April-June 1997 Issue
Improving Piston Engines Through Better Ring
Design
major challenge for designers of internal combustion engines is how to seal shut the "combustion chamber" at the top of the cylinder while the piston is moving up and down. Three rings are mounted on each piston and extend to the cylinder wall to form a seal. But as the piston moves, the rings shift in ways that can contribute to three major engine problems: friction, wear, and oil consumption. A detailed model developed by Energy Laboratory researchers can help engine designers identify new piston and ring designs that will reduce those problems. For a given engine design and operating conditions, the model describes how the rings move, how much friction and wear occur as they encounter other metal surfaces, and how much lubricating oil escapes into the combustion chamber, especially when the rings become unseated. Experimental studies have verified the model's ability to predict ring and oil film behavior. Using the model, the MIT researchers have defined a new friction-reducing shape for the grooves in which the rings are mounted. They have also identified a type of ring behavior that may contribute significantly to oil consumption--a behavior that can be altered by changing the shape of the rings.
As engineers try to improve today's internal combustion engine,
an important place they look is inside the cylinder. Some 8% of the fuel
used in automotive engines is consumed by friction related to the moving
pistons. Altering the piston's design and behavior to reduce friction could
improve fuel efficiency and reduce the rate at which engine components
wear. In-cylinder refinements could also reduce oil consumption, making
possible the use of less viscous oils--a change that would itself reduce
friction throughout the engine. However, making such improvements is difficult
because it requires changing the "microgeometry" of the engine,
that is, the details of how the components inside the cylinder are designed
and the precision with which they fit together. Given the subtlety of the
changes to be made and the complexity of today's engines, engine designers
must rely on computer models to test the impact of proposed changes.
In past work, Dr. Victor W. Wong, principal research scientist in the Energy
Laboratory and lecturer in the Department of Mechanical Engineering, and
collaborators from MIT's Sloan Automotive Laboratory and Nissan Motor Company
developed a model that is now helping engine designers reduce one counterproductive
type of piston behavior: "piston slap." As a piston moves up
and down inside its cylinder, it also shifts from side to side, sometimes
hitting one side of the cylinder wall with a hard slap. Such slapping of
the piston on the cylinder wall generates noise, increases friction, and
reduces fuel economy; and it can also damage the engine. For a specified
engine design and operating conditions, the MIT model determines the piston's
behavior within the cylinder, including where and how hard the piston slaps
and the amount of friction that results (see e-lab, January-March
1996).
Now
Tian Tian, a recent PhD graduate in the Department of Mechanical Engineering,
Remi Rabute of Dana Corporation, Dr. Wong, and Professor John B. Heywood,
Sun Jae Professor of Mechanical Engineering, have developed a model that
focuses on an even more detailed engine component: the piston rings. In
a typical engine, three metal rings are mounted on each piston (see the
figure to the left). Each ring extends to the cylinder wall and slides
along a film of lubricating oil on the wall as the piston moves up and
down. The top ring seals shut the chamber above the top of the piston where
combustion occurs, creating the high pressures needed to push the piston
down. The second and third rings primarily control the flow of lubricating
oil along the cylinder wall.
However, as the piston goes up and down, the rings move around in their
grooves. If the rings no longer seal the combustion chamber, gases can
flow around the rings, and lubricating oil can leak into the combustion
chamber and subsequently burn. The movement of the rings also affects friction
and wear: despite the layer of lubricating oil, the rings inevitably come
in direct contact with metal surfaces, particularly the surfaces of their
grooves in the piston. The wear that results can significantly alter the
shapes of both the rings and the grooves. Engine designers control ring
behavior by making the rings different sizes and shapes or by cutting tiny
notches out of them. But a design that provides a tight seal when new may
lose its effectiveness over time as the rings and grooves wear.
The new MIT model predicts not only how the rings move within their grooves
for a given piston and ring design but also how that motion affects oil
consumption, friction, and wear. To determine the motion of the rings,
the model calculates all the forces acting on each ring. It determines
the forces due to the piston's motion within the cylinder, including the
effects of slap (as described by the piston-slap model) and inertial forces
that arise when the piston reverses direction and the rings tend to keep
going (much as a passenger jerks forward when a train stops suddenly).
The model determines how the rings bend and twist and calculates the forces
that tend to bring them back to their original positions (like coil springs).
It also calculates the behavior of the oil films on the cylinder wall and
in the ring-grooves--films measured in thousandths of millimeters-and the
effects on the rings of interacting with those films. It calculates when
the rings come into direct contact with other metal surfaces and the forces
that result. And it tracks how gas pressures change in the spaces above,
below, and between the rings and the net forces on the rings resulting
from those pressures.
