Actual source code: asm.c

petsc-3.7.5 2017-01-01
Report Typos and Errors
  2: /*
  3:   This file defines an additive Schwarz preconditioner for any Mat implementation.

  5:   Note that each processor may have any number of subdomains. But in order to
  6:   deal easily with the VecScatter(), we treat each processor as if it has the
  7:   same number of subdomains.

  9:        n - total number of true subdomains on all processors
 10:        n_local_true - actual number of subdomains on this processor
 11:        n_local = maximum over all processors of n_local_true
 12: */
 13: #include <petsc/private/pcimpl.h>     /*I "petscpc.h" I*/
 14: #include <petscdm.h>

 16: typedef struct {
 17:   PetscInt   n, n_local, n_local_true;
 18:   PetscInt   overlap;             /* overlap requested by user */
 19:   KSP        *ksp;                /* linear solvers for each block */
 20:   VecScatter *restriction;        /* mapping from global to subregion */
 21:   VecScatter *localization;       /* mapping from overlapping to non-overlapping subregion */
 22:   VecScatter *prolongation;       /* mapping from subregion to global */
 23:   Vec        *x,*y,*y_local;      /* work vectors */
 24:   IS         *is;                 /* index set that defines each overlapping subdomain */
 25:   IS         *is_local;           /* index set that defines each non-overlapping subdomain, may be NULL */
 26:   Mat        *mat,*pmat;          /* mat is not currently used */
 27:   PCASMType  type;                /* use reduced interpolation, restriction or both */
 28:   PetscBool  type_set;            /* if user set this value (so won't change it for symmetric problems) */
 29:   PetscBool  same_local_solves;   /* flag indicating whether all local solvers are same */
 30:   PetscBool  sort_indices;        /* flag to sort subdomain indices */
 31:   PetscBool  dm_subdomains;       /* whether DM is allowed to define subdomains */
 32:   PCCompositeType loctype;        /* the type of composition for local solves */
 33:   /* For multiplicative solve */
 34:   Mat       *lmats;               /* submatrices for overlapping multiplicative (process) subdomain */
 35:   Vec        lx, ly;              /* work vectors */
 36:   IS         lis;                 /* index set that defines each overlapping multiplicative (process) subdomain */
 37: } PC_ASM;

 41: static PetscErrorCode PCView_ASM(PC pc,PetscViewer viewer)
 42: {
 43:   PC_ASM         *osm = (PC_ASM*)pc->data;
 45:   PetscMPIInt    rank;
 46:   PetscInt       i,bsz;
 47:   PetscBool      iascii,isstring;
 48:   PetscViewer    sviewer;

