next up previous
Next: 3.10 Lift due to Up: 3.9 Forces on a Previous: 3.9.1 Fixed bodies &

3.9.2 Forces


\begin{figure}
\begin{center}
\epsfig{file=lfig119.eps,height=1.8in,clip=}
\end{center}
\end{figure}

Total fluid force for $\underset{\begin{array}{c}\mbox{No} \\ \mbox{shear} \\
\mbox{stress}\end{array}}{\mbox{\underline{ideal}}} $ flow:

\begin{displaymath}\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightha...
... }}\over
{F}} = \int\!\!\!\int\limits_B {p\hat {n}dS} \notag
\end{displaymath}  

For potential flow:

\begin{displaymath}\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightha...
...{\nabla \phi } \right\vert^2 + gy + c(t)}
\right)\hat {n}dS}
\end{displaymath}

For the hydrostatic $\left(
{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$ }}\over
{v}} \equiv \phi \equiv 0} \right)$case:

\begin{displaymath}\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightha...
...t\!\!\!\int}\limits_{\kern-5.5pt {\upsilon _B }} {d\upsilon }
\end{displaymath}

Hydrodynamic Force:

\begin{displaymath}\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightha...
...vert {\nabla \phi } \right\vert^2}
\right)\hat {n}dS} \notag
\end{displaymath}  

For steady $\left( {\frac{\partial \phi }{\partial t}
\equiv 0} \right)$motion:

\begin{displaymath}\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightha...
...rac{1}{2}\rho \int\!\!\!\int\limits_B {v^2\hat
{n}dS} \notag
\end{displaymath}  

Example: Hydrodynamic force on 2D cylinder in a steady uniform stream .
\begin{figure}
\begin{center}
\epsfig{file=lfig1110.eps,height=2in,clip=}
\end{center}
\end{figure}


\begin{displaymath}\begin{array}{l}
\mathord{\buildrel{\lower3pt\hbox{$\scrip...
...\right\vert _{r = a}^2\cos \theta d\theta } \\
\end{array}
\end{displaymath}

Potential function for the 2D cylinder:

\begin{displaymath}\phi = U\cos \theta \left( {r + \frac{a^2}{r}} \right)
\end{displaymath}

Velocity vector on the 2D cylinder surface:

\begin{displaymath}\left. {\nabla \phi } \right\vert _{r = a} = \left( {\left. {...
...\theta }} \right\vert _{r = a} }_{ - 2U\sin \theta }} \right)
\end{displaymath}

Square of the velocity vector on the 2D cylinder surface:

\begin{displaymath}\left. {\left\vert {\nabla \phi } \right\vert^2} \right\vert _{r = a} = 4U^2\sin
^2\theta
\end{displaymath}

Hydrodynamic force on the 2D cylinder:

\begin{displaymath}F_x = \frac{\rho a}{2}\int\limits_0^{2\pi } {d\theta \left( {...
...frac{\pi }{2},\frac{3\pi }{2} \\
\end{array}}} }_{ \equiv 0}
\end{displaymath}

Therefore, F$_{x}$= 0 no forces ( symmetry fore-aft of the streamlines). Similarly,

\begin{displaymath}F_y = \left( {\frac{1}{2}\rho U^2} \right)(2a)2\int\limits_0^{2\pi
} {d\theta \sin ^2\theta \sin \theta = 0} \notag
\end{displaymath}  

In fact, in general we find that $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$ }}\over
{F}} \equiv 0$on any 2D or 3D body.
D'Alembert's ``paradox'':
No hydrodynamic force$^{\ast }$ acts on a body moving with constant translational velocity in an infinite, inviscid, irrotational fluid.
Note: The moment as measured in a local frame is not necessarily zero.

Keyword Search


next up previous
Next: 3.10 Lift due to Up: 3.9 Forces on a Previous: 3.9.1 Fixed bodies &