Actual source code: plexorient.c

petsc-3.7.5 2017-01-01
Report Typos and Errors
  1: #include <petsc/private/dmpleximpl.h>   /*I      "petscdmplex.h"   I*/
  2: #include <petscsf.h>

  6: /*@
  7:   DMPlexReverseCell - Give a mesh cell the opposite orientation

  9:   Input Parameters:
 10: + dm   - The DM
 11: - cell - The cell number

 13:   Note: The modification of the DM is done in-place.

 15:   Level: advanced

 17: .seealso: DMPlexOrient(), DMCreate(), DMPLEX
 18: @*/
 19: PetscErrorCode DMPlexReverseCell(DM dm, PetscInt cell)
 20: {
 21:   /* Note that the reverse orientation ro of a face with orientation o is:

 23:        ro = o >= 0 ? -(faceSize - o) : faceSize + o

 25:      where faceSize is the size of the cone for the face.
 26:   */
 27:   const PetscInt *cone,    *coneO, *support;
 28:   PetscInt       *revcone, *revconeO;
 29:   PetscInt        maxConeSize, coneSize, supportSize, faceSize, cp, sp;
 30:   PetscErrorCode  ierr;

 33:   DMPlexGetMaxSizes(dm, &maxConeSize, NULL);
 34:   DMGetWorkArray(dm, maxConeSize, PETSC_INT, &revcone);
 35:   DMGetWorkArray(dm, maxConeSize, PETSC_INT, &revconeO);
 36:   /* Reverse cone, and reverse orientations of faces */
 37:   DMPlexGetConeSize(dm, cell, &coneSize);
 38:   DMPlexGetCone(dm, cell, &cone);
 39:   DMPlexGetConeOrientation(dm, cell, &coneO);
 40:   for (cp = 0; cp < coneSize; ++cp) {
 41:     const PetscInt rcp = coneSize-cp-1;

 43:     DMPlexGetConeSize(dm, cone[rcp], &faceSize);
 44:     revcone[cp]  = cone[rcp];
 45:     revconeO[cp] = coneO[rcp] >= 0 ? -(faceSize-coneO[rcp]) : faceSize+coneO[rcp];
 46:   }
 47:   DMPlexSetCone(dm, cell, revcone);
 48:   DMPlexSetConeOrientation(dm, cell, revconeO);
 49:   /* Reverse orientation of this cell in the support hypercells */
 50:   faceSize = coneSize;
 51:   DMPlexGetSupportSize(dm, cell, &supportSize);
 52:   DMPlexGetSupport(dm, cell, &support);
 53:   for (sp = 0; sp < supportSize; ++sp) {
 54:     DMPlexGetConeSize(dm, support[sp], &coneSize);
 55:     DMPlexGetCone(dm, support[sp], &cone);
 56:     DMPlexGetConeOrientation(dm, support[sp], &coneO);
 57:     for (cp = 0; cp < coneSize; ++cp) {
 58:       if (cone[cp] != cell) continue;
 59:       DMPlexInsertConeOrientation(dm, support[sp], cp, coneO[cp] >= 0 ? -(faceSize-coneO[cp]) : faceSize+coneO[cp]);
 60:     }
 61:   }
 62:   DMRestoreWorkArray(dm, maxConeSize, PETSC_INT, &revcone);
 63:   DMRestoreWorkArray(dm, maxConeSize, PETSC_INT, &revconeO);
 64:   return(0);
 65: }

 69: /*
 70:   - Checks face match
 71:     - Flips non-matching
 72:   - Inserts faces of support cells in FIFO
 73: */
 74: static PetscErrorCode DMPlexCheckFace_Internal(DM dm, PetscInt *faceFIFO, PetscInt *fTop, PetscInt *fBottom, PetscInt cStart, PetscInt fStart, PetscInt fEnd, PetscBT seenCells, PetscBT flippedCells, PetscBT seenFaces)
 75: {
 76:   const PetscInt *support, *coneA, *coneB, *coneOA, *coneOB;
 77:   PetscInt        supportSize, coneSizeA, coneSizeB, posA = -1, posB = -1;
 78:   PetscInt        face, dim, seenA, flippedA, seenB, flippedB, mismatch, c;
 79:   PetscErrorCode  ierr;

