knows best
who its users should be and what form of authorization is appropriate, so it adopts the third
of these alternatives. This choice has several advantages:

* Many services will have short, private lists of authorized users. For example, the
display server on a private workstation may have as its list of authorized users
only one entry—the current user of the workstation—and that user’s identity is
already known by the workstation. (In addition, the identity of the user allowed
to use the display on a public workstation changes as often as someone logs in.)
By far the simplest way to manage that information is to place it in the server.
Completely private services (e.g., a dating service exported from a private
workstation) thus require no central registration, yet can take advantage of
Kerberos-quality authentication and implement access control.

Services that maintain their own lists (e.g., the display server) or that do not
require an access control list (e.g., a public library) do not depend on availability
of and network continuity to an authorization service.

Rendezvous is limited to getting the client together with the service; the client
does not need to figure out what kind of authorization to request for this
particular service.

* No one authorization model applies to all services; by making authorization the
responsibility of the server, the designer of the service has the option of using a
standard library authorization model, or creating a different model that is better
adapted to the particular service it is offering.

Since the amount of information storage required for authorization information is
proportional to the number of services offered, storing and managing the
authorization information at the service scales up well. This scaling advantage is
of particular interest when one realizes that every workstation exports at least its
display service, and may export others. It is also administratively preferable to
have each service provide its own authorization list storage, rather than
burdening a public storehouse with this responsibility.

Administrative authority to set and change the authorization information for a
service tends to be automatically delegated to the appropriate entity—the
administration of the service itself.

There is one significant disadvantage to requiring the service to do its own authorization:
Services that cannot depend on other network services (for example, because they are
single-threaded and should not block waiting for a network reply) cannot make use of
shared public access control lists.

Authorization Mechanics

A standard authorization model based on access control lists is provided, and an
authorization library package is available for incorporation into any service that finds the
standard model useful. Under this standard model, the service takes the (known,
authenticated) identity of the client and inquires whether or not that client is a member of
a named list. The access list library package maintains any number of named lists in the
local storage of the server. A list may contain three kinds of names:

Kerberos Authentication and Authorization System 27 Oct 1988

Page 20, Section E.2.1 Athena Technical Plan

1. Kerberos-authenticable principal identifiers,
2. names of other local lists, and
3. names of shared, public access control lists.

The access list library undertakes a search of the named list, local sublists stored at the
service host, and shared, public lists. If the client’s identity is found in this search, the
operation is authorized.

Rather than associating operation-specific permissions with access list entries, the service
maintains distinct, named access lists for each different kind of operation.

The lists are maintained as simple ASCII text string files in a special access list directory
that is protected from modification except by administrators of the target service. Their
format allows, in simple cases, maintenance by use of standard text editors, or in more
complex cases, automatic maintenance by the Athena Service Management System.

The Public List Server

A public list server provides Kerberos-quality certifications that principal identifier A is
(or is not) in list B. The ability to use remote servers for such a certification allows the
possibility of shared, centrally managed lists. The ability to use local lists allows the
possibility of lists whose contents are unknown to any central authority. The architecture
allows that these two possibilities can be mixed and matched in any way desired by the
implementer or manager of the host that offers the service. (The detailed design of a public
list service has not yet been undertaken. Issues such as what action to take in the face of a
cycle in a list, and management of very large lists, have not yet been addressed.)

Authentication/Authorization Scenario with Name Service

A complete scenario for integrating name service, Kerberos, and authorization is as
follows (there are a lot of services flying around in this discussion—the one the client really
wants to invoke is called the "desired service"):

1. Assume for starters that each client (and service) knows the internet address
of a name service and the name of Kerberos. As part of its initialization, the
client invokes the name service to determine the internet address of Kerberos. It
also performs an initial transaction with Kerberos to obtain a ticket-granting
ticket. Each service that cares about authorization has done the same thing as
part of its initialization.

2. The person exporting the desired service has previously registered the name of
that service with the name service. If this step hasn't happened, it doesn't
prevent use of the desired service, but it does mean that the client has to invoke it
by discovering and using a host name and port number, rather than by name.

3. The user learns the name of a desired service. Learning may happen one of
any number of ways. Here are a few examples:

» A prospective user reads the name on a bulletin board.

* The user copies a program from a public place; the program has the name
buried in it.

» The name is embedded in a system-provided library program.

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 21

* The name is embedded in a class-provided library program.
» The user learns about the service name from a system staff member.

4. The client invokes the Kerberos ticket-granting service, requesting a ticket for
the desired service name. If Kerberos has never heard of the desired service, that
doesn't cause the scenario to abort; it may simply be that the desired service
doesn’'t require authentication.

5. The client invokes the name service to learn the host name and port of the
desired service. The client can cache this information at its own risk, to allow
future invocations of the desired service without using the name service again.
The name service provides a time-to-live value for the information that gives the
client a hint about how long it is safe to cache it.

