
··---- ------------

PAGE 1

PROPOSAL: A System of Clocks for Multics.

TO : F. J • Cor ba to

FROM: J. H. Saltzer

DATE: October 27, 1965

This paper ties together a specific proposal out of a

collection of ideas which have been suggested by many persons

concerning clocks on 645 Multics. Contributors have included G.

Oliver, G. Futas, and D. Dahm (GE); J. Ossanna and V. Vyssotsky

"' (BTL); and F. J. Corbato and E. L. Glaser (MAC). Following a

discussion of the objectives of the system of clocks, two

proposals for hardware implementation of the clocks will be

presented.

Obiectives

The hardware clocks on Multics must provide four baste

services:

Calendar Clock

Real-Time Interval Measurements

Real-Time Interval Interrupts (wake-up clock)

Processor Usage Meter and Interrupt

In detail, these services are as follows:

1. Calendar Clock: From this clock one may determine calendar

date and standard time. It should be easy for an operator to

set this clock to within 0.1 second of local standard time

saltzer
Text Box
An original paper copy of M0054 has not been located. This document, dated two weeks earlier, is thought to have been distributed as M0054, dated November 16, 1965.

2.

PAGE 2

and it should remain indefinitely within 1 second of its

Initial setting (barring power failures.) This accuracy Is

approximately what may be achieved by a crystal oscillator

without elaborate technology; this accuracy provides the user

with real time experiments (and data links between Multics

systems) with a useful reference source without attempting to

be a secondary time standard. The value of this clock Is set

by mechanical intervention by an operator. It is powered

independently of the computer so that the clock continues to

run when the computer is shut down. Resetting the clock

should be an unusual event, probably connected with a power

failure.

Real-Time Interval Measurements: For

accounting, statistical monitoring,

purposes of

and program

time

speed

evaluation, it must be possible to measure time intervals as

small as 0.5 milliseconds, with an accuracy of ±0.1 ms. It

would be very desirable, although admittedly expensive, to

push this accuracy to ±1 microsecond. One constraint which

is essential is that one processor may mark the beginning of

an interval and a second the end of the interval. It follows

that a common system clock accessible to all active devices

is necessary for real-time interval measurements. It is also

important that the identical measurement technique be

available for long intervals (e.g. a week or a month) since

at the beginning of an interval one may not know whether it

will be short or long.

PAGE 3

3. Rea 1-Ti me I nterva 1 Interrupt (wake-up c 1 ock): Many Multics

4.

supervisory, monitoring, and user processes must have

interrupt signals based on real-time intervals. For example,

a monitoring process may wish to sample the number of logged

in users every 10 minutes; a traffic control program may wish

to change its strategy at 4:30 p.m. Expected time intervals

will run from a few milliseconds to several days.

Processor Usage Meter and Interrupt: The system scheduler

must have a technique available for automat i ca 11 y switching

between processes on the basis of processor usage. A

countdown register i n each processor is indicated. The 635

processor interval timer is adequate.

In providing these four services three considerations should

be emphasized because of their fundamental importance to the

operation of Multics.

1. Common time unit: All system accounting based on real time

should be able to use a common time unit. Microseconds

should be as small a unit as necessary for this class of

system.

2. Reliability: If any of the basic clock functions described

above is not working, the Multics supervisor will not operate

and the Multics system is down. Therefore reliability in the

form of duplication and simple reconfiguration is essential.

In addition, there should be little opportunity or reason for

the calendar clock to appear to be operating but with an

incorrect setting. It follows that the calendar clock must

PAGE 4

run without routine human intervention to avoid human error.

3. Simple usage: The clocks will be used very

by the Multics supervisor and by Multics

simple to use design which requires

programming is mandatory.

Discussion.

frequently both

users; a clean

little special

The first two objectives of a calendar clock and a real time

interval timer can be neatly met by a single hardware register of

52 bits containing the number of microseconds since January 1,

1900. This register increments once per microsecond, requires

140 years to overflow, and is immediately accessible for reading

(but not writing) by any processor. Obviously, double-word

integer logic must be used for all times and intervals obtained

from this clock. The difficult problem is where to put this

register to insure immediate accessibility by any processor. Two

possibilities appear feasible for the location of a microsecond

calendar clock:

1. In the Memory Controller. A clock here could be either wired

in as a specific memory location (note that this approach may

make interlace among memory controllers awkward) or as a

special register similar to the memory file protect register

which is read by a special processor instruction. The

objective of reliability is easily met by building one clock

register into each memory controller.

PAGE 5

2. As an 1/0 device working through the GIOC. In this

arrangement, a calendar clock register would be placed either

in a GIOC channel adapter or in a free-standing box working

into a GIOC channel adapter. Periodically the contents of

the calendar clock register would be read into

via a direct channel. Updating the memory cell

core memory

every time

the calendar clock register changes (once per microsecond)

would tax the capacity of both the GIOC and of the addressed

memory module. A better source of a periodic signal to

update the memory cell is the change of a selected bit of the

calendar clock register. Thus if the sixth bit from the

right is chosen, the clock will read into core memory every

64 microseconds, using ahout 2% of the memory cycles of one

memory module, and about 10% of the capacity of one GIOC. It

has been estimated that a clock channel adapter will require

four of the 78 spaces for card rows in a GIOC.

