
 April 2, 1971

COMPUTER SYSTEMS: FUTURE RESEARCH DIRECTIONS

by Jerome H, Saltzer*

I, The Methods of Information System Research

 The following question is frequently asked, and I think it's

a fairly good one: "What is a university doing in the business of con-

structing operating systems?" My answer to this question is very simple:

We are doing research. I'd like to try in the next few minutes to shed

some light on that answer because it takes a bit of reasoning to get

there. What does it mean to do research on computer systems?

 Clearly, one can hypothesize a system and construct on paper a

design. One can even model the design and build simulations of it and

explore the results of the simulation. But the one problem you run into,

especially if the proposed system has features which are distinctly different

than other systems you have experience with, is that you have no way to

model the way that users are going to load it. Since there is no way to

model the load, there is a very important missing piece of the simulation.

In fact, it often means that simulation is a complete waste of time. To

the extent that you know what the load looks like, you can simulate, and

get results limited only by your ingenuity. To the extent that you don't

have any way to predict what the load will look like, you are stuck. The

conclusion, if you accept this premise, is that in order to do research on

computer systems, you've got to have real users. You are going to have to

do something to find out how real users react to your proposals; you can't

have real users unless you build the system.

* Massachusetts Institute of Technology, Department of Electrical Engineer-
 ing and Project MAC - This paper is an edited version of a talk given at
 a symposium on the Multics System. January 21-22, 1971.

This document was originally prepared off-line. This file is the result of M0125
scan, OCR, and manual touchup, starting with an original paper copy.!

 This leads to the general technique that the computer system

research group of Project MAC has followed in developing two major

systems at MIT, the Compatible Time Sharing System and the Multics system.

First, propose a system that has certain properties; then construct a

prototype of the system. As you construct the prototype, a lot of

engineering tradeoffs come to light; frequently these tradeoffs by them-

selves give much insight into the real nature of the problem you are

trying to solve. After you construct the prototype, you then try it out

on a live user community. The strategy is to observe the usability of

the system under live, realistic conditions; that is, first get the users

to adapt to it, and-then begin measuring the way they load, so you can go

back and ask the question about how does a new system idea work. The

next step is to iterate: redo ideas that didn't work out very well;

find a more understandable interface chat users can accept; discover a

more effective way of doing something so that users won't be afraid of

some features, and so on.

 This iteration, going around the loop of redesign and retry,

while trying to discover simplification and underlying structures, repre-

sents the real research effort: you are learning something about the way

systems should be organized. But inherent in this iteration is a system

development phase during which you actually construct something; therefore

there is much opportunity for confusion of the goals.

 Of course, there are some limitations in this approach; you

can't be guaranteed that everything is going to work out perfectly when

you engineer a live system. For one thing, you can't propose to make

changes that are so radical that no user is willing to try the result,

M0125 -2-

since the whole point of building the system was to get users. So this

does limit the kinds of things you can propose doing. If helps a tremen-

dous amount if you can identify, as we have at MIT, a number of users who

have run up against the stops on some other system. At least some of

these users may be willing to take some risk if they think that your

system has a reasonable chance of removing a barrier that's in their

way.

 Another obvious limitation to this approach is that it forces

you to work only with strategies which are economically viable. Other-

wise, your guinea pigs are either going to have to be subsidized or else

they're not going to help. If your system doesn't offer features that

are good enough to overcome a cost disadvantage, then it cannot attract

the users that you need to test it. This is a limitation because there

are ideas you would like to try which may not be economically viable

today, but will be in five years -- technology that you definitely see

in the lab, but just hasn't made it out to the production line. On the

other hand, it does tend to assure some contact with reality. It keeps

you from producing something which you think will be economically viable

in five years, but which in fact will still be impractical by an order

of magnitude then.

 Another limitation is a need to control the rate of change.

That is, the iteration process in which you go back and make fixes, and

understand what's wrong, results in a desire to change the system to pro-

vide a better interface. Unfortunately, while you may be providing the

user with a better interface he has adapted to the old one already, and

his patience and willingness to readapt are probably limited. In other

 -3- M0125

words, if you make experiments that destroy user confidence, if you

make changes so rapidly that users get unhappy, you may make great local

progress, while losing the global battle to attract and keep a test user

load. The reason you built the system to start with was to attract users.