 51:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
 52:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
 53:   if (iascii) {
 54:     char overlaps[256] = "user-defined overlap",blocks[256] = "total subdomain blocks not yet set";
 55:     if (osm->overlap >= 0) {PetscSNPrintf(overlaps,sizeof(overlaps),"amount of overlap = %D",osm->overlap);}
 56:     if (osm->n > 0) {PetscSNPrintf(blocks,sizeof(blocks),"total subdomain blocks = %D",osm->n);}
 57:     PetscViewerASCIIPrintf(viewer,"  Additive Schwarz: %s, %s\n",blocks,overlaps);
 58:     PetscViewerASCIIPrintf(viewer,"  Additive Schwarz: restriction/interpolation type - %s\n",PCASMTypes[osm->type]);
 59:     if (osm->loctype != PC_COMPOSITE_ADDITIVE) {PetscViewerASCIIPrintf(viewer,"  Additive Schwarz: local solve composition type - %s\n",PCCompositeTypes[osm->loctype]);}
 60:     MPI_Comm_rank(PetscObjectComm((PetscObject)pc),&rank);
 61:     if (osm->same_local_solves) {
 62:       if (osm->ksp) {
 63:         PetscViewerASCIIPrintf(viewer,"  Local solve is same for all blocks, in the following KSP and PC objects:\n");
 64:         PetscViewerGetSubViewer(viewer,PETSC_COMM_SELF,&sviewer);
 65:         if (!rank) {
 66:           PetscViewerASCIIPushTab(viewer);
 67:           KSPView(osm->ksp[0],sviewer);
 68:           PetscViewerASCIIPopTab(viewer);
 69:         }
 70:         PetscViewerRestoreSubViewer(viewer,PETSC_COMM_SELF,&sviewer);
 71:       }
 72:     } else {
 73:       PetscViewerASCIIPushSynchronized(viewer);
 74:       PetscViewerASCIISynchronizedPrintf(viewer,"  [%d] number of local blocks = %D\n",(int)rank,osm->n_local_true);
 75:       PetscViewerFlush(viewer);
 76:       PetscViewerASCIIPrintf(viewer,"  Local solve info for each block is in the following KSP and PC objects:\n");
 77:       PetscViewerASCIIPushTab(viewer);
 78:       PetscViewerASCIIPrintf(viewer,"- - - - - - - - - - - - - - - - - -\n");
 79:       PetscViewerGetSubViewer(viewer,PETSC_COMM_SELF,&sviewer);
 80:       for (i=0; i<osm->n_local_true; i++) {
 81:         ISGetLocalSize(osm->is[i],&bsz);
 82:         PetscViewerASCIISynchronizedPrintf(sviewer,"[%d] local block number %D, size = %D\n",(int)rank,i,bsz);
 83:         KSPView(osm->ksp[i],sviewer);
 84:         PetscViewerASCIISynchronizedPrintf(sviewer,"- - - - - - - - - - - - - - - - - -\n");
 85:       }
 86:       PetscViewerRestoreSubViewer(viewer,PETSC_COMM_SELF,&sviewer);
 87:       PetscViewerASCIIPopTab(viewer);
 88:       PetscViewerFlush(viewer);
 89:       PetscViewerASCIIPopSynchronized(viewer);
 90:     }
 91:   } else if (isstring) {
 92:     PetscViewerStringSPrintf(viewer," blocks=%D, overlap=%D, type=%s",osm->n,osm->overlap,PCASMTypes[osm->type]);
 93:     PetscViewerGetSubViewer(viewer,PETSC_COMM_SELF,&sviewer);
 94:     if (osm->ksp) {KSPView(osm->ksp[0],sviewer);}
 95:     PetscViewerRestoreSubViewer(viewer,PETSC_COMM_SELF,&sviewer);
 96:   }
 97:   return(0);
 98: }

102: static PetscErrorCode PCASMPrintSubdomains(PC pc)
103: {
104:   PC_ASM         *osm = (PC_ASM*)pc->data;
105:   const char     *prefix;
106:   char           fname[PETSC_MAX_PATH_LEN+1];
107:   PetscViewer    viewer, sviewer;
108:   char           *s;
109:   PetscInt       i,j,nidx;
110:   const PetscInt *idx;
111:   PetscMPIInt    rank, size;

115:   MPI_Comm_size(PetscObjectComm((PetscObject)pc), &size);
116:   MPI_Comm_rank(PetscObjectComm((PetscObject)pc), &rank);
117:   PCGetOptionsPrefix(pc,&prefix);
118:   PetscOptionsGetString(NULL,prefix,"-pc_asm_print_subdomains",fname,PETSC_MAX_PATH_LEN,NULL);
119:   if (fname[0] == 0) { PetscStrcpy(fname,"stdout"); };
120:   PetscViewerASCIIOpen(PetscObjectComm((PetscObject)pc),fname,&viewer);
121:   for (i=0; i<osm->n_local; i++) {
122:     if (i < osm->n_local_true) {
123:       ISGetLocalSize(osm->is[i],&nidx);
124:       ISGetIndices(osm->is[i],&idx);
125:       /* Print to a string viewer; no more than 15 characters per index plus 512 char for the header.*/
126:       PetscMalloc1(16*(nidx+1)+512, &s);
127:       PetscViewerStringOpen(PETSC_COMM_SELF, s, 16*(nidx+1)+512, &sviewer);
128:       PetscViewerStringSPrintf(sviewer, "[%D:%D] Subdomain %D with overlap:\n", rank, size, i);
129:       for (j=0; j<nidx; j++) {
130:         PetscViewerStringSPrintf(sviewer,"%D ",idx[j]);
131:       }
132:       ISRestoreIndices(osm->is[i],&idx);
133:       PetscViewerStringSPrintf(sviewer,"\n");
134:       PetscViewerDestroy(&sviewer);
135:       PetscViewerASCIIPushSynchronized(viewer);
136:       PetscViewerASCIISynchronizedPrintf(viewer, s);
137:       PetscViewerFlush(viewer);
138:       PetscViewerASCIIPopSynchronized(viewer);
139:       PetscFree(s);
140:       if (osm->is_local) {
141:         /* Print to a string viewer; no more than 15 characters per index plus 512 char for the header.*/
142:         PetscMalloc1(16*(nidx+1)+512, &s);
143:         PetscViewerStringOpen(PETSC_COMM_SELF, s, 16*(nidx+1)+512, &sviewer);
144:         PetscViewerStringSPrintf(sviewer, "[%D:%D] Subdomain %D without overlap:\n", rank, size, i);
145:         ISGetLocalSize(osm->is_local[i],&nidx);
146:         ISGetIndices(osm->is_local[i],&idx);
147:         for (j=0; j<nidx; j++) {
148:           PetscViewerStringSPrintf(sviewer,"%D ",idx[j]);
149:         }
150:         ISRestoreIndices(osm->is_local[i],&idx);
151:         PetscViewerStringSPrintf(sviewer,"\n");
152:         PetscViewerDestroy(&sviewer);
153:         PetscViewerASCIIPushSynchronized(viewer);
154:         PetscViewerASCIISynchronizedPrintf(viewer, s);
155:         PetscViewerFlush(viewer);
156:         PetscViewerASCIIPopSynchronized(viewer);
157:         PetscFree(s);
158:       }
159:     } else {
160:       /* Participate in collective viewer calls. */
161:       PetscViewerASCIIPushSynchronized(viewer);
162:       PetscViewerFlush(viewer);
163:       PetscViewerASCIIPopSynchronized(viewer);
164:       /* Assume either all ranks have is_local or none do. */
165:       if (osm->is_local) {
166:         PetscViewerASCIIPushSynchronized(viewer);
167:         PetscViewerFlush(viewer);
168:         PetscViewerASCIIPopSynchronized(viewer);
169:       }
170:     }
171:   }
172:   PetscViewerFlush(viewer);
173:   PetscViewerDestroy(&viewer);
174:   return(0);
175: }