 82:   face = faceFIFO[(*fTop)++];
 83:   DMGetDimension(dm, &dim);
 84:   DMPlexGetSupportSize(dm, face, &supportSize);
 85:   DMPlexGetSupport(dm, face, &support);
 86:   if (supportSize < 2) return(0);
 87:   if (supportSize != 2) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Faces should separate only two cells, not %d", supportSize);
 88:   seenA    = PetscBTLookup(seenCells,    support[0]-cStart);
 89:   flippedA = PetscBTLookup(flippedCells, support[0]-cStart) ? 1 : 0;
 90:   seenB    = PetscBTLookup(seenCells,    support[1]-cStart);
 91:   flippedB = PetscBTLookup(flippedCells, support[1]-cStart) ? 1 : 0;

 93:   DMPlexGetConeSize(dm, support[0], &coneSizeA);
 94:   DMPlexGetConeSize(dm, support[1], &coneSizeB);
 95:   DMPlexGetCone(dm, support[0], &coneA);
 96:   DMPlexGetCone(dm, support[1], &coneB);
 97:   DMPlexGetConeOrientation(dm, support[0], &coneOA);
 98:   DMPlexGetConeOrientation(dm, support[1], &coneOB);
 99:   for (c = 0; c < coneSizeA; ++c) {
100:     if (!PetscBTLookup(seenFaces, coneA[c]-fStart)) {
101:       faceFIFO[(*fBottom)++] = coneA[c];
102:       PetscBTSet(seenFaces, coneA[c]-fStart);
103:     }
104:     if (coneA[c] == face) posA = c;
105:     if (*fBottom > fEnd-fStart) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Face %d was pushed exceeding capacity %d > %d", coneA[c], *fBottom, fEnd-fStart);
106:   }
107:   if (posA < 0) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %d could not be located in cell %d", face, support[0]);
108:   for (c = 0; c < coneSizeB; ++c) {
109:     if (!PetscBTLookup(seenFaces, coneB[c]-fStart)) {
110:       faceFIFO[(*fBottom)++] = coneB[c];
111:       PetscBTSet(seenFaces, coneB[c]-fStart);
112:     }
113:     if (coneB[c] == face) posB = c;
114:     if (*fBottom > fEnd-fStart) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Face %d was pushed exceeding capacity %d > %d", coneA[c], *fBottom, fEnd-fStart);
115:   }
116:   if (posB < 0) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Face %d could not be located in cell %d", face, support[1]);

118:   if (dim == 1) {
119:     mismatch = posA == posB;
120:   } else {
121:     mismatch = coneOA[posA] == coneOB[posB];
122:   }

124:   if (mismatch ^ (flippedA ^ flippedB)) {
125:     if (seenA && seenB) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Previously seen cells %d and %d do not match: Fault mesh is non-orientable", support[0], support[1]);
126:     if (!seenA && !flippedA) {
127:       PetscBTSet(flippedCells, support[0]-cStart);
128:     } else if (!seenB && !flippedB) {
129:       PetscBTSet(flippedCells, support[1]-cStart);
130:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Inconsistent mesh orientation: Fault mesh is non-orientable");
131:   } else if (mismatch && flippedA && flippedB) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Attempt to flip already flipped cell: Fault mesh is non-orientable");
132:   PetscBTSet(seenCells, support[0]-cStart);
133:   PetscBTSet(seenCells, support[1]-cStart);
134:   return(0);
135: }

139: /*@
140:   DMPlexOrient - Give a consistent orientation to the input mesh

142:   Input Parameters:
143: . dm - The DM

145:   Note: The orientation data for the DM are change in-place.
146: $ This routine will fail for non-orientable surfaces, such as the Moebius strip.

