
M0-130

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

January 17, 1972

* MULTICS: THE FIRST SEVEN YEARS

by F. J. Corbato
C. T. Clingen

and
J. H. Saltzer

Abstract

In 1964 planning began on the development of a prototype of a computer

utility. The aspirations for this system, named Multics {for Multiplexed

Information and ~omputing ~ervice), were described in papers presented

at the 1965 Fall Joint Computer Conference. Implicit in those papers was

the expectation of a later examination of the development effort. From the

present vantage point, however, it is clear that a definitive examination is

beyond possibility in a single paper; only some of the possible topics can

be discussed. First we will review the goals, history and current status of

the appearance of the Multics system to its various classes of users. Finally

we will describe some of the insights which have come out of the development

activities.

*

PREPRINT
This memo is a preprint of a paper to be presented
at the 1972 Spring Joint Computer Conference,
May 16-18, 1972.

Work reported herein was sponsored (in part) by Project MAC, an ~I.T.
research program sponsored by the Advanced Research Projects Agency,
Department of Defense, under office of Naval Research Contract Number
N00014-70-A-0362-0001. Reproduction is permitted for any purpose of
the United States Government.

-1-

,•

* MULTICS: THE F 1RST SEVEN YEARS

by F. J. corbato

Massachusetts Institute of Technology

Cambridge, Massachusetts

and

c. T. Clingen

Honeywell Information Systems Inc.

Cambridge, Massachusetts

and

J. H. Saltzer

Massachusetts Institute of Technology

Cambridge, Massachusetts

Paper #
(617) 864-6900, Ext. 6001

545 Technology Square - Room 513

02139

(617) 491-6100, lxt_ 201

575 Technology Square

02139

(617) 864-6900, Ext. 6016

545 Technology Square - Room 519

02139

In 1964 planning began on the development of a prototype of a computer

utility. The aspirations for this system, named Multics (for Multiplexed

Information and _Qomputing ~ervice), were described in papers presented

at the 1965 Fall Joint Computer Conference. Implicit in those papers

was the expectation of a later examination of the development effort.

From the present vantage point, however, it is clear that a definitive

examination is beyond possibility in a single paper; only some of the

possible topics can be discussed. First we will review the goals, his­

tory and current status of the Multics project. This review will be

followed by a brief description of the appearance of the Multics system

to its various classes of users. Finally we will describe some of

the insights which have come out of the development activities.

(word count 135)

*
Work reported herein was sponsored (in part) by Project MAC, an

M.I.T. research program sponsored by the Advanced Research Projects

Agency, Department of Defense, under office of Naval Research Con­

tract Number N00014-70-A-0362-0001. Reproduction is permitted for

any purpose of the United States Government.

-1-

Corbato, et al. Multics: The First Seven Years Paper #

INTRODUCI'ION

In 1964, following implementation of the Compatible Time­

Sharing System (CTSS)[l,Z]serious planning began on the development

of a new computer system specifically organized as a prototype of a

computer utility. The plans and aspirations for this system, called

Multics (for Multiplexed lnformation and ~omputing ~ervice), were des-

cribed in a set of six papers presented at the 1965 Fall Joint Computer

Conference. [J-B] The development of the system was undertaken as a

cooperative effort involving the Bell Telephone Laboratories (from

1965 to 1969), the co.mputer department of the General Electric Com­

* pany, and Project MAC of M.I.T.

*
Subsequently acquired by Honeywell Information Systems Inc.

Lmplicit in the 1965 papers was the expectation that there

should be a later examination of the development effort. From the present

vantage point, however, it is clear that a definitive examination cannot

be presented in a single paper. As a result, the present paper dis-

cusses only some of the many possible topics. First we review the

goals, history and current status of the Multics project. This review

is followed by a brief description of the appearance of the Multics

system to its various classes of users. Finally several topics are

given which represent some of the research insights which have come

-2-

Corbato, et al. Multics: The First Seven Years Paper #

out of the development activities. This organization has been chosen

in order to emphasize those aspects of software systems having the goals

of a computer utility which we feel to be of special interest. We

do not attempt detailed discussion of the organization of Multics;
•k

that is the purpose of specialized technical books and papers.

For example, the essential mechanisms for much of the Multics system

are given in books by Organick[9] and watson. IlO]

GOALS

The goals of the computer utility, although stated at length

in the 1965 papers, deserve a brief review. By a computer utility

it was meant that one had a community computer facility with:

1) Convenient remote terminal access as the normal mode of

system usage;

2) A view of continuous operation analogous to that of the

electric power and telephone companies;

3) A wide range of capacity to allow growth or contraction with-

out either system or user reorganization;

4) An internal file system so reliable that users trust their

only copy of programs and data to be stored in it;

5) Sufficient control of access to allow selective sharing of

information;

6) The ability to structure hierarchically both the logical

-3-

Corbato, et a 1. Multics: The First Seven Years Paper =II=

storage of information as well as the administration of the

system;

7) The capability of serving large and small users without

inefficiency to either;

8) The ability to support different programming environments

and human interfaces within a single system;

9) The flexibility and generality of system organization required

for evolution through successive waves of technological improve-

ments and the inevitable growth of user expectations.

In an absolute sense the above goals are extremely difficult

to achieve. Nevertheless, it is our belief that Multics, as it now exists,

* has made substantial progress towards achieving each of the nine goals.

MOst importantly, none of these goals had to be compromised in any tmpor-

tant way.

* To the best of our knowledge, the only other attempt to comprehen-

sively attack all of these goals simultaneously is the rss/360

. [11 12 13]
proJect at IBM. ' '

HISTORY OF THE DEVELOPMENT

As previously mentioned, the Multics project got underway

in the Fall of 1964. The computer equipment to be used was a modified

General Electric 635 which was later named the 645. The most signi•

ficant changes made were in the processor addressing and access control

-4-

Corbato, et al. Multics: The First Seven Years Paper I

logic where paging and segmentation were introduced. A completely

new Generalized Input Output Controller was designed and implemented

to accommodate the varied needs of devices such as disks, tapes and

teletypewriters without presenting an excessive interrupt burden to the

processors. To handle the expected paging traffic, a 4-million word

(36-bit) high-performance drum system with hardware queueing was developed.

The design specifications for these items were completed by Fall 1965,

and the equipment became available for software development in early

1967.

Software preparation underwent several phases. The first

phase was the development and blocking out of major ideas, followed

by the writing of detailed program module specifications. The resulting

3,000 typewritten pages formed the Multics System Programmers' Manual

and served as the starting point for all programming. Furthermore,

the software designers were expected to Lmplement their own designs.