6. The client invokes the name service again, to transform the host name of the
desired service into an internet address.

7. The client invokes the desired service, presenting its Kerberos ticket (if by now
it has one) certifying the client’s identity.

8. The desired service decides whether or not it wishes to deal with this client.
To decide, it may invoke the access list library, giving the name of the client and
the name of an access control list. The access list library performs a recursive
descent through that list and any lists, local or remote, named in that list, trying
to verify list membership of the client.

Because the desired service is depending on the authenticity of the certifications of the
list membership service, each connection with a remote list membership service must be
initiated via Kerberos and the responses from the service need to be integrity-assured.
Integrity assurance is provided by having the remote list membership service return a copy
of the original request, with a yes or no bit added, enciphered in the session key that the
invoker obtained at initial connection with the list membership service.

Acknowledgments

Many people have provided ideas, or have been involved with the implementation of this
design. In addition to the authors of this document, they include: John Ostlund, Mark
Colan, Bob Baldwin, Dan Geer, Stan Zanarotti, Bill Sommerfeld, John Kohl, Jim Aspnes,
Chris Reed, and Brian Murphy. The name "Kerberos" was suggested by Bill Bryant.

Kerberos Authentication and Authorization System 27 Oct 1988

Page 22, Section E.2.1 Athena Technical Plan

7. Appendix I—Design Specifications

This section contains detailed design specifications for the current implementation of
Kerberos. Itis of interest primarily to implementers.

7.1. Design

7.1.1. Conventions
The following conventions apply:

« encryption or decryption implies DES private key in a modified? cipher-block-
chaining mode

* "{data}K," means that "data" is encrypted using "X"s DES key;

« all data to be encrypted is padded with trailing 0 bytes to an integral multiple of 8
bytes;

« all references to session key imply a distinct random session key valid only for
that particular session;

« bit O refers to the least significant bit;

« all field sizes are expressed in numbers of 8-bit bytes, unless otherwise stated,
and whether or not the value is signed (s), unsigned (u) or only printable ASCII,
null terminated (a);

« strings are sequences of printable ASCII bytes, null terminated,;

« all messages are self-framing, that is, do not depend on packet boundaries to
determine their extent;

« where not otherwise stated, name implies the local realm; similarly, a null realm
implies the local one;

« principal, indicated in the protocols by either subscript p or principal, refers to the
subject requesting authentication and/or authorization, i.e either a user's or
service’s {name, instance} pair.

« service, indicated in the protocols by either a subscript s or service refers to the
end service, object, or other user for which authentication/authorization was
requested. This is most often a service's {name, instance} pair, but could also be
any user’s to allow secure key distribution between two users.

2Modified to provide forward error propagation of a single bit error in the ciphertext thru to the
end of the resulting cleartext. Refer to Voydock and Kent [17].

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan

Common fields used in messages

Section E.2.1, page 23

Protocol message type and byte order;

Athena principal name (user or service);
Athena principal instance (user or service);

UTC timestamp, sec since 0000 GMT 1/1/70;
may also have direction encoded in msbit;
rest of UTC timestamp, 5ms units;

valid ticket lifetime, 5 minute units;

Internet host address, IP format and order;

length of a field, 0 - 65535, bytes;
length of a field, O - 4,294,967,295, bytes;

application specific data, arbitrary length;

bit-flags within ticket, set by Kerberos;

field size u,s,a description
version 1 u Protocol version number;
auth_msg_type 1 u
= m_type << 1 + byte order ;
m_type 7hits u Protocol message type;
byte order 1bit u Byte order of sender;
name >=0 a
instance >=0 a
realm >=0 a Authentication realm name;
group >=0 a Athena group name;
time_sec 4 u
time_5ms 1 u
lifetime 1 u
key 8 u 64 bit encryption key;
kvno 1 u key version number;
n 1 u count of service entries;
address 4
length 1 u length of a field, O - 255, bytes;
length 2 2 u
length_4 4 u
exp_date 4 u UTC expiration date,
sec since 0000 GMT 1/1/1970;
direction 1bit u within an association,
zero if sending {addr, port } <
receiving {addr,port}, else one;
multiplex into msb of time_sec;
app_data n
checksum_4 4 u 4 byte checksum;
checksum_16 16 u 16 byte checksum;
flags 1 u
err_code 4 s Kerberos error code;
err_text >=0 a

Kerberos Authentication and Authorization System

description of Kerberos error;

27 Oct 1988

Page 24, Section E.2.1 Athena Technical Plan

Network Representations

byte ordering The least significant bit of auth_msg_type will encode the byte ordering
for the transmitting host. LSB_FIRST, one, implies least signigicant
byte in lowest address, e.g. VAX and IBM PC's. MSB_FIRST, zero,
implies most significant byte in lowest address, e.g. Sun 68000 and IBM
RT's. The transmitter of a message always transmits in natural host
order, and marks its byte ordering in auth_msg_type. The receiver, if
necessary, converts fields to its own byte ordering.

alignment to avoid possible incompatibilities between compiler alignment rules, all
protocol messages must be defined without use of structures. All
protocol messages have no holes for alignment. Each field begins on the
next byte boundary.

