
A Brief Description of the Multics memory-charging algorithm 

by J. H. Saltzer 

DRAFT 
2/14/73 

Probl-: to eat:L.ate accurately, the aiu of the uMr 1 a worki.D& set u 

hia proar- runa, anct eharae hia for the area uncier the curve. 

W(t) 

size of 1 
program 
working 
set 

running time of program 

Area = a suitable memory charge, in page-seconds. 

u =I W(t)dt 

running 
time of 
program 

measured in page-seconds 

t~ 

We arbitrarily define the working set size W, to be the amount of real 

memory which results in a paging rate of f 0 page faults per second, 

where f is the paging rate at which the system operates most efficiently. 
0 

For ·example, f
0 

might be 20 p/s. 

The linear model predicts a relation between the paging rate, fm, and 

the actual memory size used, M. 

f x M = constant 
m 

call the constant C 
(it will drop out anyway) 



-2-

In other words, the bigger the memory, the smaller the paging rate. Then 

the working set size is related to f 0 by 

f 0 x W = C 

and the paging rate versus memory size relation may be written 

and we discover a method of estimating W, the working set size: 

f m w = T X M 
0 

All we need do is estimate the actual memory size, M, and measure the actual 

paging rate, f • If the observed paging rate is 40 page faults/second and 
m 

M is 50 pages, W is 

40 W = 20 .50 = 100 pages 

The method of estimating U is then: at every page fault estimate W, and 

add ~U = W x (time since last page fault) to a location collecting U. 
that is, 

where 

u ~ u + ~u 

f 
~U = fm x M x (time since last page fault) 

0 

We can take one more step to simplify the computation which will be required. 

We notice that the page fault rate, f , is exactly 
m 

so 

1 
f 
m = time since last page fault 

M 
~u = T 

0 



-3-

Finally, since f
0 

is constant, we may simplify the estimating procedure 

further by calculating, instead of U, a charge of U' = U X f 0 which is 

exactly proportional to U. We then have 

~u' = M 

So our entire strategy of measuring memory usage reduces to estimating 

the amount of real memory in use whenever a page fault occurs, and adding 

that number to the memory usage accounting meter. (And remembering to 

divide the value in that meter by f if we wish to normalize it to a page-
o 

second measure.) 

It remains to estimate M, the actual size of the memory being used to con­

tain the program. Consider a program which has just started running in an 

N page memory all by itself, but has only one page in core at the moment. 

We can say that its size, M, is one page, at the time it takes its first 

page fault. That page fault causes a second page to be assigned, so its 

size is now 2 pages, and this new size holds up until the time it takes its 

2nd page fault. Continuing this line of reasoning, we have a size estimate 

M = # of page faults taken so far. 

This line of reasoning holds up to the point at which the real memory is 

filled up, after which point the size N is a better estimate of M. Thus 

M = min (# of page faults taken so far, N) 

The final step is an arbitrary one. In Multics, the real memory is shared 

by some number of processes being multiprogrammed. We assume arbitrarily 

that the real memory is equally divided among the multiprogrammed processes. 

Thus, if there are E processes being multiprogrammed in a memory with N 

unwired pages, we estimate 

M = min (# of page faults since loading, N/p) 



-4-

The resulting memory uaage value, U', may be interpreted as the memory, 

in page seconds, that the proceas would have used in a syatem maintaining 

a paging rate of 1 page/second. 

For convenience in calculation and discussion, the actual implementation 

reports U' /1000, since the numbers then resulting are typically compar-­

able in value to the number of CPU seconds used. Thus usage is being 

measured in kilo-page seconds. 