As a general policy PL/I was used as the system programming language

wherever possible to maximize lucidity and maintainability of the

[14 15]
system. ' This policy also increased the effectiveness of system

programmers by allowing each one to keep more of the system within his

grasp.

The second major phase of software development, well under-

way by early 1967, was that of module implementation and unit checkout

followed by merging into larger aggregates for integrated testing.

Up to then most software and hardware difficulties had been anticipated

-5-

Corbato, et al. Multics: The First Seven Years Paper #

on the basis of previous experience. But what gradually became apparent

as the module integration continued was that there were gross discrep­

ancies between actual and expected performance of the various logical

execution paths throughout the software. The result was that an

unanticipated phase of design iterations was necessary. These design

iterations did not mean that major portions of the system were scrapped

without being used. On the contrary, until their replacements could

be Lmplemented, often months later, they were crucially necessary to

allow the testing and evaluation of the other portions of the system.

The cause of the required redesigns was rarely ''bad coding" since most

of the system programmers were well above average ability. Moreover

the redesigns did not mean that the goals of the project were compro­

mised. Rather three recurrent phenomena were observed: 1) typically,

specifications representing less-important features were found to be

introducing much of the complexity, 2) the initial choice of modularity

and interfacing between modules was sometimes awkward and 3) it was

rediscovered that the most important property of algorithms is simplicity

* rather than special mechanisms for unusual cases.

*
"In anything at all, perfection is finally attained not when there

is no longer anything to add, but when there is no longer anything

to take away ••• 11

Antoine de Saint-Exupery, Wind, Sand and Stars

Quoted with permission of Harcourt Brace Jovanovich, Inc.

-6-

,
CorbatoJ et al. Multics: The First Seven Years Paper #

The reason for bringing out in detail the above design itera-

tion experience is that frequently the planning of large software

projects still does not properly take the need for continuing iteration

into account. And yet we believe that design iterations are a required

activity on any large scale system which attempts to break new concep-

tual ground such that individual programmers cannot comprehend the

entire system in detail. For when new ground is broken, it is usually

impossible to deduce the consequen·t system behavior except by experi-

mental operation. Simulation is not particularly effective when the

system concepts and user behavior are new. Unfortunately one does not

understand the system well enough to simplify it correctly and thereby

obtain a manageable model which requires less effort to implement than

the system itself. Instead one must develop a different view:

1) The initial program version of a module should be viewed only

as the first complete specification of the module and should

be subject to design review before being debugged or checked

out.

2) Module design and implementation should be based upon an

assumption of periodic evaluation, redesign, and evolution.

In retrospect, the design iteration effect was apparent even

in the development of the earlier Compatible Time-Sharing System (CTSS)

when a second file system with many functional improvements turned out

-7-

Corbato, et al. Multics: The First Seven Years Paper #

to have poor performance when initially installed. A hasty design itera­

tion succeeded in rectifying the matter but the episode at the time

was viewed as an anomaly perhaps due to inadequate technical review of

individual programming efforts.

CURRENT STATUS

In spite of the unexpected design iteration phase, the Multics

system became sufficiently effective by late 1968 to allow system

programmers to use the system while still developing it. By October

1969, the system was made available for general use on a "cost-recovery"

charging basis sLmilar to that used for other major computation facilities

at M.I.T. Multics is now the most widely used time-sharing system at

M.I.T., supporting a user community of some 500 registered subscribers.

The system is currently operated for users 22 hours per day, 7 days

per week. For at least eight hours each day the system operates with

two processors and three memory modules containing a total of 384k

(k = 1024) 36-bit words. This configuration currently is rated at a

capacity of about 55 fairly demanding users such that most trivial

requests obtain response in one to five seconds. (Future design itera­

tions are expected to increase the capacity rating.) Several times

a day during the off-peak usage hours the system is dynamically recon­

figured into two systems: a reduced capacity service system and an

independent development system. The development system is used for

testing those hardware and software changes which cannot be done under

normal service operation.

-8-

!

Corbato, et al. Multics: The First Seven Years Paper #

The reliability of the round-the-clock system operation

described above has been a matter of great concern, for in any on-line

real-time system the impact of mishaps is usually far more severe than

in batch processing systems, In an on-line system especially impor­

tant considerations are:

1) the time required before the system is useable again following

a mishap,

2) the extra precautions required for restoring possibly lost

files, and

3) the psychological stress of breaking the interactive dialogue

with users who were counting on system availability.

Because of the importance of these considerations, careful logs are

kept of all Multics "crashes" (i.e., system service disruption for

all active users) at M.I.I. in order that analysis can reveal their

causes. These analyses indicate currently an average of between one

and two crashes per 24 hour day. These crashes have no single cause.

Some are due to hardware failures, others to operator error and still

others to software bugs introduced during the course of development.

At the two other sites where Multics is operated, but where active

system development does not take place, there have been almost no system

failures traced to software.

Currently the Multics system, including compilers, commands,

and subroutine libraries, consists of about 1500 modules, averaging

-9-

Corbato, et al. Multics: The First Seven Years Paper #

roughly 200 lines of PL/I apiece. These compile to produce some

1,000,000 words of procedure code. Another measure of the system

is the size of the resident supervisor which is about 30k words of

procedure and, for a 55 user load, about 36k words of data and buffer

areas.

Because the system is so large, the most powerful maintenance

tool available was chosen -- the system itself. With all of the system

modules stored on-line, it is easy to manipulate the many components

of different versions of the system. Thus it has been possible to

maintain steadily for the last year or so a pace of installing 5 or

10 new or modified system modules a day. Some three-quarters of these

changes can be installed while the system is in operation. The remainder,

pertaining to the central supervisor, are installed in batches once or

twice a week. This on-line maintenance capability has proven indispen­

sible to the rapid development and maintenance of Multics since it

permits constant upgrading of the user interface without interrupting

the service. We are just beginning to see instances of user-written

applications which require this same capability so that the application

users need not be interrupted while the software they are using is

being modified.

The software effort which has been spent on Multics is diffi­

cult to estimate. Approximately 150 man-years were applied directly to

design and system programming during the Hdevelopment-only 11 period of

Table I. Since then we estimate that another 50 man-years have been

-10-

Corbato_, et al. Multics: The First Seven Years

System

CTSS

Multics

Development Only

1960-1963

1964-1969

Development ± Use

1963-1965

1969-present

Paper #

Use Only

1965-present

Table _!. A comparison of the system development and use

periods of CTSS and Multics. The Multics development period

is not significantly longer than that for CTSS despite the

development of about 10 times as much code for Multics as

for CTSS and a geographically distributed staff. Although

reasons for this similarity in time span include the use of

a higher-level programming language and a somewhat larger

staff_, the use of CTSS as a development tool for Multics

was of pivital importance.