148:   Level: advanced

150: .seealso: DMCreate(), DMPLEX
151: @*/
152: PetscErrorCode DMPlexOrient(DM dm)
153: {
154:   MPI_Comm           comm;
155:   PetscSF            sf;
156:   const PetscInt    *lpoints;
157:   const PetscSFNode *rpoints;
158:   PetscSFNode       *rorntComp = NULL, *lorntComp = NULL;
159:   PetscInt          *numNeighbors, **neighbors;
160:   PetscSFNode       *nrankComp;
161:   PetscBool         *match, *flipped;
162:   PetscBT            seenCells, flippedCells, seenFaces;
163:   PetscInt          *faceFIFO, fTop, fBottom, *cellComp, *faceComp;
164:   PetscInt           numLeaves, numRoots, dim, h, cStart, cEnd, c, cell, fStart, fEnd, face, off, totNeighbors = 0;
165:   PetscMPIInt        rank, numComponents, comp = 0;
166:   PetscBool          flg;
167:   PetscErrorCode     ierr;

170:   PetscObjectGetComm((PetscObject) dm, &comm);
171:   MPI_Comm_rank(comm, &rank);
172:   PetscOptionsHasName(((PetscObject) dm)->options,((PetscObject) dm)->prefix, "-orientation_view", &flg);
173:   DMGetPointSF(dm, &sf);
174:   PetscSFGetGraph(sf, &numRoots, &numLeaves, &lpoints, &rpoints);
175:   /* Truth Table
176:      mismatch    flips   do action   mismatch   flipA ^ flipB   action
177:          F       0 flips     no         F             F           F
178:          F       1 flip      yes        F             T           T
179:          F       2 flips     no         T             F           T
180:          T       0 flips     yes        T             T           F
181:          T       1 flip      no
182:          T       2 flips     yes
183:   */
184:   DMGetDimension(dm, &dim);
185:   DMPlexGetVTKCellHeight(dm, &h);
186:   DMPlexGetHeightStratum(dm, h,   &cStart, &cEnd);
187:   DMPlexGetHeightStratum(dm, h+1, &fStart, &fEnd);
188:   PetscBTCreate(cEnd - cStart, &seenCells);
189:   PetscBTMemzero(cEnd - cStart, seenCells);
190:   PetscBTCreate(cEnd - cStart, &flippedCells);
191:   PetscBTMemzero(cEnd - cStart, flippedCells);
192:   PetscBTCreate(fEnd - fStart, &seenFaces);
193:   PetscBTMemzero(fEnd - fStart, seenFaces);
194:   PetscCalloc3(fEnd - fStart, &faceFIFO, cEnd-cStart, &cellComp, fEnd-fStart, &faceComp);
195:   /*
196:    OLD STYLE
197:    - Add an integer array over cells and faces (component) for connected component number
198:    Foreach component
199:      - Mark the initial cell as seen
200:      - Process component as usual
201:      - Set component for all seenCells
202:      - Wipe seenCells and seenFaces (flippedCells can stay)
203:    - Generate parallel adjacency for component using SF and seenFaces
204:    - Collect numComponents adj data from each proc to 0
205:    - Build same serial graph
206:    - Use same solver
207:    - Use Scatterv to to send back flipped flags for each component
208:    - Negate flippedCells by component

210:    NEW STYLE
211:    - Create the adj on each process
212:    - Bootstrap to complete graph on proc 0
213:   */
214:   /* Loop over components */
215:   for (cell = cStart; cell < cEnd; ++cell) cellComp[cell-cStart] = -1;
216:   do {
217:     /* Look for first unmarked cell */
218:     for (cell = cStart; cell < cEnd; ++cell) if (cellComp[cell-cStart] < 0) break;
219:     if (cell >= cEnd) break;
220:     /* Initialize FIFO with first cell in component */
221:     {
222:       const PetscInt *cone;
223:       PetscInt        coneSize;