 Finally, there is the problem of insuring that the user load

which you attract is representative of a very broad class of information

system user. There are no simple answers to this limitation. We are

fortunate again, at MIT, in having a very broad scope of computer use,

from interactive one-shot student problems to complex scientific evalua-

tions, and to social science and administrative data base manipulation.

Also fortunate is an administrative structure which permits most MIT

users to choose their source of computation based on cost and technical

performance for their own job. Thus, for our particular environment,

we have an opportunity to attract a very broad user community.

II. The Objective of Information System Research

 I have tried to capture in a few words the research objective

of the computer systems research group at Project MAC as follows: we hope

to turn the fabrication of large scale information processing systems into

routine engineering development projects. Of course, this objective

requires learning much more about the conceptual understructure of such

systems. That is a much broader objective than merely inventing ingeneous

techniques of fabrication. The problem is that today, systems of the size

of Multics, whether they*re implemented at a university, in the Department

of Defense, or at a computer company, invariably are a back breaking

effort of high powered specialists. You could ask, "Well, what's wrong

with doing it with high powered specialists?" and the answer of course,

M0125 -4-

is that there simply aren't enough of them to do all the things we*d

like to do. There are literally dozens of projects waiting to be done

if it were possible to do them routinely, but if you have to do them with

specialists, you can not tackle very many of them. One of the other

problems with specialists is that you don't often identify the high

powered specialist until after the fact, and frequently once you've

identified him and you ask him if he would like to build another system,

his answer is "no".

 A possible question is: “You've built Multics -- isn't that

sufficient?" My answer there is "no". There are a host of interesting

problems which will require an order of magnitude more machinery, more

software, and more organization. Some examples from the daily news

include the ABM support system, and the FAA air traffic control system.

I think the present status of computer systems research is such that if

the FAA were to announce this morning that they had just finished their

new air traffic control system and were putting it into operation this

afternoon, you would probably take the train home. The point is, there

is no methodical way of cranking these systems out, and that's the thing

we'd like to try to change. Another good example is the National Data Bank.

Even though it is being debated quite a bit, in fact I don't really think

anyone knows how to implement it. One can tie all the various data

storing systems together and invent facilities so that if you know what to

ask for and know where to look for it you can get it. But in order to

carry out the operations the supporters and distrusters of the data bank are

debating, it requires a technology of network and data organization that

does not exist today. I would hope that the technology of control

 -5- M0125

of such systems -- privacy, authorization, and so on, matures as rapidly

as does the technology of organization.

 The other example of a system beyond present capabilities is something

which I would call the on-line company. You don't have any real examples

today of an on-line company, in which the full potential of having infor-

mation storage on-line, updated by everyone in the course of his job, and

used with real effectiveness by everyone from the inventory clerk to the

president. You don't find that capability because you can't depend on

systems, you can't automatically crank them out, and you can't routinely

modify them fast enough to keep up with the needs of the company. Until

we have moved down the path towards the routine project, these kinds of

systems will remain beyond reach.

III Some Topics of Information System Research

 With that overview, it is appropriate now to move on to some specific

examples of research topics. I've selected a few examples of areas which

seem to offer some hope of making progress: large files, memory models,

networks, mutually suspicious programs, and changes of scale.

 The topic of large files I might rename to really large files. The

point is that today Multics -- and other on-line systems as well -- has

mechanisms that handle very smoothly 1010 bits of on-line storage. By

way of comparison, that is enough storage to maintain the programs and

data of 1000 scientific programmers; or the inventory of a Jordan Marsh

size department store. Unfortunately, there are a lot of interesting=

problems which need 1012 bits -- that's 100 times as much. One of the

reasons you can't build a national data bank is that no one knows how to

keep 1012 bits organized. The problem is not the technology of getting

1012 bits of storage in one place. Several hardware designs of 1012 bit

memories have been proposed and some have been implemented. The issue

M0125 -6-

really is the organization of all that memory and the effective use of it

by the computer system. After the national data bank come such examples

as personnel and logistics files of the Defense Department, the on-line

Internal Revenue Service (perish the thought), the customer account files

of the Bell System or any other large corporation, the larger insurance

companies, the library automation services, and the needs of the intelli-

gence community. The Lawrence Radiation Laboratory at Livermore has a

1012 bit file which stores results of bubble chamber scanning, among other

things, but it's used in very limited ways.

