
MPL-55 

TO: Multics Perfo~ance Log 

FROM: J. H. Saltzer 

DATE: June 16, 1971 

SUBJECT: Measurements of Memory Interference in the one-CPU system 

A series of experiments were undertaken to measure the amount 
of interference for access to core memory experienced by a Multics user. 
Two sources of requests for core memory access can be expected to sig­
nificantly interfere with a CPU's access to memory: the high-performance 
paging ("firehose") drum and the "other11 control processor, when 2 CPU's 
are in use. Other I/O devices request memory access infrequently rela­
tive to the CPU's and drum, so our primary interest is centered on those 
two devices. 

The measuring tool used in these experiments was a short 
machine language program with known, controllable memory accessing 
characteristics. The nominal running time of this program, as predicted 
from the specified instruction timings, was in the range of 50 to 350 
microseconds, depending on the initial value of a loop counter contained 
in the program. For a given loop count, the program was executed many 
times, with calendar clock readings at the beginning and end of each 
trial, to obtain a distribution of actual running times. The running 
times were divided by the number of instructions actually executed, to 
provide an instruction processing rate independent of the loop length. 
Ideally, if there were no interference effects or interrupts, all attempts 
to execute the program would result in about the same measured instruction 
execution rate.* 

In the real system, however, accesses to memory by other pro­
cessors, I/O devices, and the paging drum will all slow down the test 
program, resulting in at least some trials with an instruction rate slow­
er than usual. When the result of many trials is plotted in a graph of 
frequency of observation versus instruction processing rate, the effects 
of interference caused by other users operating the drum and other CPU 
are easily identifiable. 

One problem with this method is that the amount of interference 
experienced will depend not only on what the other users are doing, but 
also on the nature of the test program being executed. Construction of a 
truly representative Multics program is probably impossible, so the lesser 
goal of a program sufficiently representative to give meaningful interference 
measurements was tackled instead. Since interference is probably a function 

* One would expect to find some residual variation resulting from hardware 
gate response times not being perfectly uniform. We presume that this 
effect is small compared ~ith the effects being measured. 



Page 2 MPL-55 

primarily of the rate at llthich instructions and data are retrieved from 
memory, this lesser goal reduced to construction of a program whose 
memory accessing rates were similar to those observed for Multics as a 
whole. MPL-51 reports on a series of hardware measurements made in 
June, 1970, of the fully loaded Multics system. Frotn that data, one 
draws two important numbers: the observed average instruction rate of 
the CPU was 342,000 instructions per second, and the average memory access 
rate was 419,000 instructions per second. Thus, for a benchmark, one 
can eonstruct a program which has approximately those properties. After 
some experimentation, which involved selective insertion of indirect 
references and double precision load instructions, the following eleven 
instruction sequenees appeared to have average behavior approximating 
that reported in MPL-51: 

eaxl loopc:ount 
lda y 
aos w 
ada X 

sbaq z 
ada y 
eapbp bp,O,* 
ldaq bp 0 
eaxO -5 
eaxl . -1,1 
tn! ·9, ic 

This sequence, which :btcludes a loop to repeat the last ten instructions 
ten times, was .surrounded by a pair of read clock instruction. The 
expected execution time of th.e sequence, for a loop coun.t of ten, is about 
290iJ.sec. To insure repeatability, register 1m. was loaded with the ad­
dress of an ITS pai:r which pointed to itself, before the sequence above 
was entered. 

Finally, the program described above was implemented as an im• 
pure procedure stored in a single page, so that all data and inlttruction 
references for a single trial would be directed to the same memory box. 
A PL/I program was constructed to call the test program & times in 
succession, go to sleep for 10 seconds (to allow the test pTogram to be 
paged out) and then call it again n times. This outer loop was repeated 
~ times. Typical values for n and m were 50 and 100, respectively, thus 
obtaining 5000 samples over a period of 15 to 30 minutes. Samples which 
measured more than lOOOiJ.sec:. were discarded, on the assumption that they 
represent sequences which were interrupted. To display the results, the 
5000 measurements of instruction processing rate were divided into 
equal-sized bins representing about a 1% separation at the mean value 
and the number of samples in each bin were· printed out. Figures one and 
two are typical examples of the display. 



MPL-55 

• ~U4 
.::Sui) 
• 312 
.31C 
.320 
.S:l4 
• ~ 2 ij 
.:1:12 
.33ti 
.340 
.344 

..• 34~ 
.3~2 
.356 

u 
1 
5 \ . 
19 \ 
53 \ ... ft., 
lu!) /i ~.~ · 
1U2 
1ouj 
o4 
56 

~~f\ ~o~. · 
3793) 
0 

average ~ips • .350 
each trial ti2 Instructions. 
Pi~ t e r i n g t i NP. : S 41 • S u s P. c • 

· ATB lock loop ~ 
;)0.3 rns. 0.00 ptl 

tel 1 2 • 9 filS • 0 • 0 0 
a·11 locks o.oo 

cpu b 5 
l'lem c 200 on 
mem d 200 on 
111ern e 200 uff 

r 101;) 10.411. ull+234 

load 15.5/41~0; 1• users 

1 oop t imP. 
o.ooo ms. 
o.ooo rns. 

