next up previous
Next: 3.9.2 Forces Up: 3.9 Forces on a Previous: 3.9 Forces on a

3.9.1 Fixed bodies & translating bodies - Galilean transformation

.
\begin{figure}
\begin{center}
\epsfig{file=lfig116.eps,height=2in,clip=}
\end{center}
\end{figure}

Reference system O: $\vec{v}, \phi, p$
\begin{figure}
\begin{center}
\epsfig{file=lfig117.eps,height=1in,clip=}
\end{center}
\end{figure}


\begin{align}\nabla ^2\phi & = 0 \notag \\
\mathord{\buildrel{\lower3pt\hbox{$...
...i & \to 0 \mbox{\ as\ } \vert\vec{x}\vert \rightarrow \infty \notag
\end{align}

Reference system O': $\vec{v}', \phi', p'$
\begin{figure}
\begin{center}
\epsfig{file=lfig118.eps,height=1in,clip=}
\end{center}
\end{figure}


\begin{align}\nabla ^2\phi' & = 0 \notag \\
\mathord{\buildrel{\lower3pt\hbox{...
...\to -Ux' \mbox{\ as\ } \vert\vec{x}'\vert \rightarrow \infty \notag
\end{align}


Galilean transform:

\begin{align}\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonu...
... \\
- Ux' + \phi (x = x' + Ut,y,z,t) & = \phi '(x',y,z,t) \notag
\end{align}


Pressure (no gravity)


\begin{alignat}{4}
p_\infty = & - \frac{1}{2}\rho v^2 + C_o & \hspace{1in} & p_\...
...}_o \notag \\
= & C_o & & & = {C'}_o - \frac{1}{2}\rho U^2 \notag
\end{alignat}


\begin{displaymath}% latex2html id marker 1158
\therefore C_o = C'_o-\frac{1}{2}\rho U^{2} \notag
\end{displaymath}  


In O: unsteady flow
\begin{align}% latex2html id marker 1163
p_s = & - \rho \frac{\partial \phi }{\p...
...fty = & \frac{1}{2}\rho U^2 \mbox{\ stagnation
pressure \ } \notag
\end{align}


In O`: steady flow
\begin{align}p_s = & - \rho \underbrace {\frac{\partial \phi '}{\partial t}}_0
-...
...p_\infty = & \frac{1}{2}\rho U^2 \mbox{\ stagnation
pressure} \notag
\end{align}




Keyword Search