next up previous
Next: 3.12 - Slender body


13.021 - Marine Hydrodynamics, Fall 2003

Lecture 13

Copyright © 2003 MIT - Department of Ocean Engineering, All rights reserved.

13.021 - Marine Hydrodynamics
Lecture 13
Some Properties of Added-Mass Coefficients
1.
$m_{ij}=\rho \cdot$[function of geometry only]
F, M = [linear function of $m_{ij}$] $\times$ [function of $\underset{\mbox{\tiny{not of motion
history}}}{\mbox{\underline {instantaneous}}} $ $U,\dot {U},\Omega
$]
2.
Relationship to momentum of fluid:
\begin{figure}
\begin{center}
\epsfig{file=lfig131.eps,height=1.in,clip=}
\end{center}
\end{figure}

Linear momentum $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$ }}\over {L}} $ in fluid:

\begin{displaymath}\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightha...
...at}}\ \infty}{\underbrace{\infty}} } {\rho \phi
\hat {n}dS}
\end{displaymath}


\begin{displaymath}L_x \left( {t = T} \right) = \int\!\!\!\int\limits_B {\rho \Phi
n_x dS}
\end{displaymath}

Force on fluid by body = $-F(t) = -(-m_{A}\dot {U}) =
m_{A}\dot {U}$.

\begin{displaymath}\int\limits_0^T {dt\left[ { - F\left( t \right)} \right]} = \...
...
{t = 0} \right) = \int\!\!\!\int\limits_B {\rho \Phi n_x dS}
\end{displaymath}

Therefore, $m_{A}$ = total fluid momentum for body moving at $U = 1$ (regardless of how we get there from rest) = fluid momentum per unit velocity of body.
K.B.C. $\frac{\partial \phi }{\partial n} = \nabla \phi
\cdot \hat {n} = \left( {u,0,0} \right) \cdot \hat {n} = Un_x
,\mbox{ }\frac{\partial \Phi }{\partial n} = n_x$ for $U = 1$.

\begin{displaymath}\mbox{ }m{ }_A = \rho \int\!\!\!\int\limits_B {\Phi \frac{\partial \Phi
}{\partial n}} dS
\end{displaymath}

For general 6 DOF:

\begin{displaymath}\underset{\begin{array}{l}\scriptstyle{ j - }\mbox{\tiny{forc...
...d momentum due to\ } \\
i \mbox{\ body motion}
\end{array}
\end{displaymath}

3.
Symmetry of added mass matrix $m_{ij }= m_{ji}$.
\begin{align}m_{ji} & = \rho \int\!\!\!\int\limits_B {\Phi _i } \left( {\frac{\p...
...bla \Phi _j + \Phi _i \nabla ^2\Phi _j }
\right)d\upsilon } \notag
\end{align}

Therefore,

\begin{displaymath}m_{ji} = \rho \mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern...
...V}
{\nabla \Phi _i \cdot \nabla \Phi _j d\upsilon } = m_{ij}
\end{displaymath}

4.
Relationship to kinetic energy of fluid. In general, for body motion $U_{i}\{(U_{1}, U_{2}, \ldots ,
U_{6})\}$.

\begin{displaymath}\phi = \underset{\scriptstyle{\sum}\mbox{\tiny{\ notation}}}{...
...ce{U_i \Phi _i}} ; \Phi _i = \mbox{\ potential for\ } U_i = 1
\end{displaymath}


\begin{align}K.E. & = \frac{1}{ 2}\rho
\mathop{\int\!\!\!\int\!\!\!\int}\limits...
...a \Phi _j d\upsilon } = \textstyle{1 \over
2}m_{ij} U_i U_j \notag
\end{align}

K.E. depends only on $m_{ij}$ and instantaneous $U_{i}$.
5.
Use of symmetry to simplify $m_{ij}$. From 36 $ \underset{\mbox{\tiny{symmetry}}}{\to} $ 21 $ \to $ ? Choose coordinate system so that some $m_{ij} = 0$ by symmetry. e.g. example 1: port-starboard symmetry (sym w.r.t. $x_{3})$
\begin{figure}
\begin{center}
\epsfig{file=lfig132.eps,height=1.4in,clip=}
\end{center}
\end{figure}

\begin{displaymath}\begin{array}{l}
m_{ij} = \left[ {{\begin{array}{*{20}c}
...
...\end{array} \hspace{0.5in} \mbox{12 independent coefficients}
\end{displaymath}

example 2: rotational (axi) sym. about $x_{1}$
\begin{figure}
\begin{center}
\epsfig{file=lfig133.eps,height=1.4in,clip=}
\end{center}
\end{figure}

\begin{displaymath}m_{ij} = \left[ {{\begin{array}{*{20}c}
{m_{11} } \hfill & ...
...6} = m_{35}, \mbox{ so 4 different
coefficients} \end{array}
\end{displaymath}

Exercise: How about 3 planes of symmetry (e.g. a cuboid); a cube; a sphere?? Work out detail!


 
next up previous
Next: 3.12 - Slender body