next up previous
Up: Water Waves Previous: Solution of the Dispersion

Characteristics of a Plane Linear Progressive Wave


\begin{figure}
\begin{center}
\epsfig{file=lfig197.eps,height=1.7in,clip=}
\end{center}
\end{figure}

\begin{displaymath}k = \frac{2\pi }{\lambda },\ \omega = \frac{2\pi }{T},\ H = 2A
\end{displaymath}

Define $U \equiv \omega A$.
Linear Solution:

\begin{displaymath}\phi = \frac{Ag}{\omega }\frac{\cosh k\left( {y + h}
\right)...
...ega t} \right) ; \eta =
A\cos \left( {kx - \omega t} \right)
\end{displaymath}

with

\begin{displaymath}\omega ^{2} = gk \tanh kh
\end{displaymath}

Velocity Field:
$\begin{array}{l}
u = \frac{\partial \phi }{\partial x} = \frac{Agk}{\omega }\...
...{y + h} \right)}{\sinh kh}\cos \left( {kx - \omega t} \right) \\
\end{array}$ $\begin{array}{l}
v = \frac{\partial \phi }{\partial y} = \frac{Agk}{\omega }\...
...{y + h} \right)}{\sinh kh}\sin \left( {kx - \omega t} \right) \\
\end{array}$

On y = 0:


$\begin{array}{l}
u = U_o = A\omega \frac{1}{\tanh kh}\cos \left( {kx - \omega...
... 1 & \mbox{\small {shallow water}} \\
\end{array}} \right. \\
\end{array}$ $\begin{array}{l}
v = v_o = A\omega \sin \left( {kx - \omega t} \right) = \fra...
...h} & \mbox{\small {shallow water}} \\
\end{array}} \right. \\
\end{array}$

Finite Depth Deep Water

\begin{figure}
\begin{center}
\epsfig{file=lfig198.eps,height=6.8in,clip=}
\end{center}
\end{figure}

Pressure Field: dynamic pressure $p_d = - \rho \frac{\partial \phi
}{\partial t};p = p_d - \rho gy$
Finite depth
Deep water
$\begin{array}{l}
p_d = \rho gA\frac{\cosh k\left( {y + h} \right)}{\cosh kh}\...
...t} = \rho g\frac{\cosh k\left( {y + h} \right)}{\cosh kh}\eta \\
\end{array}$

$ \frac{p_d }{p_{d_o}} $ same picture as $\frac{u}{u_o } ; \frac{p_d(- h)}{p_{d_o} } = \frac{1}{\cosh kh}$

shallow water: $p_{d}=\rho g\eta$ (no decay)

$p = \rho g(\eta - y) \leftarrow $ ``hydrostatic'' approximation

$\begin{array}{l}
p_d = \rho ge^{ky}\eta \\
p = \rho g\left[ {\eta e^{ky} -...
...\\
\frac{p_d \left( { - h} \right)}{p_{d _o} } = e^{ - ky} \\
\end{array}$


\begin{figure}
\begin{center}
\epsfig{file=lfig199.eps,height=2.0in,clip=}
\end{center}
\end{figure}

Particle Orbit/ Velocity (Lagrangian).


Let
$x_{p}(t), y_{p}(t)$ be the position of the particle P, then $x_p( t) = \bar {x} + x'( t) ; y_p( t) = \bar {y} + y'(
t)$ where $( {\bar {x};\bar {y}})$ is the mean position of P.
\begin{figure}
\begin{center}
\epsfig{file=lfig1910.eps,height=1in,clip=}
\end{center}
\end{figure}

\begin{align}v_p & \approx v\left( {\bar {x},\bar {y},t} \right) \left( {\bar
{...
...ght) y' + \ldots }_{\mbox{\small {ignore -
linear theory}}} \notag
\end{align}

\begin{align}x_p & = \bar {x} + \int {dt\ u\left( {\bar {x},\bar {y},t} \right)}...
... 0, y' =
A\cos \left( {k\bar {x} - \omega t} \right) = \eta \notag
\end{align}

\begin{displaymath}\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} = 1 \mbox{\ or\ } \fr...
...ght)}{a^2} + \frac{\left( {y_p - \bar {y}}
\right)}{b^2} = 1
\end{displaymath}

where $a = A\frac{\cosh k\left( {\bar {y} + h}
\right)}{\sinh kh}; b = A\frac{\sinh k\left( {\bar {y} + h}
\right)}{\sinh kh},$ i.e. the particle orbits form closed ellipses with horizontal and vertical axes $a$ and $b$.


\begin{figure}
\begin{center}
\epsfig{file=lfig1912.eps,height=8.5in,clip=}
\end{center}
\end{figure}

Summary of Plane Progressive Wave Characteristics







Deep water/ short waves

$kh > \pi $ (say)
Shallow water/ long waves

$kh << 1$
$\begin{array}{l}
\frac{\cosh k\left( {y + h} \right)}{\cosh kh} = f_1 \left( y \right)\sim \\
\mbox{e.g.} p_d \\
\end{array}$
$e^{ky}$
1
$\begin{array}{l}
\frac{\cosh k\left( {y + h} \right)}{\sinh kh} = f_2 \left( y \right)\sim \\
\mbox{e.g.} u,a \\
\end{array}$
$e^{ky}$
$\frac{1}{kh}$
$\begin{array}{l}
\frac{\sinh k\left( {y + h} \right)}{\sinh kh} = f_3 \left( y \right)\sim \\
\mbox{e.g.\ }v,b \\
\end{array}$
$e^{ky}$
$1 + \frac{y}{h}$


$C\left( x \right) = \cos \left( {kx - \omega t} \right)$
$S\left( x \right) = \sin \left( {kx - \omega t} \right)$
$\frac{\eta }{A} = C\left( x \right)$
 
$\frac{u}{A\omega } = C\left( x \right)f_2 \left( y \right)$
$\frac{v}{A\omega } = S\left( x \right)f_3 \left( y \right)$
$\frac{p_d }{\rho gA} = C\left( x \right)f_1 \left( y \right)$
 
$\frac{{y}'}{A} = C\left( x \right)f_3 \left( y \right)$
$\frac{{x}'}{A} = - S\left( x \right)f_2 \left( y \right)$
$\frac{a}{A} = f_2 \left( y \right)$
$\frac{b}{A}=f_3 \left( y \right)$
 


\begin{figure}
\begin{center}
\epsfig{file=lfig1913.eps,height=1in,clip=}
\end{center}
\end{figure}


up previous
Up: Water Waves Previous: Solution of the Dispersion