179: static PetscErrorCode PCSetUp_ASM(PC pc)
180: {
181:   PC_ASM         *osm = (PC_ASM*)pc->data;
183:   PetscBool      symset,flg;
184:   PetscInt       i,m,m_local;
185:   MatReuse       scall = MAT_REUSE_MATRIX;
186:   IS             isl;
187:   KSP            ksp;
188:   PC             subpc;
189:   const char     *prefix,*pprefix;
190:   Vec            vec;
191:   DM             *domain_dm = NULL;

194:   if (!pc->setupcalled) {

196:     if (!osm->type_set) {
197:       MatIsSymmetricKnown(pc->pmat,&symset,&flg);
198:       if (symset && flg) osm->type = PC_ASM_BASIC;
199:     }

201:     /* Note: if subdomains have been set either via PCASMSetTotalSubdomains() or via PCASMSetLocalSubdomains(), osm->n_local_true will not be PETSC_DECIDE */
202:     if (osm->n_local_true == PETSC_DECIDE) {
203:       /* no subdomains given */
204:       /* try pc->dm first, if allowed */
205:       if (osm->dm_subdomains && pc->dm) {
206:         PetscInt  num_domains, d;
207:         char      **domain_names;
208:         IS        *inner_domain_is, *outer_domain_is;
209:         DMCreateDomainDecomposition(pc->dm, &num_domains, &domain_names, &inner_domain_is, &outer_domain_is, &domain_dm);
210:         if (num_domains) {
211:           PCASMSetLocalSubdomains(pc, num_domains, outer_domain_is, inner_domain_is);
212:         }
213:         for (d = 0; d < num_domains; ++d) {
214:           if (domain_names)    {PetscFree(domain_names[d]);}
215:           if (inner_domain_is) {ISDestroy(&inner_domain_is[d]);}
216:           if (outer_domain_is) {ISDestroy(&outer_domain_is[d]);}
217:         }
218:         PetscFree(domain_names);
219:         PetscFree(inner_domain_is);
220:         PetscFree(outer_domain_is);
221:       }
222:       if (osm->n_local_true == PETSC_DECIDE) {
223:         /* still no subdomains; use one subdomain per processor */
224:         osm->n_local_true = 1;
225:       }
226:     }
227:     { /* determine the global and max number of subdomains */
228:       struct {PetscInt max,sum;} inwork,outwork;
229:       inwork.max   = osm->n_local_true;
230:       inwork.sum   = osm->n_local_true;
231:       MPIU_Allreduce(&inwork,&outwork,1,MPIU_2INT,PetscMaxSum_Op,PetscObjectComm((PetscObject)pc));
232:       osm->n_local = outwork.max;
233:       osm->n       = outwork.sum;
234:     }
235:     if (!osm->is) { /* create the index sets */
236:       PCASMCreateSubdomains(pc->pmat,osm->n_local_true,&osm->is);
237:     }
238:     if (osm->n_local_true > 1 && !osm->is_local) {
239:       PetscMalloc1(osm->n_local_true,&osm->is_local);
240:       for (i=0; i<osm->n_local_true; i++) {
241:         if (osm->overlap > 0) { /* With positive overlap, osm->is[i] will be modified */
242:           ISDuplicate(osm->is[i],&osm->is_local[i]);
243:           ISCopy(osm->is[i],osm->is_local[i]);
244:         } else {
245:           PetscObjectReference((PetscObject)osm->is[i]);
246:           osm->is_local[i] = osm->is[i];
247:         }
248:       }
249:     }
250:     PCGetOptionsPrefix(pc,&prefix);
251:     flg  = PETSC_FALSE;
252:     PetscOptionsGetBool(NULL,prefix,"-pc_asm_print_subdomains",&flg,NULL);
253:     if (flg) { PCASMPrintSubdomains(pc); }