225:       fTop = fBottom = 0;
226:       DMPlexGetConeSize(dm, cell, &coneSize);
227:       DMPlexGetCone(dm, cell, &cone);
228:       for (c = 0; c < coneSize; ++c) {
229:         faceFIFO[fBottom++] = cone[c];
230:         PetscBTSet(seenFaces, cone[c]-fStart);
231:       }
232:       PetscBTSet(seenCells, cell-cStart);
233:     }
234:     /* Consider each face in FIFO */
235:     while (fTop < fBottom) {
236:       DMPlexCheckFace_Internal(dm, faceFIFO, &fTop, &fBottom, cStart, fStart, fEnd, seenCells, flippedCells, seenFaces);
237:     }
238:     /* Set component for cells and faces */
239:     for (cell = 0; cell < cEnd-cStart; ++cell) {
240:       if (PetscBTLookup(seenCells, cell)) cellComp[cell] = comp;
241:     }
242:     for (face = 0; face < fEnd-fStart; ++face) {
243:       if (PetscBTLookup(seenFaces, face)) faceComp[face] = comp;
244:     }
245:     /* Wipe seenCells and seenFaces for next component */
246:     PetscBTMemzero(fEnd - fStart, seenFaces);
247:     PetscBTMemzero(cEnd - cStart, seenCells);
248:     ++comp;
249:   } while (1);
250:   numComponents = comp;
251:   if (flg) {
252:     PetscViewer v;

254:     PetscViewerASCIIGetStdout(comm, &v);
255:     PetscViewerASCIIPushSynchronized(v);
256:     PetscViewerASCIISynchronizedPrintf(v, "[%d]BT for serial flipped cells:\n", rank);
257:     PetscBTView(cEnd-cStart, flippedCells, v);
258:     PetscViewerFlush(v);
259:     PetscViewerASCIIPopSynchronized(v);
260:   }
261:   /* Now all subdomains are oriented, but we need a consistent parallel orientation */
262:   if (numLeaves >= 0) {
263:     /* Store orientations of boundary faces*/
264:     PetscCalloc2(numRoots,&rorntComp,numRoots,&lorntComp);
265:     for (face = fStart; face < fEnd; ++face) {
266:       const PetscInt *cone, *support, *ornt;
267:       PetscInt        coneSize, supportSize;

269:       DMPlexGetSupportSize(dm, face, &supportSize);
270:       if (supportSize != 1) continue;
271:       DMPlexGetSupport(dm, face, &support);

273:       DMPlexGetCone(dm, support[0], &cone);
274:       DMPlexGetConeSize(dm, support[0], &coneSize);
275:       DMPlexGetConeOrientation(dm, support[0], &ornt);
276:       for (c = 0; c < coneSize; ++c) if (cone[c] == face) break;
277:       if (dim == 1) {
278:         /* Use cone position instead, shifted to -1 or 1 */
279:         if (PetscBTLookup(flippedCells, support[0]-cStart)) rorntComp[face].rank = 1-c*2;
280:         else                                                rorntComp[face].rank = c*2-1;
281:       } else {
282:         if (PetscBTLookup(flippedCells, support[0]-cStart)) rorntComp[face].rank = ornt[c] < 0 ? -1 :  1;
283:         else                                                rorntComp[face].rank = ornt[c] < 0 ?  1 : -1;
284:       }
285:       rorntComp[face].index = faceComp[face-fStart];
286:     }
287:     /* Communicate boundary edge orientations */
288:     PetscSFBcastBegin(sf, MPIU_2INT, rorntComp, lorntComp);
289:     PetscSFBcastEnd(sf, MPIU_2INT, rorntComp, lorntComp);
290:   }
291:   /* Get process adjacency */
292:   PetscMalloc2(numComponents, &numNeighbors, numComponents, &neighbors);
293:   for (comp = 0; comp < numComponents; ++comp) {
294:     PetscInt  l, n;