-11-

Corbato, et al. Multics: The First Seven Years Paper #

devoted to improving and extending the system. But the actual cost

of a single successful system is misleading, for if one starts afresh

to build a similar system, one must compensate for the non-zero prob­

ability of failure.

THE APPEARANCE OF MULTICS TO ITS USERS

Having reviewed the background of the project, we may now

ask who are the users of the Multics system and what do the facilities

that Multics provides mean to these users. Before answering, it is

worth describing the generic user as "viewed" by Mult ics. Although from

the system's point of view all users have the same general charac­

teristics and interface with it uniformly, no single human interface

represents the Multics machine. That machine is determined by each

user's initial procedure coupled with those functions accessible to

him. Thus there exists the potential to present each Multics user with

a unique external interface.

However, Multics does provide a native internal program

environment consisttng of a stack-oriented, pure~procedure, collection

of PL/I procedures imbedded in a segmented virtual memory containing all

procedures and data stored on-line. The extent to which some, all, or

none of this internal environment is visible to the various users is

an administrative choice.

The implications of these two views -- both the external interface

-12-

Corbato, et a 1. Multics: The First Seven Years Paper #

and the internal programming environment -- are discussed in terms

of the following categories of users:

System programmers and user application programmers respon­

sible for writing system and user software.

Administrative personnel responsible for the management of

system resources and privileges.

The ultimate users of applications systems.

Operations and hardware maintenance personnel responsible,

respectively, for running the machine room and maintaining

the hardware.

Multics ~ Viewed ~ System and Subsystem Programmers

The machine presented to both the Multics system programmer

and the application system programmer is the one with which we have

the most experience; it is the raw material from which one constructs

other environments. It is worth re-emphasizing that the only differentiation

between Multics system programmers and user programmers is embodied

in the access control mechanism which determines what on-line informa­

tion can be referenced; therefore, what are apparently two groups of

users can be discussed as one.

Major interfaces presented to programmers on the Multics

system can be classified as the program preparation and documentation

facilities and the program execution and debugging environment. They

will be touched upon briefly, in the order used for program preparation.

-13-

Corbato, et al. Multics: The First Seven Years Paper #

Program Preparation and Documentation. The facilities for program

preparation on Multics are typical of those found on other time-sharing

systems, with some shifts in emphasis. (See the Appendix.) For example,

programmers consider the file system sufficiently invulnerable to

physical loss that it is used casually and routinely to save all infor­

mation. Thus, the punched card has vanished from the work routine of

Multics programmers and access to one's programs and the ability to

work on them are provided by the closest terminal.

As another example, the full ASCII character set is employed

in preparing programs, data, and documentation, thereby elLminating

the need for multiple text editors, several varieties of text formatting

and comparison programs, and multiple facilities for printing informa­

tion both on-line and off-line. This generalization of user inter­

faces facilitates the learning and subsequent use of the system by

reducing the number of conventions which must be mastered.

Finally, because the PL/I compiler is a large set of programs,

considerable attention was given to shielding the user from the size

of the compiler and to aiding hLm in mastering the complexities of the

language. As in many other time-sharing systems, the compiler is

invoked by issuing a sLmple command line from a terminal exactly as

for the less ambitious commands. No knowledge is required of the user

regarding the various phases of compilation, temporary files required,

and optional capabilities for the specialist; explanatory "sermons"

-14-

Corbato, et al. Multics: The First Seven Years Paper #

diagnosing syntactic errors are delivered to the terminal to effect

a self-teaching session during each compilation. To the programmer,

the PL/I compiler is just another command.

Program Execution Environment. Another set of interfaces is embodied

in the implementation environment seen by PL/I programmers. This

environment consists of a directly addressable virtual memory con-

taining the entire hierarchy of on-line information, a dynamic linking

facility which searches this hierarchy to bind procedure references,

[16] ·{(
a device-independent input/output system, and program debugging

and metering facilities. These facilities enjoy a symbiotic relation-

ship with the PL/I procedure environment used both to implement them and

to implement user facilities co-existing with them. Of major signifi-

cance is that the natural internal environment provided and required

by the system is exactly that environment expected by PL/I procedures.

For example, PL/I pointer variables, call and return statements, condi-

tions, and static and automatic storage all correspond directly to

mechanisms provided in the internal environment. Consequently, the

system supports PL/I code as a matter of course.

* The Michigan Terminal System[ll] has a similar device-independent

input/output system.

The main effect of the combination of these features is to

permit the implementer to spend his time concentrating on the logic

-15-

Corbato, et al. Multics: The First Seven Years Paper I

of his problem; for the most part he is freed from the usual mechanical

problems of storage management and overlays, input/output device quirks,

and machine-dependent features.

Some Implementation Experience. The Multics team began to be much

more productive once the Multics system became useful for software

developmentc A few cases are worth citing to illustrate the effective-

ness of the implementation environment. A good example is the current PL/t

compiler, which is the third one to be implemented for the project, and

which consists of some 250 procedures and about 125k words of object

code. Four people implemented this compiler in two years, from start

to first general use. The first version of the Multics program debugging

system, composed of over 3,000 lines of source code, was useable after

one person spent some six months of nights and weekends '~ootlegging"

its implementation. As a last example, a facility consisting of 50 pro­

cedures with a total of nearly 4,000 PL/I state.ents permitting execution
'

of Honeywell 635 programs under MUltics became operational after

one person spent eight months learning about the GCOS operating system

for the 635, PL/I, and Multics, and then implemented the environment.

In each of these examples the implementation was accomplished from

remote terminals using PL/I.

Multics users have discovered that it is possible to get

their programs running very quickly in this environment. They fre-

quently prepare "rough drafts" of programs, execute them, and then

improve their overall design and operating strategy using the results

-16-

Corbato, et al. Multics: The First Seven Years Paper #

of experience obtained during actual operation. As an example,

again drawn from the Unplementation of Multics, the early designs

d . 1 t. f h . h . 1 [18] an Lmp ementa Lens o t e programs support1ng t e v1rtua memory

made over-optimistic use of variable-sized storage allocation techniques.