Protocol Message pattern

{ version, auth_msg_type, name,,, instance

realmp, time_sec, cleartext, ciphertext }
where unneeded parts are omitted.

p!

The protocol message specifications should be read in increasing byte order within the
message as you read from left to right, with no holes.

7.1.2. KKDS

7.1.2.1. Protocol. All the Kerberos protocols described are layered on a UDP datagram
between the client and the KKDS. The client interface may retransmit a request up to
<AUTH_RETRY_MAX> times if a response is not received within time interval
<AUTH_RETRY_WAIT>. All protocol messages between a client and the KKDS must be
idempotent. To minimize retransmissions, all requests should generate a response, either
an auth_reply or an err_reply, even if the response only implies failure.

auth_request = { version, auth_msg_type, name,, instance
lifetime,, nameg, instance}
where
auth_msg_type = <AUTH_MSG_KDC_REQUEST>
The service requested is local to the realm managed by the Kerberos
receiving the request.

p realm,, time_sec,q,

auth_reply = { version, auth_msg_type, name,,, instance,, realm

, time_sec, .,
exp_datey, kvnop, length_2, {cipﬂer}ka\mo}

pl

where

auth_msg_type = <AUTH_MSG_KDC_REPLY>

length_2 = length of cipher; zero if {namep, instancep} is unknown;
cipher =
{Ksession'
time_secy s}

name,, instances, realms, Iifetimes, kvnos, {tickets}KS ,

kvno

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 25

err_reply =

where

ticket = { flags, name,, instance,, realm,, address;,, Kgeggion:
time_secy 4s» NAMe, instanceg }

note:

the lifetime returned is the minimum of the principal’s, server’s, and the
lifetime requested.

lifetime,

{ wversion, auth_msg_type, name,, instancep, realmp, time_secws,
err_code, err_text }

where

auth_msg_type = <AUTH_MSG_ERR_REPLY>,

err_code = Kerberos error code, defined in prot.h,

err_text = text string describing error.

7.1.2.2. Protocol Vulnerability.

« replay -- The timestamp serves to prevent replay attempts by limiting the lifetime

of the key.

If the server retains all the still valid timestamps for previous

associations for the user, all replay attempts can be prevented. The latter
requires stable store across process and machine crashes.

« modification -- The timestamps and name can serve as effective integrity checks to
detect modification to the packet. If the ciphertext was changed or forged, with
extremely high probability the timestamp would no longer be valid, and the name
in the ticket and in the authenticator would not match.

7.1.2.3. Administrative Protocol. A set of protocols is required for interaction between
administrators, users, and the Kerberos Database Manager, for example to create new
principals and to change keys. These protocols are not yet specified.

7.1.2.4. Authentication Database. Each Kerberos realm maintains an independent set of
databases. The following are represented:

 Private keys of clients and services; estimate 10,000 users + <= 15000 services x 1
record; tag each key with an index number noting which KKDS master key was
used to store it.3
record = {name, instance, kvno, {key,no}Kkkps , KKDS-kvno, exp_date,

KKDS-kvno

max_life, last_modified_by name, last_modified_by_instance, last_modified_date}

< Audit trail -- A management audit trail of selected database operations, not yet
specified, will be maintained?.

« Statistics - To be specified.

3In case the KKDS master key needs to be changed, this allows a more orderly transition to a new

master key.

4Probably as a side effect of journaling the database.

Kerberos Authentication and Authorization System 27 Oct 1988

Page 26, Section E.2.1 Athena Technical Plan

7.1.2.5. Database management. Kerberos is built on a database management layer with a very
simple set of lookup operations that can be implemented using any available database
system. The initial implementation of that layer uses Ingres as the supporting database
system; a second implementation uses the UNIX dbm package. Slave servers use the
second implementation. The master server can use either implementation; the advantage
of the Ingres implementation is that administration of a large number of users (e.g.,
producing a list of all users whose accounts will expire in the next six months) can be done
with more potent tools.

7.1.2.6. User interface. An implementation of a user interface to obtain, list, and destroy
Kerberos tickets for Berkeley 4.3 UNIX is described in a set of UNIX man pages named
kerberos(1), kinit(1), klist(1), and kdestroy(1). A command to change a user's Kerberos
password is described in kpasswd(1), and the Kerberos database administrator’'s program,
used for registering new Kerberos principals and setting or changing passwords, is
explained in the kadmin(8) manual page.