296:     numNeighbors[comp] = 0;
297:     PetscMalloc1(PetscMax(numLeaves, 0), &neighbors[comp]);
298:     /* I know this is p^2 time in general, but for bounded degree its alright */
299:     for (l = 0; l < numLeaves; ++l) {
300:       const PetscInt face = lpoints[l];

302:       /* Find a representative face (edge) separating pairs of procs */
303:       if ((face >= fStart) && (face < fEnd) && (faceComp[face-fStart] == comp)) {
304:         const PetscInt rrank = rpoints[l].rank;
305:         const PetscInt rcomp = lorntComp[face].index;

307:         for (n = 0; n < numNeighbors[comp]; ++n) if ((rrank == rpoints[neighbors[comp][n]].rank) && (rcomp == lorntComp[lpoints[neighbors[comp][n]]].index)) break;
308:         if (n >= numNeighbors[comp]) {
309:           PetscInt supportSize;

311:           DMPlexGetSupportSize(dm, face, &supportSize);
312:           if (supportSize != 1) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Boundary faces should see one cell, not %d", supportSize);
313:           if (flg) {PetscPrintf(PETSC_COMM_SELF, "[%d]: component %d, Found representative leaf %d (face %d) connecting to face %d on (%d, %d) with orientation %d\n", rank, comp, l, face, rpoints[l].index, rrank, rcomp, lorntComp[face].rank);}
314:           neighbors[comp][numNeighbors[comp]++] = l;
315:         }
316:       }
317:     }
318:     totNeighbors += numNeighbors[comp];
319:   }
320:   PetscMalloc2(totNeighbors, &nrankComp, totNeighbors, &match);
321:   for (comp = 0, off = 0; comp < numComponents; ++comp) {
322:     PetscInt n;

324:     for (n = 0; n < numNeighbors[comp]; ++n, ++off) {
325:       const PetscInt face = lpoints[neighbors[comp][n]];
326:       const PetscInt o    = rorntComp[face].rank*lorntComp[face].rank;

328:       if      (o < 0) match[off] = PETSC_TRUE;
329:       else if (o > 0) match[off] = PETSC_FALSE;
330:       else SETERRQ5(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid face %d (%d, %d) neighbor: %d comp: %d", face, rorntComp[face], lorntComp[face], neighbors[comp][n], comp);
331:       nrankComp[off].rank  = rpoints[neighbors[comp][n]].rank;
332:       nrankComp[off].index = lorntComp[lpoints[neighbors[comp][n]]].index;
333:     }
334:     PetscFree(neighbors[comp]);
335:   }
336:   /* Collect the graph on 0 */
337:   if (numLeaves >= 0) {
338:     Mat          G;
339:     PetscBT      seenProcs, flippedProcs;
340:     PetscInt    *procFIFO, pTop, pBottom;
341:     PetscInt    *N   = NULL, *Noff;
342:     PetscSFNode *adj = NULL;
343:     PetscBool   *val = NULL;
344:     PetscMPIInt *recvcounts = NULL, *displs = NULL, *Nc, p, o;
345:     PetscMPIInt  numProcs = 0;