 What's the problem here? Why doesn't memory usage just scale up?

Multics certainly doesn't scale up, and it is fruitful to see why not. One

of the things we found necessary to provide absolute storage reliability

in Multics is to copy, once a week, all of the on-line information storage

onto tape. We do it on Sunday night because it takes a few hours. The

trouble is that if we had 100 times as much, we would find that it took

two weeks to make the copy. Which means that clearly the technique doesn't

scale up well.

 What is happening is that there seem to be some real issues

in getting performance, reliability, and cross reference all in one scaleable

design. When you've got a file of even 1010 bits, it is certain to have

structure. It isn't just a collection of 1010 bits that some guy handed

you, and said "Here, remember these and I'll come back and get them later."

There is some structure inside, and the structure implies that some of those

bits are going to have to be names of other objects in the file. In other

words, there has to be cross reference from one address to another in the

file.

 -7- M0125

 Now, the best kind of addressing for performance is the absolute

physical addresses. On the other hand, if you begin using absolute

physical addresses, multiple copies intended for reliability are difficult

to work in. Worse, if you have a single small area of the memory system

fail, you want to move that information to some other part of the system,

and continue operation. But now its physical address has changed, and

there are all those references to the old address. The textbook approach

to this problem is to introduce maps, but for a 1012 bit memory the maps

get to be very large and the extra mapping references begin to eat into

the performance. Thus, it is the combination of objectives which so far

has limited our ability to construct really large quantities of memory

which is reliable, randomly-accessible, and effective in performance.

 A second exciting research topic is memory modeling. For analysis

as well as synthesis we need good models of the way users load the system.

The difficulty here is simply that there are many different kinds of devices

with a variety of properties and users do various kinds of different things,

but there is no good way to predict what kind of performance is going to

result. In other words, you can't say "Here's what my users are doing,

would you synthesize for me a storage system that will give me the following

performance?" The synthesis ability isn't there. We have a lot of results

on apparently independent topics. You can look in the research journals

and pick out papers telling you what happens if you have interleaved

memory, and what happens if you use a cache memory on certain kinds of loads,

and you find another result that tells you what is the effect of disk arms

moving in certain ways for certain assumptions. Other papers report on

M0125 -8-

demand paged virtual memories. I'm very much reminded of the situation

that existed some years ago in filter theory in which one could look in one

place and find a solution for π-type filters and elsewhere in another paper,

a solution for T-type filters but no-one as yet had seen the under-structure

that allows a common view of the situation: the graph theory, linear

differential equations, and complex variable theory which allow most such

problems to be solved by inspection.

 Such a coherent view of memory, device properties, user loads, and

sharing simply doesn't exist, but it is essential for progress, and likely

to be developed soon. Another form of this question comes up in the

commonly debated topic of space-time tradeoffs. Most algorithms have

alternative implementations. Frequently one implementation is faster, but

takes more memory space, while another is slower but more compact. Actually,

there's a third dimension added in a big system with a variety of memory

devices. Just because you use more space it doesn't necessarily mean that

you use more of the fastest memory. The traditional example of tradeoff

between running time and space is the use of hash coding as a way of stor-

ing things in tables. The more densely packed you make a hash table, the

slower the lookup operation. This effect was first exploited long ago and

is now the basis for the symbol tables in most language translators. One

can compute formulas for this particular space-time tradeoff, but when you

put a hash table into a virtual memory, something new happens. The densely

packed table, which requires multiple lookups, may require that the entire

table be in the highest performance memory. On the other hand, if you use

 -9- M0125

a longer, less dense cable, it takes up more virtual memory, but you may be

able to look things up in one or two references and thus use only a small

portion of the highest performance memory. Thus a new dimension has come

into this tradeoff which really is going to require some exploration to

understand.

 My third example of a research area is that of networks -- information

being shared at a distance. If one has two processors which aren't located

at exactly the same point in space you develop a problem, because when the

two processors try to share information they begin making copies of it,

and copies arc deadly things in a system with sharing. Copies lead to an

updating problem, and the question "which copy is the 'correct' one?"

This problem comes up when one processor is in Los Angeles and the other is

in Boston, where the separations are measured in tens and hundreds of

milliseconds. But it also comes up if you have two nanosecond processors

in the same machine room which are separated by ten feet. Ten feet means

ten nanoseconds, or ten instruction times and to keep the instruction rate

up there will have to be per-cpu copies of information in process.