7.1.3. Application Authentication Protocols

7.1.3.1. Request Interface. The changes involved in using a service should be as transparent as
possible. When a user uses Ipr, Ipr should automatically include the authenticator in its
request without the user having to do anything extra. In the event that the ticket for a
service has not been obtained, or has expired, the service should obtain a ticket on the
user’s behalf using the ticket granting ticket obtained when the user logged in.

7.1.3.2. Client Request. The following KKDS block normally would be transmitted from the
client to the server before any user data as the first packet sent, though this need not be
first. It serves to identify the requestor, present his or her ticket, and authenticate the
request. By appropriately decrypting and checking the integrity, the service may proceed
to offer or deny the requested service.

appl_request { version, auth_msg_type , kvnog, realmg, length_2, {ticket}Ksk :
vno
{authenticator}K .qcion }
where

auth_msg_type = <AUTH_MSG_APPL_REQUEST>

i.e. one-way authentication, or
<AUTH_MSG_APPL_REQUEST_MUTUAL>

i.e. mutual (two-way) authentication request

length_2 = length of ticket, then length of authenticator

ticket = { flags, name,, instance,, realm,, address,, Kqgion
time_sec, 45, NAMe, instance, }

authenticator = {namep, instancep,
time_5ms, s o tIME_SEC, s now }
checksum_4 = optional data checksum to be used by service,
checksum algorithm selected by service.

lifetime,,

realmp, checksum_4,

7.1.3.3. Server Verification and Response. The server decrypts request, checking name, instance,
realm, address, and time_sec, and optionally checks for a recent playback attempt. If the
authentication is invalid, the client's request is denied, and an appl_err message is
returned. Otherwise, the service may then request the client's authorizations from the
authorization service, if need be. It then performs the requested operation within the
bounds of the authorizations granted.

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 27

If auth_msg_type requests mutual authentication (two-way), the server replies with the
message noted below. If the client is satisfied with the server’s response, it then begins the
normal operation.

appl_reply { version, auth_msg_type, {svc_authent}K ..o}
where
auth_msg_type = <AUTH_MSG_APPL_REPLY_MUTUAL>
svc_authent = { time_sec,c nowt1l}

appl_err = { version, auth_msg_type, err_code, err_text }

where

auth_msg_type = <AUTH_MSG_APPL_ERR>,
err_code = Kerberos error code, defined in prot.h ,
err_text = text string describing error.

7.1.3.4. Secure Conversations. The authentication protocols described previously create a
secure session key exchange and authenticate the principals. This is sufficient for many
purposes, but other services, such as the authorization service and the KDBM service
require protection for every message exchanged, not just for initial "connections”. Such
protection may take two alternate forms:

* message authentication -- guarantee that a given message has not been modified,
forged, replayed, or made out of sequence; the message is still readable on the
network;

* message secrecy -- in addition to offering message authentication, providing
message secrecy by encrypting the contents of the message.

Two additional protocol message envelopes are provided for these purposes; safe_msg
provides message authentication, and private_msg provides both message authentication
and privacy. The app_data field is application specific data. Each application determines
the pattern of message types needed -- private_msg, safe_msg, appl_err, and application
specific messages.

A safe_msg provides strong means to detect any modification attempts, forgery, or
replays, but does not provide privacy.

safe_msg = { version, auth_msg_type, safe_data, checksum_16(K.i,. Safe_data) }
where
auth_msg_type = <AUTH_MSG_SAFE>
length_4 = length of safe_data,
safe_data = { length_4
direction, time_secs now
checksum_16 is a function of both K
guad_cksum() algorithm.

app_data, time_5ms address

safe_data’ WS_now’ source’

session and safe_data, using the

Kerberos Authentication and Authorization System 27 Oct 1988

Page 28, Section E.2.1 Athena Technical Plan

A private_msg provides strong means to detect any modification attempts, forgery, or
replays, and in addition provides privacy. However, to provide the privacy, it incurs
significant additional run-time overhead for encryption. Since the lifetime of a session key
may be greater than that of a process, timestamps are used instead of sequence numbers.

private_msg = { version, auth_msg_type, length_4
where
auth_msg_type = <AUTH_MSG_PRIVATE>
Iength_4Ciloher = length of the encrypted portion of the message,
cipher ={ private_data } K .ccion
private_data = { length_4,,,, app_data, time_5ms¢ ,,, addressg, ..,
direction, time_sec, ¢ now }
Iength_4app = length of app_data,
app_data = application specific data,

cipher’ cipher }

Rules for safe_msg and private_msg:

« Both sides discard messages with duplicate timestamps and messages with the
wrong direction (replay attempts);

« Both sides retain state of both the transmitted and the received timestamps;
messages with out of order timestamps are discarded (limited pipelining is
possible if one were ambitious);

» Messages with invalid checksums are discarded;

« (Discarded messages cause a security log entry to be made either locally or sent to
a security audit trail log process ???).