255:     if (osm->overlap > 0) {
256:       /* Extend the "overlapping" regions by a number of steps */
257:       MatIncreaseOverlap(pc->pmat,osm->n_local_true,osm->is,osm->overlap);
258:     }
259:     if (osm->sort_indices) {
260:       for (i=0; i<osm->n_local_true; i++) {
261:         ISSort(osm->is[i]);
262:         if (osm->is_local) {
263:           ISSort(osm->is_local[i]);
264:         }
265:       }
266:     }
267:     /* Create the local work vectors and scatter contexts */
268:     MatCreateVecs(pc->pmat,&vec,0);
269:     PetscMalloc1(osm->n_local,&osm->restriction);
270:     if (osm->is_local) {PetscMalloc1(osm->n_local,&osm->localization);}
271:     PetscMalloc1(osm->n_local,&osm->prolongation);
272:     PetscMalloc1(osm->n_local,&osm->x);
273:     PetscMalloc1(osm->n_local,&osm->y);
274:     PetscMalloc1(osm->n_local,&osm->y_local);
275:     for (i=0; i<osm->n_local_true; ++i) {
276:       ISGetLocalSize(osm->is[i],&m);
277:       VecCreateSeq(PETSC_COMM_SELF,m,&osm->x[i]);
278:       ISCreateStride(PETSC_COMM_SELF,m,0,1,&isl);
279:       VecScatterCreate(vec,osm->is[i],osm->x[i],isl,&osm->restriction[i]);
280:       ISDestroy(&isl);
281:       VecDuplicate(osm->x[i],&osm->y[i]);
282:       if (osm->is_local) {
283:         ISLocalToGlobalMapping ltog;
284:         IS                     isll;
285:         const PetscInt         *idx_local;
286:         PetscInt               *idx,nout;

288:         ISLocalToGlobalMappingCreateIS(osm->is[i],&ltog);
289:         ISGetLocalSize(osm->is_local[i],&m_local);
290:         ISGetIndices(osm->is_local[i], &idx_local);
291:         PetscMalloc1(m_local,&idx);
292:         ISGlobalToLocalMappingApply(ltog,IS_GTOLM_DROP,m_local,idx_local,&nout,idx);
293:         ISLocalToGlobalMappingDestroy(&ltog);
294:         if (nout != m_local) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"is_local not a subset of is");
295:         ISRestoreIndices(osm->is_local[i], &idx_local);
296:         ISCreateGeneral(PETSC_COMM_SELF,m_local,idx,PETSC_OWN_POINTER,&isll);
297:         ISCreateStride(PETSC_COMM_SELF,m_local,0,1,&isl);
298:         VecCreateSeq(PETSC_COMM_SELF,m_local,&osm->y_local[i]);
299:         VecScatterCreate(osm->y[i],isll,osm->y_local[i],isl,&osm->localization[i]);
300:         ISDestroy(&isll);

302:         VecScatterCreate(vec,osm->is_local[i],osm->y_local[i],isl,&osm->prolongation[i]);
303:         ISDestroy(&isl);
304:       } else {
305:         VecGetLocalSize(vec,&m_local);

307:         osm->y_local[i] = osm->y[i];

309:         PetscObjectReference((PetscObject) osm->y[i]);

