6.435 - Theory of Learning and System Identification - Spring 2007
Description Syllabus References Homeworks Scribing Project Topics

 

Recommended Texts

  • Vapnik, V. N., Statistical Learning Theory , Wiley-Interscience, 1998.
  • Vidyasagar, M., Learning and Generalization: With Applications to Neural Networks , Springer, e1: 1997, e2: 2003.
  • Cover, T. M. and Thomas, J. A., Elements of Information Theory , Wiley-Interscience, e1: 1991, e2: 2006.
  • Ljung, L., System Identification: Theory for the User , Prentice Hall, e1: 1987, e2: 1999.
  • Jordan, M. and Bishop, C., Introduction to Graphical Models , (unpublished, will be made locally available.)

Additional Books

  • Minsky, M. and Papert, S., Perceptrons: An Introduction to Computational Geometry, MIT Press, 1969.
  • Duda, R. O., Hart, P. E., Stork, D. G., Pattern Classification , Wiley-Interscience, e1: 1973, e2: 2001
  • Gyorfi, L., Kohler, M., Krzyzak, A., Walk, H., A Distribution-Free Theory of Nonparametric Regression , Springer, 2002.

Papers