The result was a functionally correct but inadequately performing set

of programs. Nevertheless, these modules were used as the foundation

for subsequent work for many months. When they were finally replaced

with modules using simplified fixed-size storage techniques, perfor-

mance improvements of over an order of magnitude were realized. This

technique emphasizes two points: first, it is frequently possible to

provide a practical, useable facility containing temporary versions

of programs; second, often the insight required to significantly

improve the behavior of a program comes only after it is studied in

operation. As implied in the earlier discussion of design iteration,

our experience has been that structural and strategic changes rather

than ''polishing" (or receding in assembly language) produce the most

significant performance improvements.

In general, we have noticed a significant "amplifier" or

"leverage" effect with the use of an effective on-line environment

as a system programming facility. Major implementation projects on

the Multics system seldom involve more than a few programmers, thereby

easing the management and communications problems usually entailed by

complex system implementations. As would be expected, the amplification

-17-

Corbato, et a 1. Multics: The First Seven Years Paper #

effect is most apparent with the best project personnel.

Administration of Multics Facilities and Resources

The problem of managing the capabilities of a computer

utility with geographically dispersed subscribers leads to a require­

ment of decentralized administration. At the apex of an administra­

tive pyramid resides a system administrator with the ability to

register new users, confer resource quotas, and generate periodic

bills for services rendered. The system administrator deals with

user groups called projects. Each group can in turn designate a

project administrator who is delegated the authority to manage a

budget of system resources on behalf of the project. The project

administrator is then free to deal directly with project members with­

out further intervention from the system administrator, thereby

greatly reducing the bottlenecks inherent in a completely centralized

administrative structure.

Environment Shaping. In addition to having immediate control of such

resources as secondary storage, port access, and rate of processor

usage, the project administrator is also able to define or shape the

environment seen by the members of his project when they log into the

system. He does this by defining those procedures that can be accessed

by members of his project and by specifying the initial procedure

executed by each member of his project when he logs in. This environ­

ment shaping facility has led to the notion of a private project

-18-

Corbato, et al. Multics: The First Seven Years Paper #

subsystem on Multics. It combines the administrative and programming

facilities of Multics so that a project administrator and a few pro-

ject implementers can build, maintain, and evolve environments entirely

on their own. Thus, some subsystems bear no internal resemblance to

the standard Multics procedure environment.

For example, the Dartmouth BASIC[lg] compiler executes in a

closed subsystem implemented by an M.I.T. student group for use by

undergraduate students. The compiler, its object code, and all support

routines execute in a simulation of the native environment provided

at Dartmouth. The users of this subsystem need little, if any, know­

ledge of Multics and are able to behave as if logged into the Dartmouth

system proper. Other examples of controlled environment subsystems

include one to permit many programs which normally run under the GCOS

operating system to also run unmodified in Multics. Finally, an APL[20]

subsystem allows the user to behave for the most part as if he were

logged into an APL machine. The significance of these subsystems is

that their implementers did not need to interact with the system adminis­

trator or to modify already existing Multics capabilities. The adminis­

trative facilities permit each such subsystem to be offered by its

supporters as a private service with its own group of users, each

effectively having its own private computer system.

Other Multics Users

Finally, we observe that the roles of the application user,

-19-

Corbat6, et al. Multics: The First Seven Years Paper =II=

the system operators and the hardware maintainers as seen by the system

are simply those of ordinary Multics users with specialized access

to the on-line procedures and data. The effect of this uniformity

of treatment is to reduce greatly the maintenance burden of the

system control software. One example, of great practical importance,

has been the ease with which system performance measurement tools

have been prepared for use by the operating staff.

INSIGHTS

So far, we have discussed the status and appearance of the

Multics system. A further question is what has been learned in the

construction of Multics which is of use to the designers of other

systems. Having a bright idea which clearly solves a problem is not

sufficient cause to claim a contribution if the idea is to be part

of a complex system. In order to establish the real feasibility of

an idea, all of its implications and consequences must be followed

out. Much of the work on Multics since 1965 has involved following

out implications and consequences of the many ideas then proposed

for the prototype computer utility. That following out is an

essential part of proof of ideas is attested by the difficulties

which have been encountered in other engineering efforts such as the

development of nuclear fusion power plants and the electric automo­

bile. Not all proposals work out; for example, extended attempts to

engineer an atomic powered airplane suggest infeasibility.

-20-

Corbato, et al. Multics: The First Seven Years Paper #

Perhaps Multics 1 most significant single contribution to

the state of the art of computer system construction is the demon­

stration of a large set of fully ~plemented ideas in a working system.

Further, most of these ideas have been integrated without straining

the overall design; most additional proposals would not topple the

structure. Ideas such as virtual memory access to on-line storage,

parallel process organization, routine but controlled information

sharing, dynamic linking of procedures, and high-level language

implementation have proven remarkably compatible and complementary.

To illustrate some of the areas of progress in understanding

of system organization and construction which have been achieved in

Multics, we consider here the following five topics:

1. Modular division of responsibility

2. Dynamic reconfiguration

3. Automatically managed multilevel memory

4. Protection of programs and data

5. System programming language

Modular Division of Responsibility

Early in the design of Multics a decision had to be made

whether or not to treat the segmented virtual memory as a separately

useable "feature", independent of a traditionally organized read/write

type file system. The alternative, to use the segmented virtual

memDry as the file system itself, providing the illusion of direct

-21-

Corbato, et al. Multics: The First Seven Years Paper :/1=

"in- core" access to all on-line storage, was certainly the less

conservative approach. (See figure 1.) The second approach,

which was the one chosen, led to a strong test of the ability of a

computing system to support an apparent one-level memory for an arbi-

trarily large information base. It is interesting that the resulting

almost total decoupling between physical storage allocation and data

movement on the one hand and directory structure, naming, and file

organization on the other led to a remarkably simple and functionally

[18]
modular structure for that part of the system. (See figure 2.)

Another area of Multics in which a high degree of functional

modularity was achieved was in the area of scheduling, multiprogramming,

and processor management. Because harnessing of multiple processors

was an objective from the beginning, a careful and methodical approach

to multiplexing processors, handling interrupts, and providing inter-

process synchronizing primitives was developed. The resulting design,

known as the Multics traffic controller, absorbed into a single, simple

module a set of responsibilities often diffused among a scheduling

algorithm, the input/output controlling system, the on-line file manage•

d . 1 . . . h . [21] ment system, an specLa purpose Lnter-user communLcatLon mec anLsms.

Finally, with processor management and on-line storage manage-

ment uncoupled into well-isolated modules, the Multics input/output

system was left with the similarly isolatable function of managing

. [16]
streams of data flowing from and to source and sink type devLces.