Figure one -- distribution of CPU execution speed with 
interlace in operation 

Page 3 

.' . 



Page 4 

• z~u u 
.~~4 1 
• 2Ui u 
• 2~2 1 
.2:SG 
.240 

) 

!~'\ ..... • 244 
.L4~ 

.25G 5!) ) I lr1 

.2b0 }2 "'·V·rl) 

.2&4 38 
• 21.io 22 
.272 '~9 
.27u 1 
• 2 80 u . 
• 284 5 
.288 ,9 
.2~2 24 
.296 47 
.:500 43 
.3V4 ~7 
• 30~ 2 
.312 2 
.31& 8 
.320 G 
.324 u 
.328 14 
.332 16 
.33b 36 
.340 13u 
.344 49b 
.3'•8 l74o 
.352 2037 
.356 0 
~verage mlps • .343 

• 

I . 

each trial 62 in~tructlons 
lti.etering tir·•e: 99S.tHi st~c. 

·· ATB l(>ck loop :'' 
ptl 10.3 ms. o.oo 
tel s.o ms. o.ou. 
all locks 0.00 

cpu b !:i 
nlern c 200 on 
mem e · 200 on 
mero d 200 off 

• 

.. 

1 oop t l111e 

u • 0 u U m.s •. 
.u.ooo ms. 

Multics 15.8 up si~ce 05/18/71 2120.7 
load 35.5/41.0; 36 users 

.' ~. ~\ . 

' .•· 

Figure two -- distributio'li of CPU execution •peed without interlace 



MPL-55 Page 5 

~-~ measurements 

Figures one and two also serve to illustrate the effect of druin 
interference when one CPU is in operation, as well as the effect of memory 
interlace in reducing that· interference. In both figures, a majority of 
the samples appear at .352 million instructions per second (mips). How• 
ever, in figure one, a secondary clustering of samples appear near .328 
mips; about 10% of all the samples are in this secondary cluster. One 
may presume that these samples were taken at t~es when the firehose 
drum was in operation. The drum will, with interlace on, affect every 
trial when it is operating, so we conclude that the drum was operating 
about 10%.of the time. The page table lock interval meter indicates a 
value about three times as large as it does when the system is fully 
loaded (see figure two for an example), so that a fully loaded system 
should produce a secondary peak containing 30% of the samples. The average 
instruction execution rate with the drum in operation is about 7% slower 
than with the drum off; if this condition holds 30% of the t~e when the 
system is fully loaded, the average slowdown is 30% x 7% = 2%. 

Figure two is the corresponding result without interlace. This 
time, !!2 secondary peaks are observed. The number of samples enclosed 
by the two peaks taken together is about 10% of the total, and again 
probably represents drum interference. However, with interlace off, the 
drum will not always ·aceess the same memory controller as does the CPU. 
If we assume pageable core is divided among the two controllers with 50 
pages in one and 100 pages in the other, the drum and CPU would be accessing 
the same controller about 55% of the time. Thus we conclude that the drum 

was in operation about l~% = 18% of the t~e during this experiment. 
Explanations of the two·p~aks are harder to come by. One hypothesi& is 
that since the firehose drum requires a 2~sec. double precision memory 
cycle every 4~sec., the CPU synchronizes with it, in one of two modes. 
The lower peak, at .256 mips, corresponds to execution of exactly one CPU 
instruction every 4 microseconds, which strongly suggests synchronization 
with the drum. The other secondary peak, at .296 mips, perhaps represents 
trials in which starting conditions either did not lead to synchronization 
of the drum and CPU, or synchronization in some other mode occurred. 
(The CPU habit of retrieving instructions in pairs leads to an access time 
pattern which could synchronize in at least two ways.) 

In any case, the average loss due to interference when interlace 
is £!! was observed to be about 3%; if the drum was operating 30% of the 
time this figure would climb to 5%. With interlace ~ we expect a loss 
of about 2%. The difference in these two figures, about 3%, may be taken 
to be the value of interlace in the one-CPU system -- about enough capacity 
for 2 more users. 



Page 6 'MPL-5.5 

Before banking too heavily on this result, it is worth noting 
that one would expect that turnin~ interlace off should cause about 
twice as large a slowdown, but on1y half as often in a 2 memory system, 
and differences should be second order. Since our l'llea.surement showed 
that the slowdown was substantially more than twice (about a factor of 
four) it suggests that detailed synchronization effects are very im­
portant in determining overall perfo~ance. The implications for 
potential model building are severe -~ a prediction of the performance 
of an uninterlaced system may require a model which contains much detail. 

Further measurements, using the same technique, on the 2-CPU 
system have been started, artd will be reported in a later MPL• 