Based on all the forces, the model calculates precisely how each ring moves
as the piston travels up and down inside the cylinder. The model predicts
both how the ring moves up and down within its groove and how it twists--a
feature that makes the simulation realistic and the model valuable for
practical engine studies.
The
figure to the right shows two examples of how a ring can twist and the
implications for engine operation. The drawing on the top shows a ring
twisted so that it forms a seal at the bottom surface toward the inside
of the groove. When the pressure of the gases above the ring is high, the
force downward on the ring is strong and the seal is tight. In the drawing
on the bottom, the ring tilts so that the seal is at the outer edge of
the groove. The high-pressure gases can now flow below the ring and press
upward. The net downward pressure on the ring is not so high, increasing
the likelihood that the ring will lift off the surface of the groove as
the piston moves.
Having calculated each ring's detailed movements, the model then determines
what those movements mean for engine operation. For example, it calculates
how much of the high-pressure combustion gases or unburned fuel/air mixture
escapes from the combustion chamber when a ring lifts off its groove. It
also predicts the flow of gases through the tiny gap between the two ends
of the ring. (A ring is not a continuous circle but rather has an opening
that allows it to be mounted on the piston.) It then determines the effect
of such gas flows on the layer of lubricating oil. As the gases jet through
a small opening, they pick up lubricating oil from adjacent surfaces. If
the gases escape downward, the oil simply returns to the crankcase to be
recirculated. However, during some parts of the piston's travels, the pressure
is higher below the rings than above, and gases escape upward. In that
case, the entrained lubricating oil blows into the combustion chamber,
where it vaporizes and burns up. The model calculates the oil losses that
result.
The model also predicts how the ring's position will affect friction and
wear. If the ring-groove contact occurs at a single point (as in both drawings),
the layer of lubricating oil tends to be pushed aside. Metal-to-metal contact
occurs, and friction and wear are high. If the ring lies flat on the bottom
of the groove, the lubricant is better able to keep the ring off the surface;
and friction and wear are lower. The model predicts where contact occurs,
what the contact pressure is, and how much wear results. Finally, the model
calculates how the friction and the gas and oil flows contribute to the
forces that determine the movement of the rings.
The researchers have verified their model using three experimental approaches.
They have measured the thickness of the oil film using the laser fluorescence
technique they developed a decade ago (see e-lab, April-June 1987
and October 1989-March 1990). The experimental measurements confirm the
model's ability to predict the behavior of the oil film, which is a critical
input to other calculations. In other experiments the researchers mounted
probes on the cylinder wall in an operating engine and measured the pressure
between the wall and the piston, in particular, in the spaces above and
below the top piston ring. Pressures predicted by the model match the measured
pressures well-an indirect indication that the model correctly simulates
the behavior of the ring and the resulting flows of high-pressure gases
from one space to another. Finally, the researchers have verified the model's
ability to predict wear by measuring the shapes of the rings and the grooves
when they are new and after hours of operation. Tests show that the regions
of the grooves where the contact pressure is highest according to the model
correspond to the regions where the actual erosion of material is greatest
in the experimental engine.
The researchers have now used the model in several practical studies. One
focus has been reducing wear. Model simulations show that the contact pressure,
hence wear, peaks at one area on the groove's bottom surface when combustion
is occurring. Using the model, Dr. Tian and Mr. Rabute showed that cutting
the groove at a specific angle produces a lower, more uniform contact pressure
all along the bottom of the groove. Not surprisingly, the shape of that
angled groove corresponds closely to the profiles of worn grooves measured
in long-term engine tests.
The model has also enabled the MIT researchers to clarify and quantify
a potentially important source of oil consumption. Under certain conditions,
when the piston moves upward, the top ring scrapes oil off the cylinder
wall and pushes it along. When the piston moves downward, a ring of oil
is left behind, some of which vaporizes and burns. According to the model,
such ring "up-scraping" can deposit significant amounts of oil.
Precisely how much depends on how the piston is tilted and how the ring
is twisted within its groove. Further analysis should identify ring designs
that will reduce this oil-consuming behavior.
Finally, the researchers are using the model to examine a troublesome phenomenon
known as "ring flutter." Under certain operating conditions,
a ring moves rapidly up and down in its groove, never staying at the top
or the bottom, sometimes for an extended period of time. The seal between
the ring and the groove is never tight, so the leakage of gas and entrained
oil is extremely high. Using the model, the researchers are defining the
exact conditions that lead to flutter and are exploring changes in piston
and ring design that may prevent it, thereby reducing oil consumption.
This research was supported by the Energy Laboratory's Consortium on Lubrication in Internal Combustion Engines, whose members are Dana Corporation, Shell Oil Company, Renault, and Peugeot PSA. Further information can be found in references.