Thus, this section of the system concentrates only on switching of the

-22-

Corbato, et al. Multics: The First Seven Years Paper *
streams, allocation of data buffering areas, and device control stra-

tegies.

Each of the divisions of labor described above represents

an interesting result primarily because it is so difficult to discover

* appropriate divisions of complex systems. Establishing that a

certain proposed division results in simplicity, creates an uncluttered

interface, and does not interfere with performance, is generally cause

for a minor celebration.

*
See Dijkstra[

22
] for a further discussion of this point.

Dynamic Reconfiguration

If the computer utility is ever to become as much a reality

as the electric power utility or the telephone communication service,

its continued operation must not be dependent upon any single physical

component, since individual components will eventually require main-

tenance. This observation leads an electric power utility to provide

procedures whereby an idle generator may be dynamically added to the

utility 1 s generating capacity, while another is removed for maintenance,

all without any disruption of service to customers. A similar scenario

has long been proposed for multiprocessor, multimemory computer ~ystems,

in which one would dynamically switch processors and memory boxes in

and out of the operating configuration as needed. Unfortunately,

-23-

Corbato, et al. Multics: The First Seven Years Paper #

"/(
though there have been demonstrated a few 11special purpose 11 designs,

it has not been apparent how to provide for such operations in a general

purpose system. A recent thesis[24] proposed a general model for the

dynamic binding and unbinding of computation and memory structures to

and from ongoing computations. Using this model as a basis, the

thesis also proposed a specific implementation for a typical multi­

processor, multUnemory computing system. One of the results of this

work was the addition to the operating Multics system of the capa­

bility of dynamically adding and removing central processors and memory

modules as in figure 3. The usefulness of the idea may be gauged

by observing that at M.I.T. five to ten such reconfigurations are per­

formed in a typical 24-hour operating day. Most of the reconfigurations

are used to provide a secondary system for Multics development.

* An outstanding example is the American Airlines SABRE system~23 1

Automatically Managed Multilevel Memory

By now it has become accepted lore in the computer system

field that the use of automatic management algorithms for memory sys-

terns constructed of several levels with different access times can

provide a significant reduction of user programming effort. Examples

of such automatic management strategies include the buffer memories

-24-

Corbato, et a 1. Multics: The First Seven Years Paper #

of the IBM system 370 models 155, 165, and 195[25] and the demand paging

virtual memories of Multics, IBM's CP-67[
26

] and the Michigan Terminal

[17] ' System. Unfortunately, behind the mask of acceptance hides a worri-

some lack of knowledge about how to engineer a multilevel memory system

with appropriate strategy algorithms which are matched to the load

and hardware characteristics. One of the goals of the Multics project

has been to instrument and experiment with the multilevel memory system

of Multics, in order to learn better how to predict in advance the

performance of proposed new automatically managed multilevel memory

systems. Several specific aspects of this goal have been explored:

A strategy to treat core memory, drum, and disk as a three-

level system has been proposed, including a "least-recently-

used" algorithm for moving information from drum to disk.

Such an algorithm has been used for some time to determine

which pages should be removed from core memory. [
27

] The

dynamics of interaction among two such algorithms operating

at different levels are weakly understood, and some experi-

mental work should provide much insight. The proposed

strategy will be implemented, and then compared with the

simpler present strategy which never moves things from drum

to disk, but instead makes educated "guesses" as to which

device is most appropriate for the permanent residence of a

given page. If the automatic algorithm is at least as good

-25-

Corbato, et al. Multics: The First Seven Years Paper #

as the older, static one, it would represent an improvement

in overall design by itself, since it would automatically

track changes in user behavior, while the static algorithm

requires attention to the validity of its guesses.

A scheme to permit experimentation with predictive paging

algorithms was devised. The scheme provides for each proce~s

a list of pages to be preloaded whenever the process is run,

and a second list to be immediately purged whenever the

process stops. The updating of these lists is controlled

by a decision table exercised every time the process stops

running. Since every page of the Multics virtual memory is

potentially shared, the decision table represents a set of

heuristics designed to separate out those which are probably

not being shared at the moment.

A series of measurementswas made to establish the effective-

ness of a small hardware associative memory used to hold

recently accessed page descriptors. These measurements estab-

lished a profile of hit ratio (probability of finding a page

descriptor in the associative memory) versus associative memory

size which should be useful to the designers of virtual

[28]
memory systems.

A set of models, both analytic and simulation, was constructed

to try to understand program behavior in a virtual memory.

-26-

Corbato, et al. Multics: The First Seven Years Paper #

So far, two results have been obtained. One is the finding

that a single program characteristic (the mean execution

time before encountering a 'missing" page in the virtual

memory as a function of memory size) suffices to provide

a quite accurate prediction of paging and idle overheads.

The second is direct calculation of the distribution of

response times under multiprogramming. Having available

the entire response time distribution, rather than just

averages, permits estimation of the variance and 90-percen-

tile points of the distribution, which may be more meaning-

ful than just the average. A doctoral thesis is in progress

on this topic.

Although the immediate effect of each of these investigations

is to improve the understanding or performance of the current version

of Multics, the long-range payoff in methodical engineering using better-

understood memory structures is also evident.

Protection of Programs and Data

A long-standing objective of the public computer utility

has been to provide facilities for the protection of executing programs

from one another, so that users may with confidence place appropriate

control on the release of their private information. In 1967, a

mechanism was proposed[291 and implemented in software which generalized

the usual supervisor-user protection relationship. This mechanism,

named "rings of protection", provides user-written subsystems with

the same protection from other users that the supervisor has, yet

-27-

Corbato, et al. Multics: The First Seven Years Paper #

does not require that the user-written subsystem be incorporated into

the supervisor. Recently, this approach was brought under intense

review, with two results:

A hardware architecture which implements the mechanism was

proposed. [30] One of the chief features of the proposed

architecture is that subroutine calls from one protection

ring to another use exactly the same mechanisms as do sub-

routine calls among procedures within a protection area.

The proposal appears sufficiently promising that it is included

in the specifications for the next generation of hardware to

be used for Multics.

As an experiment in the feasibility of a multilayered super-

visor, several supervisor procedures which required protec-

tion, but not all supervisor privileges, were moved into a

ring of protection intermediate between the users and the main

supervisor. The success of this experiment established that

such layering is a practical way to reduce the quantity of

supervisor code which must be given all privileges.

