next up previous
Next: Linearized (Airy) Wave Theory Up: Water Waves Previous: Water Waves

Exact (nonlinear) governing equations for surface gravity waves

assuming potential theory

\begin{figure}
\begin{center}
\epsfig{file=lfig191.eps,height=1.75in,clip=}
\end{center}
\end{figure}

Unknown variables:
\begin{align}&
\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpo...
...t(
{x,y,z,t}\right) \notag \\
& p\left( {x,y,z,t} \right) \notag
\end{align}

Field equation:
\begin{align}\mbox{Continuity:} & \nabla ^2\phi = 0 \ \ \ y < \eta \mbox{\ or\ }...
...pheric}}}-\underbrace{\rho
gy}_{\mbox{\tiny {hydrostatic}}} \notag
\end{align}

Boundary Conditions:
1.
On an impervious boundary $B\left( {x,y,z,t} \right) = 0$, we have KBC:

\begin{displaymath}\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightha...
...arpoonup$ }}\over
{x}} ,t} \right) = U_n \mbox{\ on\ } B = 0
\end{displaymath}

Alternatively: a particle P on $B$ remains on $B$, i.e. $B$ is a material surface; e.g. if P is on $B$ at $t = t_{0}$, i.e.

\begin{displaymath}B(\vec{x}_{P},t_{0}) = 0, \mbox{\ then\ } B(\vec{x}_{P}(t),t_{0})
= 0 \mbox{\ for all \ } t,
\end{displaymath}

so that, following P, $B = 0$.

\begin{displaymath}% latex2html id marker 897
\therefore \frac{DB}{Dt} = \frac{\...
...
{\nabla \phi \cdot \nabla } \right)B = 0 \mbox{\ on\ } B = 0
\end{displaymath}

For example, flat bottom at $y = -h$:

\begin{displaymath}{\partial \phi } \mathord{\left/ {\vphantom {{\partial \phi }...
...artial y} = 0
\mbox{\ on\ } y = -h \mbox{\ or\ } B:y + h = 0
\end{displaymath}

2.
On the free surface, $y = \eta $ or $F = y - \eta (x,z,t) =
0$.
KBC: free surface is a material surface, no perpendicular relative velocity to free surface, particle on free surface remains on free surface:

\begin{displaymath}\frac{DF}{Dt} = 0 = \frac{D}{Dt}\left( {y - \eta } \right) =
...
...}\mbox{\tiny {still}} \\
\mbox{\tiny {unknown}}\end{array}}
\end{displaymath}

DBC: $p = p_{a}$ on $y = \eta $ or $F = 0$. Apply Bernoulli equation at $y = \eta $:

\begin{displaymath}\frac{\partial \phi }{\partial t} + \frac{1}{2}\left\vert {\n...
...eta = 0 \mbox{\ on\ } y = \eta \mbox{\ (assuming}
p_{a} = 0)
\end{displaymath}