 I'm not sure that there are fundamental new issues exposed by a

network that aren't already in ordinary operating systems, but the net-

work places a premium on certain issues. For example, the problems of

protocol, and communication discipline, and accounting cannot be finessed

as they often can in a single operating system. Of course, the problem of

load modeling comes up if you try to ask how big the channels have to be

between the various pieces of the network. The prediction of bandwidth

requirements is a non-trivial thing which requires knowing how users will

load the network. Again we have the problem that I mentioned at the very

M0125 -10-

beginning -- until you build one you don't know. Even though you see

some obvious uses, you are not quite sure exactly what proportions they

are going to take.

 On the topic of networks, there is some research going on in Japan

on the problem of putting together a multi-processor nanosecond computer

which has local memory in each of the processors. They are asking questions

about traffic requirements. If one of the processors writes something

in its local memory, all the others which potentially are sharing that

item have got to be told about it, which means that cross traffic is going

on among the processors. They are trying to predict the amount of that

cross traffic, and coming up with alarming results. The point is that

there are things here which require much modeling and that are not yet

understood.

 There are a variety of other research topics I will just briefly touch

on. Probably the one topic which has the biggest immediate academic

payoff is what I would term "simplification of mechanism." As we look

at a piece of our present system, we frequently discover a way with half

the code to do all the same things, do some of them better, and add a

couple of other features. That can only happen when one has acquired

additional insight into what it was he was doing. There are several examples

in Multics experience in which we have rewritten modules two or three or

four times and each time gained a factor of two or four or sometimes ten

in operating effectiveness. You just don't get factors of ten by

noting that a test can be done a little faster in a different order. You

get factors of ten by understanding the strategy better. And it's the

understanding of strategy which goes into the simplification of mechanism

that we think is one of the chief results we can hope to produce.

 -11- M0125

Another good research topic is one I would name "implementation of protec-

tion between mutually suspicious programs." Multics contains a protection

mechanism based on concentric rings of greater and greater authority. This

seems to be an adequate technique for a class of problems in which program A

is suspicious of program B, but B is willing to trust A. For example, the

instructor doesn't trust the student, but the student trusts the instruc-

tor. That kind of arrangement implements very smoothly with rings of pro-

tection, since they are purely hierarchical, totally ordered. But as soon

as you get to a mutually suspicious case, you begin to run into some problems.

 A good example of the mutually suspicious situation is the following:

suppose we have an entrepreneur who has just written a brand new PL/I com-

piler he claims is better than any other PL/I compiler anywhere and he

wants to market it using system facilities to protect his interests. He

wants to make sure you can't make a copy of it when you run it, and that he

can get a record of the fact that you used it. In other words, he is sus-

picious of his users. So far, so good: the ring mechanism of Multics

works beautifully. But you begin to get into trouble if a customer of the

entrepreneur is constructing a brand new linear programming program, written

in PL/I which he considers proprietary. Now, the customer begins to worry

that the private PL/I compiler may steal a copy of his LP program while com-

piling it. Now you have a mutually suspicious situation. I want to use

your program but I don't want you to see the data I'm allowing your program

to massage. That's the situation that no one knows quite how to handle,

and yet there are certainly some applications that are quite interesting.

M0125 -12-

 Still another, and today my last, example of a research topic is

"what do you learn when you scale a system up and down in size?" Probably

the most immediate reason for building Multics is that its predecessor

system, CTSS on the 7094, did not scale up or down at all. Both hardware

and software were "special cased" for the size of the problem being solved

there. In changing the scale, you discover bottlenecks and tradeoffs you

hadn't realized were there, so it becomes a very fruitful exercise in under-

standing. A good example of a particular scaling problem is what happens

if you attach 25 processors. When you have more than one processor you

run into interference problems: two of the processors may happen to reach

for the same piece of data at the same time, so one has to wait for the

other. Unfortunately, we don't have a model of the data sharing. When

you put on 25 processors, is 3 percent of their time lost in interference?

or 90 percent?

 In closing, I'd like to review again the overall research objective

in this area: we hope to turn the fabrication of large scale information

processing systems into routine engineering development projects. I hope

that my comments this afternoon have given you some insight into what

this objective means and why I consider it important.

 -13- M0125