Both of these results are viewed as ·steps toward first, a more complete

exploitation and understanding of rings of protection, and later, a

less constrained organization of the type suggested by Evans and-

[31] [32]
LeClerc and by Lampson. But more importantly, rings of pro-

tection appear applicable to any computer system using a segmented

virtual memory. Two doctoral theses are underway in this area.

-28-

Corbato, et al. Multics: The First Seven Years Paper #

System Programming Language

Another technique of system engineering metholodogy being

explored within the Multics project is that of higher level programming

language for system implementation. The initial step in this direc­

tion {which proved to be a very big step) was the choice of the PL/I

language for the implementation of Multics. By now, Multics offers

an extensive case study in the viability of this strategy. Not only

has the cost of using a higher level language been acceptable, but

increased maintainability of the software has permitted more rapid

evolution of the system in response to development ideas as well as

user needs. Three specific aspects of this experience have now been

completed:

The transition from an early PL/I subset compiler[l4] to

a newer compiler which handles almost the entire language

was completed. This transition was carried out with per­

formance improvement in practically every module converted

in spite of the larger language involved. The significance

of the transition is the demonstration that it is not necessary

to narrow one 1 s sights to a "simple" subset language for

system programming. If the language is thoroughly under­

stood, even a language as complex as the full PL/I can

be effectively used. As a result, the same language and

compiler provided for users can also be used for system

implementation, thereby minimizing maintenance, confusion,

and specialization.

-29-

Corbato, et a 1. Multics: The First Seven Years Paper #

Notwithstanding the observation just made, the time required

to implement a full PL}I compiler is still too great for

many situations in which the compiler implementation cannot

be started far enough in advance of system coding. For this

reason, there is considerable interest in defining a smaller

language which is easily compilable, yet retains the features

most important for system implementation. On the basis of

the experience of programming Multics in a subset of PL/I,

such a language was defined but not implemented, since it

[33]
was not needed.

A census of Multics system modules reveals how much of the

system was actually coded in PL/I, and reasons for use of

other languages. Roughly, of the 1500 system modules, about

250 were written in machine language. Most of the machine

language modules represent data bases or small subroutines

which execute a single privileged instruction. (No attempt

was made to provide either a data base compiler or PL/I

built-in functions for specialized hardware needs.) Signi-

ficantly, only a half dozen areas (primarily in the traffic

controller, the central page fault path, and interrupt

handlers) which were originally written in PL/I have been

recoded in machine language for reasons of squeezing out the

-30-

Corbato, et al. Multics: The First Seven Years Paper #

utmost in performance. Several programs, originally in machine

language, have been receded in PL/I to increase their main-

tainability.

As with the earlier topics, the implications of this work

with PL/I should be felt far beyond the Multics system. Most implemen-

ters, when faced with the economic uncertainties of a higher-level

language, have chosen machine language for their central operating

systemso The experience of PL/I in Multics when ad~ed to the expanding

[34J
collection of experience elsewhere should help reduce the uncer-

tainty.

In a research project as large, long, and complex as Multics,

any paper such as this must necessarily omit many equally significant

ideas, and touch only a few which may happen to have wide current

interest. It is the purpose of individual and detailed technical

papers to explain these and other ideas more fully. The bibliography

found in reference[3S] contains over twenty such technical papers.

Dmmediate Future Plans

The Multics software is continuing to evolve in response to

user needs and improved understanding of its organization. In 1972

a new hardware base for Multics will be installed by the Information

Processing Center at M.I.T. for use by the M.I.T. computing community.

This program compatible hardware base contains small but significant

architectural extensions to the current hardware. The circuit

technology used will be that-of the Honeywell 6080 computer. The

substantial changes include:

-31-

Corbato, et al. Multics: The First Seven Years Paper #

1) replacement of the high-performance paging drum initially

with bulk core and, when available, LSI memory, and

2) implementation of rings of protection as part of the paging

and segmentation hardware.

Wherever possible the strategy of using off-the-shelf standard equip­

ment rather than specially engineered units for Multics has been followed.

This strategy is intended to simplify maintenance.

CONCLUSIONS

There are many conclusions which could possibly be drawn

from the experience of the Multics project. Of these, we con-

sider four to be major and worthy of note. First, we feel it is clear

that it is possible to achieve the goals of a prototype computer

utility. The current implementation of Multics provides a measure of

the mechanisms required. Moreover, the specific implementation of

the system, because it has been written in PL/I, forms a model for

other system designers to draw upon when constructing similar systems.

Second, the question of whether or not the specific software

features and mechanisms which were postulated for effective computer

utility operation are desirable has now been tested with specific

user experience. Although the specific mechanisms implemented sub­

sequently may be superseded by better ones, it is certainly clear that

the improvement of the user environment which was wanted has been

achieved.

Third, systems of the computer utility class must evolve

-32-

Corbato, et al. Multics: The First Seven Yea~s Paper #

indefinitely since the cost of starting over is usually prohibitive

and the many-year lead time required may be equally unacceptable.

The requirement of evolvability places stringent demands on design,

maintainability, and implementation techniques.

Fourth and finally, the very act of creating a system which

solves many of the problems posed in 1965 has opened up many new direc-

tions of research and development. It would appear almost a certainty

that increased user aspirations will continue to require intensive work

in the areas of computer system principles and techniques.

In closing, perhaps we should take note that in the seven

years since Multics was proposed, a great many other systems have

also been proposed and constructed; many of these have developed similar

* ideas. In most cases, their designers have developed effective

Unplementations which are directed to a different interpretation of

the goals, or to a smaller set of goals than those required for the

complete computer utility. This diversity is valuable, and probably

necessary, to accomplish a thorough exploration of many individually

complex ideas, and thereby to meet a future which holds increasing

demand for systems which embrace the totality of computer utility

requirements.

* Some examples which have not already been mentioned include:

the TENEX system of Bolt, Beranek and Newman, the VENUS system

of Mitre Corp., the MUS at Manchester University, RC-4000 of

-33-

Corbato, et al. Multics: The First Seven Years Paper #

Regnecentralen, 5020 TSS of Hitachi Corp., DIPS-1 of Nippon

Telephone, the Japanese National Computer Project, the PDP-10/50

TSS of Digital Equipment Corp., the BCC-500 of Berkeley Computer

Corp., I.r.s. of the M.I.T. Artificial Intelligence Laboratory,

Exec-8 of Univac, System 3 and 7 and the SPECTRA 70/46 of RCA,

Star-100 of CDC, UTS of Xerox Data Systems, the 6700 system

of Burroughs, and the Dartmouth Time-Sharing System.