Of these two possible locations for a calendar clock

register, the memory controller is by far

The GIOC location, while producing a less

using up GIOC capacity, and space has

the more desirable.

accessible clock and

the virtue that the

calendar clock 11 plugs in" to an interface designed to mesh with

virtually any hardware device.

The third objective, a wake-up clock, can be met by

providing a second 52-bit count-down register which is

synchronized with the calendar clock. When the register reaches

zero, it triggers a standard interrupt sequence. The wake-up

clock may be loaded at any time by any processor working for the

PAGE 6

operating system. This register would be located wherever the

calendar clock register is.

The processor usage meter is a special function which gets

involved in time-accounting problems. The desire to obtain a

load-independent measure of processor usage has prompted the

suggestion that this register should count memory cycles used by

the processor, rather than real time. Assuming that the DIS

instruction is disabled, this approach seems very appealing.

Operator Intervention.

The calendar clock will occasionally need to be adjusted by

an operator. One can invent elaborate mechanical or electrical

aids to figure out the number of microseconds since January 1,

1900, but it seems easier to use the capacity of the main

computer as a crutch for such an infrequent operation. If the

clock is far off, a small table of clock settings can be used to

obtain a ball-park estimate (within a few days) This value can

be placed in the clock to allow the system to run; a simple

program then performs a precise computation for the operator. He

gives a date and time as input and receives an octal number as a

reply. He then keys the octal number into the clock toggles,

waits for the "exact" time, and presses a read-in button.

Another approach to fine adjustment of the clock is to allow fine

tuning of the crystal oscillator by capacitive loading. It must

be emphasized that clock adjustment should be a rare operation

performed only following a power failure.

PAGE 7

Proposa 1.

In the light of the above discussion, this section presents

a proposal for implementation of a system of clocks.

First, there is a device known as a "Calendar Clock." This

is a free-standing box, powered independently of the system motor

generator set. It contains a 52 bit counter register driven by a

1 me. crystal oscillator. Thirty-six toggle switches and a

read-in button allow an operator to set the most significant 36

bits of the counter register to any desired initial value. The

remaining 16 bits are set to zero by the read-in button. The

read-in button is protected from accidental bumps. The crystal

oscillator frequency may be adjusted if necessary by a Product

Service Engineer to keep the Calender Clock within 1 second of

standard time, although once adjusted the clock should remain

within 1 second of its original setting indefinitely. It must be

possible to synchronize the crystal oscillator with an external 1

me. frequency standard if such a standard is available.

A single cell in the Calendar Clock acts as a "red flag" to

indicate that power has failed and that the Calendar register may

be in error. This "red flag" cell is set on whenever power comes

up on the calendar clock; it can be turned off only by an

operator's button. An indicator lamp is activated by the "red

flag" cell.

The cable interface of the calendar clock contains lines for

the 52-bit calendar clock register and for the "red flag" cell.

There must also be one signalling line which carries a pulse

every me&icrosecond. This could be the same line which signals a

PAGE 8

change in the clock register lines. Cable delay restrictions may

be relaxed by the following consideration: A delay of up to 0.5

seconds is tolerable, but the delay must be constant to within a

microsecond or less. (Obviously, hardware tolerances will be

much tighter, these are only software tolerances.)

The "Memory File Protect Register" (64 bits) is removed from

the Memory Controller. In its place are two 52-bit registers,

the Calendar Clock Register and the Calendar Interval Register.

The contents of the Calendar Clock Register are set via a cable

interface from the Calendar Clock described above. A "red flag"

cell is set from the corresponding cell in the Calendar Clock.

The Calendar Interval Register simply counts down under

control of a signal line from the Calendar Clock, once per

microsecond. Whenever the Calendar Interval Register passes

zero, it generates an interrupt signal which may be directed by

sv'li tch to any of the 32 memory interrupt cells in that memory

controller.

These two registers are accessible to any 645 processor by

two special instructions. The instruction "Read Memory File

Protect Register" is renamed "Read Calendar Clock Register". It

operates as follows: The contents of the Calendar Clock Register

of the addressed memory controller are placed in the AQ register

bits 20-71. If the "red flag" cell in the memory controller is

on, the negative indicator in the processor is set on. This

instruction may be delayed slightly if executed while the

Calendar Clock Register is changing. This instruction may be

executed in Slave Mode.

PAGE 9

The instruction "Set Memory File Protect Register" is

renamed "Set Calendar Interval Register." It operates as

follows: The contents of the AQ register bits 20-71 are placed

into the Calendar Interval Register of the addressed Memory

Controller. The Calendar Interval Register is inhibited from

counting during the execution of this instruction. This

instruction may only be executed in Master Mode; it causes an

illegal procedure fault in slave mode. A waiting interrupt from

the Calendar Interval Register is nQ1 reset by this instruction.

A typical Multics system with four Memory Controllers would

include two Calendar Clocks, which are plugged into two of the

Memory Controllers. The Calendar Clock Register and Calendar

Interval Registers in the remaining two Memory Controllers would

be quiescent, and ignored by the operating system. The operating

system would use only one of the two working Calendar Clocks, and

treat the second as a backup. A reconfiguration of the system to

remove a Memory Controller might require reconnection of one of

the Calendar Clocks to a different Memory Controller.