7.1.4. Library Routines

Kerberos uses two major libraries. The first is a general purpose DES encryption library,
and the second is a Kerberos-specific library to help interface to the Kerberos protocols.

7.1.4.1. DES Encryption Library. The DES encryption library created for Kerberos is a
software only implementation of the DES algorithm, certain modes of operation, and
related utilities. It may be used independently of Kerberos, or may be replaced (for
example, for export) by any other 64-bit block cipher algorithms which maintain a
compatible interface.

The routines supported include ecb mode, cbc mode, and pcbc mode® encryption and
decryption, a cbc checksum mode, a quadratic checksum mode, (not DES), a DES random
key generator, a routine to prompt and read a password without echoing, a routine to one-
way-encrypt an arbitrary string into a DES key, and a routine to create a DES key schedule
from a DES key.

The implementation for Berkeley 4.3 UNIX is described in a UNIX man page labelled
des_crypt(3).

Spche is a modified che mode to provide indefinite error propagation on decryption.

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 29

7.1.4.2. Kerberos Protocol Library. A Kerberos Protocol Library provides a callable interface to
the protocol described earlier.

The implementation for Berkeley 4.3 UNIX is described in a UNIX man page labelled
kerberos(3).

7.2.1ssues

Master key management for the servers is a yet unresolved operational problem. To
maintain security during maintenance operation it is preferable not to store the master key
on disk on the server, yet it is an operational headache to manually enter the master key at
each server every time it is restarted. One possible solution is to build a simple hardware
box that supplies the master key from a set of thumbwheels, over a serial port. This box
could remain plugged in to the KKDS in case a power loss causes it to reboot, yet it could be
unplugged (or the thumbwheels set to zero) when it is necessary to turn the machine over
to a field service engineer for maintenance. A related requirement is to completely clear all
copies of the master key, including any that may be in virtual memory swap areas on the
disk, when sanitizing the KKDS for service.

Key management for user keys also presents some problems. In order to make this
authentication mechanism as familiar and transparent to the user as possible, keys are
based on a password of the user’s choice. Because of this, Kerberos suffers from some of the
same problems as passwords. In particular, users may choose keys which are easy to guess,
or they may record them where others can find them.

Servers may require stable storage for the recently used authenticators, in order to
eliminate replay attempts that cross system boot or process restart boundaries. Whether
this is needed depends on the difference between the expected maximum downtime for the
service and the size of the service’s timestamp window.®

The KKDS workload needs to be estimated and measured, since it (they) can easily
become a bottleneck. We will then need to determine how to tune the KKDS'’s, and how
many are needed where.

The server’s private key is needed to decrypt the ticket for every application request. This
subjects it to potential exposure much more than is desirable for a private key. In the
future, a means to automatically change the server’s private key on a daily basis, using a
higher level key, is desirable. Also, a hardware implementation of DES supporting write-
only master keys is highly desirable for the Kerberos servers.

Another problem that is not easily dealt with at the moment is authenticating the
workstation to the user. How does a user know that an adversary hasn't modified the
software on the machine he or she is using so that it will store the secret key? One
approach to this problem is to have the user carry around a boot disk. The user would then
boot the machine off that disk, and upon logging in, the authentication would be taken care
of by software on that disk. The problem with this approach though, is that it requires the
user to carry something extra around.

Another approach, although not practical at the moment, is the use of smart cards that

6The service’s timestamp window is the valid range for time_sec,,; ,ow for which the service will
honor a request. -

Kerberos Authentication and Authorization System 27 Oct 1988

Page 30, Section E.2.1 Athena Technical Plan

would do the encryption for initial authentication internally. With this approach, the key
never leaves the card, thus, there’'s nothing for a spoofer to store except the session key
(which has a limited lifetime).

The representation of names as entered by the user is somewhat awkward.

The timestamp granularity for requests -- 5 ms. -- is more than sufficient for software
encryption, 4.3BSD, and current processors, but may be too large for systems 5 years from
now. (The granularity will have to be reduced and the fields extended, and the systems will
have to provide higher resolution timestamps than the 10ms currently provided by 4.3BSD
UNIX.)

The timestamp base used in the protocols is based on the Berkeley UNIX clock standard
rather than the ARPA internet clock standard used elsewhere in TCP/IP protocol family;
the IP standard should be used instead.

7.3. Well Known Services

All Kerberos installations should adhere to the following conventions:

« The following literals are reserved Kerberos principal names: {K,M}, krbtgt,
changepw, default.

* The Kerberos service is accessible at a well known UDP port, 750. The Kerberos

administration protocol is carried on via UDP port 751.7 In UNIX
implementations, these ports are named kerberos and kerberos master,
respectively.