311:         osm->prolongation[i] = osm->restriction[i];

313:         PetscObjectReference((PetscObject) osm->restriction[i]);
314:       }
315:     }
316:     for (i=osm->n_local_true; i<osm->n_local; i++) {
317:       VecCreateSeq(PETSC_COMM_SELF,0,&osm->x[i]);
318:       VecDuplicate(osm->x[i],&osm->y[i]);
319:       VecDuplicate(osm->x[i],&osm->y_local[i]);
320:       ISCreateStride(PETSC_COMM_SELF,0,0,1,&isl);
321:       VecScatterCreate(vec,isl,osm->x[i],isl,&osm->restriction[i]);
322:       if (osm->is_local) {
323:         VecScatterCreate(osm->y[i],isl,osm->y_local[i],isl,&osm->localization[i]);
324:         VecScatterCreate(vec,isl,osm->x[i],isl,&osm->prolongation[i]);
325:       } else {
326:         osm->prolongation[i] = osm->restriction[i];
327:         PetscObjectReference((PetscObject) osm->restriction[i]);
328:       }
329:       ISDestroy(&isl);
330:     }
331:     VecDestroy(&vec);

333:     if (!osm->ksp) {
334:       /* Create the local solvers */
335:       PetscMalloc1(osm->n_local_true,&osm->ksp);
336:       if (domain_dm) {
337:         PetscInfo(pc,"Setting up ASM subproblems using the embedded DM\n");
338:       }
339:       for (i=0; i<osm->n_local_true; i++) {
340:         KSPCreate(PETSC_COMM_SELF,&ksp);
341:         KSPSetErrorIfNotConverged(ksp,pc->erroriffailure);
342:         PetscLogObjectParent((PetscObject)pc,(PetscObject)ksp);
343:         PetscObjectIncrementTabLevel((PetscObject)ksp,(PetscObject)pc,1);
344:         KSPSetType(ksp,KSPPREONLY);
345:         KSPGetPC(ksp,&subpc);
346:         PCGetOptionsPrefix(pc,&prefix);
347:         KSPSetOptionsPrefix(ksp,prefix);
348:         KSPAppendOptionsPrefix(ksp,"sub_");
349:         if (domain_dm) {
350:           KSPSetDM(ksp, domain_dm[i]);
351:           KSPSetDMActive(ksp, PETSC_FALSE);
352:           DMDestroy(&domain_dm[i]);
353:         }
354:         osm->ksp[i] = ksp;
355:       }
356:       if (domain_dm) {
357:         PetscFree(domain_dm);
358:       }
359:     }
360:     if (osm->loctype == PC_COMPOSITE_MULTIPLICATIVE) {
361:       PetscInt m;

363:       ISConcatenate(PETSC_COMM_SELF, osm->n_local_true, osm->is, &osm->lis);
364:       ISSortRemoveDups(osm->lis);
365:       ISGetLocalSize(osm->lis, &m);
366:       VecCreateSeq(PETSC_COMM_SELF, m, &osm->lx);
367:       VecDuplicate(osm->lx, &osm->ly);
368:     }
369:     scall = MAT_INITIAL_MATRIX;
370:   } else {
371:     /*
372:        Destroy the blocks from the previous iteration
373:     */
374:     if (pc->flag == DIFFERENT_NONZERO_PATTERN) {
375:       MatDestroyMatrices(osm->n_local_true,&osm->pmat);
376:       scall = MAT_INITIAL_MATRIX;
377:     }
378:   }

380:   /*
381:      Extract out the submatrices
382:   */
383:   MatGetSubMatrices(pc->pmat,osm->n_local_true,osm->is,osm->is,scall,&osm->pmat);
384:   if (scall == MAT_INITIAL_MATRIX) {
385:     PetscObjectGetOptionsPrefix((PetscObject)pc->pmat,&pprefix);
386:     for (i=0; i<osm->n_local_true; i++) {
387:       PetscLogObjectParent((PetscObject)pc,(PetscObject)osm->pmat[i]);
388:       PetscObjectSetOptionsPrefix((PetscObject)osm->pmat[i],pprefix);
389:     }
390:   }
391:   if (osm->loctype == PC_COMPOSITE_MULTIPLICATIVE) {
392:     IS      *cis;
393:     PetscInt c;

