next up previous
Next: Steady ship waves, wave Up: Free-surface waves: linear superposition, Previous: Energy Propagation - Group

Conservation of energy equation


\begin{figure}
\begin{center}
\epsfig{file=lfig2013.eps,height=1.7in,clip=}
\end{center}
\end{figure}

\begin{align}& \left( {\overline F _1 - \overline F _2 } \right)\Delta t =
\Del...
...\partial
}{\partial x}\left( {V_g \overline E } \right) = 0 \notag
\end{align}

1.
$\frac{\partial \overline E }{\partial t} = 0, V_g
\overline E = $ constant in $x$ for any $h( x)$.
2.
$V_g = $ constant (i.e. constant depth, $\delta k < < k)$

\begin{displaymath}\left( {\frac{\partial }{\partial t} + V_g \frac{\partial }{\...
... - V_g t} \right)\mbox{ or } A = A\left( {x - V_g t}
\right)
\end{displaymath}

i.e. wave packet moves at $V_{g}$.


Keyword Search