7.4. Revision History

7.4.1. Revision 7 --> Release v1.1

Revision 7 represents the definitive specification for the August 1986 Athena staff release
of Kerberos.

« Protocol changed to only allow one ticket request up front. This was done to
decrease the complexity of the protocol, and to allow implementations that are
forced to limit the number of tickets returned to interact with others. This change
was made after reliability problems resulted from the complextity of the old
protocol, and network limitations. For a while, both the old protocol (V3) and the
new protocol (V4) will be supported.

7.4.2. Revision 6 --> Release v1.0

Revision 6 represents the definitive specification for the May 1986 Athena staff release of
Kerberos.

Major changes:

* Moved the design proposals for authorization into a new document, entitled
"Project Athena Technical Plan -- Authorization Proposals"”.

"These two port assignments are not official ones. An official assignment is needed.

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 31

» Added Kerberos err_reply message type and an appl_err, the latter message for
use with safe_msg and private_msg.

 Disallowed wildcard lookups for ticket requests (either via an authentication
request or ticket-granting-ticket request); removed the cleartext service
{name,instance} and lifetime from the corresponding reply messages.

* Added a flags field to the beginning of the ticket, to include the byte order of the
system granting the ticket.

« Changed the name of the des_set_key routine to key sched.

* Modified the safe_msg and private_msg protocols to streamline them, removed the
app_code, and replaced the sequence number with timestamps.

* Added the cleartext exp_date of the requesting principal to the auth_reply
message.

7.4.3. Rev 5
Major changes:
« Split authentication and authorization into two independent services; removed

authorization information from the authentication protocols. Redefined the term
KDC/AS to be the Key Distribution Center/Authentication Server.

* Changed the naming of users and services to a single, unified name model of
{name, instance}, with an optional realm specified. Modified protocols to reflect
the new naming model.

« Added a discussion of replication for the authentication database.

» Added more discussion of realms.

» Added protocols for secure conversations.

« Deleted most references to the existing athena_reg Athena Unix login database.

7.4.4. Rev 4
Major changes:

« Added an authentication realm realm to qualify all uses of the authentication
name {name,instance}. This allowed future enhancements to support
authentication across administratively independent Kerberos services, for
example between Athena’s Kerberos and one at LCS. (This is similar to the
Internet domains, but not necessarily equivalent.)

* Added the cleartext service {name,instance} and lifetime to the authentication
reply message, auth_reply. This supported the use of wildcard requests by
returning to the requestor a readable version of the specific servers and instances
selected.

« Specified byte ordering in the least significant bit of the auth_msg_type. The
transmitter of each message sends in its natural byte order, while the receiver
converts the byte order as needed.

Kerberos Authentication and Authorization System 27 Oct 1988

Page 32, Section E.2.1 Athena Technical Plan

8. Appendix Il—The Kerberos Encryption Library

The Kerberos encryption library supports various encryption related operations. Its
contents differ from the crypt, setkey, and encrypt library routines. In this description, eight
bit bytes are assumed; bit numbers start with the least significant bit. Array and bit
indices start with 0. Operation of the library is described below.

For each key that may be simultaneously active, create a Key_schedule structure, defined
in "krb.h" as a structure of 64 bit-fields:

typedef bit_64 Key_schedul e[16];

Next, create key schedules (from the 8-byte keys) as needed, using krb_key sched, prior to
using the encryption or checksum routines. Then set up the input and output areas. Make
sure to note the restrictions on lengths being multiples of eight bytes. Finally, invoke an
encryption/decryption routine such as pcbc_encrypt, or, to generate a cryptographic
checksum, use a routine such as quad_cksum.

A C _Block structure is an 8 byte block used as the fundamental unit for data and keys,
defined as:

t ypedef unsi gned char C Bl ock[8];

The individual library functions krb_read_password, krb_string_to_key, krb_random_key,
krb_key sched, pcbc_encrypt, and quad_cksum will now be described.

int krb_read_password(key, pronpt, verify)

C Bl ock *key;
char *pronpt ;
i nt verify;

krb_read_password writes the string specified by prompt to the standard output, turns off

echo (if possible) and reads an input string from standard input until terminated with a
newline. If verify is non-zero, it prompts and reads input again, for use in applications such
as changing a password; both versions are compared, and the input is requested repeatedly
until they match. Then krb_read_password converts the input string into a valid key,
internally using the krb_string_to_key routine. The newly created key is copied to the area
pointed to by the key argument. krb_read_password returns a zero if no errors occurred, or
-1 indicating that an error occurred trying to manipulate the terminal echo.
int krb_string to_key(s, k)

char *s;

C Bl ock *Kk;

krb_string_to_key converts a null-terminated string of arbitrary length (e.g., a user’s
password) into an 8 byte key, with odd byte parity, per the FIPS Data Encryption Standard
(DES) specification. A one-way function is used to convert the string to a key, making it
very difficult to reconstruct the string, given the key. The s argument is a pointer to the
string, and k should point to a C_Block supplied by the caller to receive the generated key.
No meaningful value is returned. Void is not used for compatibility with other compilers.
The algorithm for the conversion is described below.