ACKNOWLEDGEMENT

It is impossible to acknowledge accurately the contributions

of all the individuals or even the several organizations which have

given various forms of support to the development of Multics over the

past seven years. As would be expected of any multi-organization

project spanning several years there has been a turnover in the per­

sonnel involved. As the individual contributors now number in the

hundreds; proper recognition cannot be given here. Instead, since

the development of significant features and designs of Multics has

occurred in specific areas and disciplines such as input/output, vir-

tual memory design, languages, and resource multiplexing, a more

accurate delineation of achievements should be made in specialized

papers. So in the end we must defer to the authors of individual papers,

past and future, to acknowledge the efforts of some of the many

contributors who have made the evolution of Multics possible.

-34-

Corbato, et al. Multics: The First Seven Years Paper :/!:

REFERENCES

1 b , d 1 Jl • • Cor ato, F. J., Daggett, M. ~' an Da ey, R. c., An Exper1-

mental Time-Sharing System 11
, AFIPS Conf. Proc. 21, Spartan Books,

1962, pp. 335-344.

2. Crisman, P. A., ed., 'The Compatible Time-Sharing System: A

Prograrruner Is Guide", 2nd ed. ' M. I. T. Press' cambridge, Massa-

chusetts, 1965.

3. Corbat~, F. J., and Vyssotsky, V. A., "Introduction and Overview

of the Multics System", AFIPS Conf. Proc. 27 (1965 FJCC), Spartan

Books, Washington, D. C., 1965, pp. 185-196.

4. Glaser, E. L., et al., "System Design of a Computer for Time­

Sharing Application", AFIPS Conf. Proc. Q (1965 FJCC), Spartan

Books, Washington D. C., 1965, pp. 197-202.

5. Vyssotsky, V. A., et al., "Structure of the Multics Supervisor",

AFIPS Conf. Proc. 27 (1965 FJCC), Spartan Books, Washington, D. c.,

1965, pp. 203-212.

6. Daley, R. c., and Neumann, P. G., '~General-Purpose File System

for Secondary Storage", AFIPS Conf. Proc. 27 (1965 FJCC), Spartan

Books, Washington, D. C., 1965, pp. 213-229.

7. Ossanna, J. F., et al., "Communication and Input/Output Switching

in a Multiplex Computing System", AFIPS Conf. Proc. 27 (1965 FJCC),

Spartan Books, Washington, D. C., 1965, pp. 231-241.

8. David, E. E., Jr., and Fano, R. M., "Some Thoughts About the Social

Implications of Accessible Computing", AFIPS Conf. Proc. 27 (1965

FJCC), Spartan Books, Washington, D. C., 1965, pp. 243-247.

-35-

Corbato, et a 1. Multics: The First Seven Years Paper #

9. Organick, E. I., . The Multics System: An Examination of its

Structure, M.I.T. Press (in press), Cambridge, Massachusetts

and London, England.

10. Watson, R. W., Timesharing System Design Concepts, McGraw-Hill

Book Company, New York, 1970.

11. Comfort, Webb T., "A Computing System Design for User Service",

AFIPS Conf. Proc. 27 (1965 FJCC), Spartan Books, Washington, D. C.,

1965, pp. 619-626.

12. Lett, A. s., and Konigsford, W. L., 'TSS/360: A Time-Sha~ed

Operating System" AFIPS Conf. Proc. ~ (1968 FJOC), Thompson

Books, pp. 15-28,

13,. Schwenun, R. E., ''Experience Gained in the Development and Use of

TSS/360", AFIPS Conf. Proc. 40 (1972 SJCC), AFIPS Press. (This volume;)

14. Corbato, F. J., "PL/I as a Tool for System Progrannning", Datamation

12., 6 (May, 1969) pp. 68-76.

15. Freiburghouse, R. A., 'The Multics PL/1 Compiler", AFIPS Conf. Proc.

35 (1969 FJCC), AFIPS Press, 1969, pp. 187-199.

16. Feiertag, R. J. , and Organick, E. I., 'The Multics Irtput-Output

System", ACM Third Symposium.£!! Operating Systems Principles,

(October 18-20, 1971), pp. 35-41.

17. Alexander, M. T., "Organization and Features of the Michigan Terminal

System" AFIPS Conf. Proc. 40 (1972 SJCC), AFIPS Press. (This volume.)

-36-

Corbato, et al. Multics: The First Seven Years Paper #

18. Bensoussan, A., Clingen, c. T., and Daley, R. C., 'The Multics

Virtual Memory", ACM Second Symposium E.!! Operating System Prin­

ciples, (October 20-22, 1969) Princeton University, pp. 30-42.

19. BASIC, Fifth Edition, Kiewit Computation Center, Dartmouth College

(September, 197 0).

20. APL/360 User's Manual, IBM form number GH20-0683-l (March, 1970).

21. Saltzer, J. H., 'Traffic Control in a Multiplexed Computer SysteM",

Sc.D. Thesis, M.I.T. Department of Electrical Engineering, 1966.

Also available as Project MAC technical report TR-30.

22. Dijkstra, E. W., 'The Structure of the 'THE '-MultiprograiiUlling System",

Comm. ACM Jl, 5 (May, 1968), pp. 341-346.

23. Parker, R. w., 'The Sabre System", Datamation.!!, 9, September, 1965,

pp. 49-52.

24. Schell, R. R., ''Dynamic Reconfiguration in a Modular Computer System",

Ph.D. Thesis, M.I.T. Department of Electrical Engineering, 1971.

Also available as Project MAC technical report TR-86.

25. Conti, C. J., "Concepts for Buffer Storage", ~ Computer Group

News, March, 1969, pp. 9-13.

26. Meyer, R. A., and Seawright, L. H., ·~Virtual Machine Time-Sharing

System", IBM Systems Journal _2, 3, 1970, pp. 199-218.

27. Corbato, F. J., "A Paging Experiment with the Multics System",

In Honor of P. M. Morse, M.I.T. Press, cambridge, Massachusetts,

1969, pp. 217-228.

28. Schroeder, M. D., "Performance of the GE-645 Associative Memory

While Multics is in Operation", ACM Workshop E.!! System Performance

Evaluation (April, 1971), pp. 227-245.

-37-

Corbato, et a 1. Multics: The First Seven Years Paper #

2 9. Graham, R. M., "Protect ion in an Information Processing Uti 1 ity ",

Comm. ~ Jl, 5 (May, 1968) pp. 365-369.