347:     PetscCalloc1(numComponents, &flipped);
348:     if (!rank) {MPI_Comm_size(comm, &numProcs);}
349:     PetscCalloc4(numProcs, &recvcounts, numProcs+1, &displs, numProcs, &Nc, numProcs+1, &Noff);
350:     MPI_Gather(&numComponents, 1, MPI_INT, Nc, 1, MPI_INT, 0, comm);
351:     for (p = 0; p < numProcs; ++p) {
352:       displs[p+1] = displs[p] + Nc[p];
353:     }
354:     if (!rank) {PetscMalloc1(displs[numProcs],&N);}
355:     MPI_Gatherv(numNeighbors, numComponents, MPIU_INT, N, Nc, displs, MPIU_INT, 0, comm);
356:     for (p = 0, o = 0; p < numProcs; ++p) {
357:       recvcounts[p] = 0;
358:       for (c = 0; c < Nc[p]; ++c, ++o) recvcounts[p] += N[o];
359:       displs[p+1] = displs[p] + recvcounts[p];
360:     }
361:     if (!rank) {PetscMalloc2(displs[numProcs], &adj, displs[numProcs], &val);}
362:     MPI_Gatherv(nrankComp, totNeighbors, MPIU_2INT, adj, recvcounts, displs, MPIU_2INT, 0, comm);
363:     MPI_Gatherv(match, totNeighbors, MPIU_BOOL, val, recvcounts, displs, MPIU_BOOL, 0, comm);
364:     PetscFree2(numNeighbors, neighbors);
365:     if (!rank) {
366:       for (p = 1; p <= numProcs; ++p) {Noff[p] = Noff[p-1] + Nc[p-1];}
367:       if (flg) {
368:         PetscInt n;

370:         for (p = 0, off = 0; p < numProcs; ++p) {
371:           for (c = 0; c < Nc[p]; ++c) {
372:             PetscPrintf(PETSC_COMM_SELF, "Proc %d Comp %d:\n", p, c);
373:             for (n = 0; n < N[Noff[p]+c]; ++n, ++off) {
374:               PetscPrintf(PETSC_COMM_SELF, "  edge (%d, %d) (%d):\n", adj[off].rank, adj[off].index, val[off]);
375:             }
376:           }
377:         }
378:       }
379:       /* Symmetrize the graph */
380:       MatCreate(PETSC_COMM_SELF, &G);
381:       MatSetSizes(G, Noff[numProcs], Noff[numProcs], Noff[numProcs], Noff[numProcs]);
382:       MatSetUp(G);
383:       for (p = 0, off = 0; p < numProcs; ++p) {
384:         for (c = 0; c < Nc[p]; ++c) {
385:           const PetscInt r = Noff[p]+c;
386:           PetscInt       n;

388:           for (n = 0; n < N[r]; ++n, ++off) {
389:             const PetscInt    q = Noff[adj[off].rank] + adj[off].index;
390:             const PetscScalar o = val[off] ? 1.0 : 0.0;

392:             MatSetValues(G, 1, &r, 1, &q, &o, INSERT_VALUES);
393:             MatSetValues(G, 1, &q, 1, &r, &o, INSERT_VALUES);
394:           }
395:         }
396:       }
397:       MatAssemblyBegin(G, MAT_FINAL_ASSEMBLY);
398:       MatAssemblyEnd(G, MAT_FINAL_ASSEMBLY);

400:       PetscBTCreate(Noff[numProcs], &seenProcs);
401:       PetscBTMemzero(Noff[numProcs], seenProcs);
402:       PetscBTCreate(Noff[numProcs], &flippedProcs);
403:       PetscBTMemzero(Noff[numProcs], flippedProcs);
404:       PetscMalloc1(Noff[numProcs], &procFIFO);
405:       pTop = pBottom = 0;
406:       for (p = 0; p < Noff[numProcs]; ++p) {
407:         if (PetscBTLookup(seenProcs, p)) continue;
408:         /* Initialize FIFO with next proc */
409:         procFIFO[pBottom++] = p;
410:         PetscBTSet(seenProcs, p);
411:         /* Consider each proc in FIFO */
412:         while (pTop < pBottom) {
413:           const PetscScalar *ornt;
414:           const PetscInt    *neighbors;
415:           PetscInt           proc, nproc, seen, flippedA, flippedB, mismatch, numNeighbors, n;