The first step is to flatten the input string into a stream of 7*length(s) bits b as follows:

b[0] = bit O of s[O]
b[1] = bit 1 of s[O0]
b[6] = bit 6 of s[O0]
b[7] = bit O of s[1]

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 33

b[8] = bit 1 of s[1]
b[7n + n (0<=nk=6) = bit m of s[n]

In other words, the eighth (most significant) bit of each byte of s is dropped, and the
remaining bits are shifted over to fill in the gaps.

The second step is to "fan-fold" and XOR b into a string b’ exactly 56 bits long. For
example, if b is 63 bits long:

b’ [55] = b[55] XOR b[56],
b' [54] = b[54] XOR b[57]
b’ [49] = b[49] XOR b[62]

(The two steps described above can easily be combined.)

A key is 8 bytes long, but with odd parity in each byte; the least significant bit of the byte
is the parity bit. The key is formed from b’ above in two steps. The first step is to form the
key with zero parity as follows:

bit 1 of k[O] = b’ [0]
bit 2 of k[0] = b’ [1]

bit 1 of k[1] = b’ [7]

bit mof k[n] = b' [7n+m 1] (1l<=nk=7) and
bit 0 of k[n] =0

In other words, a zero parity bit is inserted into the stream b’ every seven bits, resulting
in the array k of eight 8-bit bytes. The second step is to set or clear the parity bit in each
byte of k as appropriate.

Next, the DES key schedule of k is computed using krb_key sched. Then the 64 bit DES
cipher-block-chaining (CBC) checksum of the original string is computed, and finally, the
CBC checksum is forced to odd parity. The generated checksum is the resulting key.

[CBC checksumming produces an 8 byte cryptographic checksum by cipher-block-chain
encrypting the cleartext data. All of the ciphertext output is discarded, except the last 8-
byte ciphertext block. If the cleartext length is not an integral multiple of eight bytes, the
last cleartext block is zero filled (highest addresses). The output is always eight bytes.]

int krb_random key(key)
C Bl ock *key;

krb_random_key generates a random encryption key (eight bytes), set to odd parity per

FIPS specifications. The routine may use any algorithm it wishes to generate a key at
random. The caller must supply space for the output key, pointed to by the argument key,
then after calling krb_random_key should call the krb_key sched routine when needed. No
meaningful value is returned. Void is not used for compatibility with other compilers.
int krb_key sched(k, schedul e)

C Bl ock *K;

Key schedul e schedul €;

krb_key sched calculates a DES key schedule from all eight bytes of the input key,
pointed to by the k argument, and outputs the schedule into the Key_schedule indicated by
the schedule argument. Make sure to pass a valid eight byte key; no padding is done. The
key schedule may then be used in subsequent encryption/decryption/checksum operations.

Kerberos Authentication and Authorization System 27 Oct 1988

Page 34, Section E.2.1 Athena Technical Plan

Many key schedules may be cached by the user for later use. The user is responsible for
clearing keys and schedules as soon as they are no longer needed, to prevent their
disclosure. The routine also checks the key parity, and returns O if the key is good, -1
indicating a key parity error, or -2 indicating use of an illegal weak key. If an error is
returned, the key schedule was not created.

int pcbc_encrypt(input, output, length, schedule, ivec, encrypt)
C Bl ock *i nput ;
C Bl ock *out put ;
| ong | engt h;
Key_schedul e schedul e;
C Bl ock *jvec;
i nt encrypt;

pcbc_encrypt encrypts/decrypts using a modified block chaining mode. It differs in its
error propagation characteristics from the DES cipher-block-chaining (CBC) mode, in that
modification of a single bit of the ciphertext will affect ALL the subsequent (decrypted)
cleartext; whereas with CBC, modifying a single bit of the ciphertext, then decrypting, only
affects the resulting cleartext from the modified block and the succeeding block. PCBC
mode, on encryption, "xors" both the cleartext of block N and the ciphertext resulting from
block N with the cleartext for block N+1 prior to encrypting block N+1. By "ciphertext", we
mean ciphertext generated using the DES Electronic Code Book (ECB) encryption mode.

If the encrypt argument is non-zero, the routine encrypts the cleartext data pointed to by
the input argument into the ciphertext pointed to by the output argument, using the key
schedule provided by the schedule argument, and initialization vector provided by the ivec
argument. If the length argument is not an integral multiple of eight bytes, the last block
is copied zero filled (highest addresses). The output is always an integral multiple of eight
bytes.