30. Schroeder, M. D., and Saltzer, J. H., uA Hardware Architecture for

Implementing Protection Rings 11
, ACM Third Symposium .Ql! Operating

Systems Principles, (October 18-20, 1971), pp. 42-54.

31. Evans, D.C., and LeClerc, J. Y., '~ddress Mapping and the Control

of Access in an Interactive Computer", AFIPS Conf. Proc. lQ,

(1967 SJCC), Thompson Books, 1967, pp. 23-30.

32. Lampson, Butler W., "An Overview of the CAL Time-Sharing System",

Computer Center, University of California, Berkeley (September 5~

1969).

33. Clark, D. D., Graham, R. M., Saltzer, J. H., and Schroeder, M. D.,

"Classroom Information and Computing Service", M. I. T. Project MAC

Technical Report TR-80, (January 11, 1971).

34. Sammet, Jean E., '~rief Survey of Languages Used for Systems

Implementation", SIGPLAN Notices .§., 9, October, 1971,

pp. 1-~9.

35. The Multiplexed Information and Computing Service: Programeers'

Manual, M.I.T. Project MAC, Rev. 10, 1972. (Available from the

M.~.T. Information Processing Center.)

-38-

Corbato, et a 1. Multics: The First Seven Years Paper #

APPENDIX: A CHECKLIST OF MULTICS FEATURES

Following is a checklist of currently available features and

facilities of Multics. Although many of the features are described

in cryptic and untranslated local jargon, one can at least obtain a

feel for the range of facilities now provided. Further information

on most of these features may be found in the Multics Programmers•

Manual. [35]

Interactive Time-Sharing Facilities

file editors

file manipulation (rename/move/delete)

personal command abbreviations

recursive command language

source language debugging with breakpoints

subroutine call tracer

can stop any running command or program

Programming Languages

PL/I

FORTRAN

* BASIC

APL

LISP

BCPL

ALM (assembly language/Multics)

-39-

Corbat6, et al. Multics: The First Seven Years

Information Storage System

configuration independent

accessed through virtual memory (segments)

access control lists by user and project

links to segments of other users

hierarchical directory (catalog) arrangement

public library facilities

sharing at all levels

multiple segment names (synonyms)

separate control of read, write, and execute

Programming Environment

segmented virtual memory

Paper #

dynamic linking of procedures and data, or prelinking

interprocess communication

independent of configuration

uniform error handling mechanism

user definable protection rings

microsecond calendar clock with interrupt

program interrupt signal from console

Input and Output

standard typewriter interface for device independence

ASCII character set used throughout

input characters converted to canonical form

erase and kill editing on typed i~put

-40-

Corbato, et al. Multics: The First Seven Years

I/O streams switchable during execution

magnetic tape, printer, card punch, card reader

typewriter terminals: IBM 2741, 1050

Teletype 37, 33, 35

Paper #

Dura, Datel, Execuport, Terminet-300

graphic support library (devices: ARDS, IMLAC, DEC 338)

ARPA network

interfaces at three levels:

formatted data conversion

bit stream control

full device control

Management Facilities

passwords required for login

project may interpose authentication procedure

decentralized projects

accounting, billing, and quotas

on-line probing and account adjustment

operator or system initiated logout of users

unlisted and anonymous users

limited service system

dynamic reconfiguration of memories and processors

system performance metering for parameter adjustment

project-imposed starting procedure

-41-

Corbato, et al. Multics: The First Seven Years

Communication Facilities

interuser mail

help command; help files

message of the day

Paper I

on-line error reporting and consultation service

on-line user graffiti board

operations message broadcast to logged-in users

Absentee Facilities

priority/defer queues for printer, card punch

queued translator facility

generalabsentee job facility

Reliability Measures

weekly file copies onto tape

daily disk/drum copy onto tape

incremental file copies onto tape, 1/2 hour behind use

salvager to clean up files after system crash

emergency shutdown entry to system

Maintenance Features

on-line library change, no disruption of current users

entire system source on-line, maintenance tools

system checkout on small hardware configuration

-42-

--

Corbato, et al. Multics: The First Seven Years Paper #

on-line performance monitoring of multiprogramming

user performance feedback:

paging traffic

drum/disk usage

typewriter traffic

cpu time and paging load on each command

page trace always operating

subroutine call counters

Private Project Subsystems

project providable command interface

* Dartmouth environment

student environment

Miscellaneous Facilities

desk calculators

*

sort command

memorandum formatting and typing subsystem

user-provided list of programs to be automatically executed

when user logs in

GCOS environment

The BASIC system and the Dartmouth environment were developed at Dart­

mouth College. They are used at M.I.T. by permission of Dartmouth

College.

-43-

Corbato, et al. Multics: The First Seven Years Paper #

cAPTIONS FOR FIGURES

Figure 1. The entire storage hierarchy may be mapped into individual

user process address spaces (see arrows) as if contained in primary

memory. Illustrated are the sharing of a supervisor segment by ~ser 1

and user 2 and private access to segment a and segment b. The necessary

primary storage is simulated by a demand paging technique which moves

information between the real primary memory and secondary storage.

Figure 2. Major lines of modular division in Multics. Solid lines

indicate calls for services. Dotted lines indicate implicit use of

the virtual memory.

Figure 3. Dynamic reconfiguration permits switching among the three

typical operating configurations shown here, without currently logged­

in users being aware that a change has taken place.

-44-

Vi rtua I

Address map
for user 1

Root - directory

System
I i bra ry

directory

-

Project
directory

processor ---~,.___,....;Supervisor User 1
directory for user 1 ~ segment

Add ress map
fo r user 2 ... Segment

-y

a
Virtual
processor -- -~ -
for user 2

~

Virtual memory storage system

User 2
directory

Segment
b
,j~

User programs and command /subroutine I ibrary

I
I
I ____ .._ ____________ ------------- -----------

General user
interface

I
1 Directory User I/0 device
1 address space control and
1 management buffering
I I ;t/
I I
I I ;~/
I I / ------------------ -------;1--------- ~--------

Virtual mem.ory/ I 1 _ /
I I /

multi- process 1 1 //
interface • .~. t1

Dram, disk, core
demand paging

controller

Processor multi­
.._,__,..: plexing and process

synchronization

a.

b.

r- ------------,
I I
I I
1 Central Central 1
1 processor processor I
I I

r---~ ~---,
I I
I
I
I Memory Memory Memory
I
I
I Service system I
L----------------------~

Memory

r-----l
I I
1

Central I I I
1 processor

1
I I

L __ ---,

Memory Memory

I
I
I
I

I I
1 Service system I
L----------------------~