417:           proc     = procFIFO[pTop++];
418:           flippedA = PetscBTLookup(flippedProcs, proc) ? 1 : 0;
419:           MatGetRow(G, proc, &numNeighbors, &neighbors, &ornt);
420:           /* Loop over neighboring procs */
421:           for (n = 0; n < numNeighbors; ++n) {
422:             nproc    = neighbors[n];
423:             mismatch = PetscRealPart(ornt[n]) > 0.5 ? 0 : 1;
424:             seen     = PetscBTLookup(seenProcs, nproc);
425:             flippedB = PetscBTLookup(flippedProcs, nproc) ? 1 : 0;

427:             if (mismatch ^ (flippedA ^ flippedB)) {
428:               if (seen) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Previously seen procs %d and %d do not match: Fault mesh is non-orientable", proc, nproc);
429:               if (!flippedB) {
430:                 PetscBTSet(flippedProcs, nproc);
431:               } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Inconsistent mesh orientation: Fault mesh is non-orientable");
432:             } else if (mismatch && flippedA && flippedB) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Attempt to flip already flipped cell: Fault mesh is non-orientable");
433:             if (!seen) {
434:               procFIFO[pBottom++] = nproc;
435:               PetscBTSet(seenProcs, nproc);
436:             }
437:           }
438:         }
439:       }
440:       PetscFree(procFIFO);
441:       MatDestroy(&G);
442:       PetscFree2(adj, val);
443:       PetscBTDestroy(&seenProcs);
444:     }
445:     /* Scatter flip flags */
446:     {
447:       PetscBool *flips = NULL;

449:       if (!rank) {
450:         PetscMalloc1(Noff[numProcs], &flips);
451:         for (p = 0; p < Noff[numProcs]; ++p) {
452:           flips[p] = PetscBTLookup(flippedProcs, p) ? PETSC_TRUE : PETSC_FALSE;
453:           if (flg && flips[p]) {PetscPrintf(comm, "Flipping Proc+Comp %d:\n", p);}
454:         }
455:         for (p = 0; p < numProcs; ++p) {
456:           displs[p+1] = displs[p] + Nc[p];
457:         }
458:       }
459:       MPI_Scatterv(flips, Nc, displs, MPIU_BOOL, flipped, numComponents, MPIU_BOOL, 0, comm);
460:       PetscFree(flips);
461:     }
462:     if (!rank) {PetscBTDestroy(&flippedProcs);}
463:     PetscFree(N);
464:     PetscFree4(recvcounts, displs, Nc, Noff);
465:     PetscFree2(nrankComp, match);

467:     /* Decide whether to flip cells in each component */
468:     for (c = 0; c < cEnd-cStart; ++c) {if (flipped[cellComp[c]]) {PetscBTNegate(flippedCells, c);}}
469:     PetscFree(flipped);
470:   }
471:   if (flg) {
472:     PetscViewer v;

474:     PetscViewerASCIIGetStdout(comm, &v);
475:     PetscViewerASCIIPushSynchronized(v);
476:     PetscViewerASCIISynchronizedPrintf(v, "[%d]BT for parallel flipped cells:\n", rank);
477:     PetscBTView(cEnd-cStart, flippedCells, v);
478:     PetscViewerFlush(v);
479:     PetscViewerASCIIPopSynchronized(v);
480:   }
481:   /* Reverse flipped cells in the mesh */
482:   for (c = cStart; c < cEnd; ++c) {
483:     if (PetscBTLookup(flippedCells, c-cStart)) {DMPlexReverseCell(dm, c);}
484:   }
485:   PetscBTDestroy(&seenCells);
486:   PetscBTDestroy(&flippedCells);
487:   PetscBTDestroy(&seenFaces);
488:   PetscFree2(numNeighbors, neighbors);
489:   PetscFree2(rorntComp, lorntComp);
490:   PetscFree3(faceFIFO, cellComp, faceComp);
491:   return(0);
492: }