If encrypt is zero, the routine decrypts the (now) ciphertext data pointed to by the input
argument into (now) cleartext pointed to by the output argument using the key schedule
provided by the schedule argument, and initialization vector provided by the ivec argument.
Decryption ALWAYS operates on integral multiples of 8 bytes, so it will round the length
provided up to the appropriate multiple. Consequently, it will always produce the rounded-
up number of bytes of output cleartext. The application must determine if the output
cleartext was zero-padded due to original cleartext lengths that were not integral multiples
of 8.

No errors or meaningful values are returned. Void is not used for compatibility with
other compilers.

unsi gned | ong quad_cksun(i nput, output, |ength, out _count, seed)
C Bl ock *input ;
C Bl ock *out put ;
| ong | engt h;
i nt out _count;
C BLOCK *seed;

The quad_cksum routine is based on the Quadratic Congruential Manipulation Detection
Code described by Jueneman et al. quad_cksum produces a checksum by chaining
guadratic operations on the cleartext data pointed to by the input argument. The length
argument specifies the length of the input -- only exactly that many bytes are included for
the checksum, without any padding.

The algorithm may be iterated over the same input data, if the out_count argument is 2, 3

Kerberos Authentication and Authorization System 27 Oct 1988

Athena Technical Plan Section E.2.1, page 35

or 4, and the optional output argument is a non-null pointer . The default is one iteration,
and it will not run more than 4 times. Multiple iterations run slower, but provide a longer
checksum if desired. The seed argument provides an 8-byte seed for the first iteration. If
multiple iterations are requested, the results of one iteration are automatically used as the
seed for the next iteration.

It returns both an unsigned long checksum value, and if the output argument is not a null
pointer, up to 16 bytes of the computed checksum are written into the output.

Modifications to the algorithm described by Jueneman et al. are as follows. The
accumulator (referred to as Z in the paper) is 64 bits, as is its initial value (referred to as
C); and the modulus N is 2**63 - 1 rather than the suggested 2**31-1. The optional secret
seed S is not implemented.

Kerberos Authentication and Authorization System 27 Oct 1988

Page 36, Section E.2.1 Athena Technical Plan

References

1. Bauer, R.K., Berson, A., and Feiertag, R.J. "A Key Distribution Protocol Using Event
Markers". ACM Transactions on Computer Systems 1, 3 (August 1983), 249-255.

2. Birrell, Andrew D. et. al. "Grapevine: An Exercise in Distributed Computing". CACM
25, 4 (April 1982), 260-274.

3. Birrell, A.D. "Secure Communication Using Remote Procedure Calls". ACM
Transactions on Computer Systems 3, 1 (February 1985), 1-14.

4. Denning, Dorothy E. and Sacco, Giovanni Maria. "Timestamps in Key Distribution
Protocols". CACM 24, 8 (August 1981), 533-536.

5. National Bureau of Standards. "DES Modes of Operation". Federal Information
Processing Standards Publication 81 (1980).

6. National Bureau of Standards. "Data Encryption Standard". Federal Information
Processing Standards Publication 46 (1977).

7. Gifford, D.K. "Cryptographic Sealing for Information Secrecy and Authentication".
CACM 25, 4 (April 1982), 274-286.

8. Girling, C. G. Representation and Authentication on Computer Networks. Ph.D. Th.,
University of Cambridge, April 1983. Technical report 37.

9. Jaeger, Eric. Protocol for Trusted Third Party Access Control. Bachelor Thesis,
Massachusetts Institute of Technology, February 1985.

10. Jueneman, R.R. et. al. "Message Authentication". IEEE Communications 23, 9
(September 1985), 29-40.

11. Kent, Steven T. Encryption-Based Protection Protocols for Interactive User-Computer
Communications. Master Th., Massachusetts Institute of Technology,May 1976. MIT-LCS
Tech Report TR-162.

12. Miller, Steven P. Security for Local Area Networks. Tech. Rept. TR-227, Digital
Equipment Corporation, August, 1983.

13. Needham, R.M. and Herbert, A.J. The Cambridge Distributed Computing System.
Addison-Wesley, London, 1982.

14. Needham, R. M. and Schroeder M. D. "Using Encryption for Authentication in Large
Networks of Computers”. CACM 21, 12 (Dec 78), 993-999.

15. Neuman, Barry Clifford. Sentry, A Discretionary Access Control Server. Bachelor
Thesis, Massachusetts Institute of Technology, May 1985.

16. Popek, Gerald J. and Kline, Charles S. "Encryption and Secure Computer Networks".
Computing Surveys 11, 4 (December 1979), 331-356.

17. Voydock, Victor L., and Kent, Stephen T. "Security Mechanisms in High-Level
Network Protocols". Computing Surveys 15, 2 (June 1983), 135-171.

Kerberos Authentication and Authorization System 27 Oct 1988