395:     PetscMalloc1(osm->n_local_true, &cis);
396:     for (c = 0; c < osm->n_local_true; ++c) cis[c] = osm->lis;
397:     MatGetSubMatrices(pc->pmat, osm->n_local_true, osm->is, cis, scall, &osm->lmats);
398:     PetscFree(cis);
399:   }

401:   /* Return control to the user so that the submatrices can be modified (e.g., to apply
402:      different boundary conditions for the submatrices than for the global problem) */
403:   PCModifySubMatrices(pc,osm->n_local_true,osm->is,osm->is,osm->pmat,pc->modifysubmatricesP);

405:   /*
406:      Loop over subdomains putting them into local ksp
407:   */
408:   for (i=0; i<osm->n_local_true; i++) {
409:     KSPSetOperators(osm->ksp[i],osm->pmat[i],osm->pmat[i]);
410:     if (!pc->setupcalled) {
411:       KSPSetFromOptions(osm->ksp[i]);
412:     }
413:   }
414:   return(0);
415: }

417: #include <petsc/private/kspimpl.h>  
420: static PetscErrorCode PCSetUpOnBlocks_ASM(PC pc)
421: {
422:   PC_ASM         *osm = (PC_ASM*)pc->data;
424:   PetscInt       i;

427:   for (i=0; i<osm->n_local_true; i++) {
428:     KSPSetUp(osm->ksp[i]);
429:     if (osm->ksp[i]->reason == KSP_DIVERGED_PCSETUP_FAILED) {
430:       pc->failedreason = PC_SUBPC_ERROR;
431:     }
432:   }
433:   return(0);
434: }

438: static PetscErrorCode PCApply_ASM(PC pc,Vec x,Vec y)
439: {
440:   PC_ASM         *osm = (PC_ASM*)pc->data;
442:   PetscInt       i,n_local = osm->n_local,n_local_true = osm->n_local_true;
443:   ScatterMode    forward = SCATTER_FORWARD,reverse = SCATTER_REVERSE;

446:   /*
447:      Support for limiting the restriction or interpolation to only local
448:      subdomain values (leaving the other values 0).
449:   */
450:   if (!(osm->type & PC_ASM_RESTRICT)) {
451:     forward = SCATTER_FORWARD_LOCAL;
452:     /* have to zero the work RHS since scatter may leave some slots empty */
453:     for (i=0; i<n_local_true; i++) {
454:       VecZeroEntries(osm->x[i]);
455:     }
456:   }
457:   if (!(osm->type & PC_ASM_INTERPOLATE)) reverse = SCATTER_REVERSE_LOCAL;

459:   switch (osm->loctype)
460:   {
461:   case PC_COMPOSITE_ADDITIVE:
462:     for (i=0; i<n_local; i++) {
463:       VecScatterBegin(osm->restriction[i],x,osm->x[i],INSERT_VALUES,forward);
464:     }
465:     VecZeroEntries(y);
466:     /* do the local solves */
467:     for (i=0; i<n_local_true; i++) {
468:       VecScatterEnd(osm->restriction[i],x,osm->x[i],INSERT_VALUES,forward);
469:       KSPSolve(osm->ksp[i],osm->x[i],osm->y[i]);
470:       if (osm->localization) {
471:         VecScatterBegin(osm->localization[i],osm->y[i],osm->y_local[i],INSERT_VALUES,forward);
472:         VecScatterEnd(osm->localization[i],osm->y[i],osm->y_local[i],INSERT_VALUES,forward);
473:       }
474:       VecScatterBegin(osm->prolongation[i],osm->y_local[i],y,ADD_VALUES,reverse);
475:     }
476:     /* handle the rest of the scatters that do not have local solves */
477:     for (i=n_local_true; i<n_local; i++) {
478:       VecScatterEnd(osm->restriction[i],x,osm->x[i],INSERT_VALUES,forward);
479:       VecScatterBegin(osm->prolongation[i],osm->y_local[i],y,ADD_VALUES,reverse);
480:     }
481:     for (i=0; i<n_local; i++) {
482:       VecScatterEnd(osm->prolongation[i],osm->y_local[i],y,ADD_VALUES,reverse);
483:     }
484:     break;
485:   case PC_COMPOSITE_MULTIPLICATIVE:
486:     VecZeroEntries(y);
487:     /* do the local solves */
488:     for (i = 0; i < n_local_true; ++i) {
489:       if (i > 0) {
490:         /* Update rhs */
491:         VecScatterBegin(osm->restriction[i], osm->lx, osm->x[i], INSERT_VALUES, forward);
492:         VecScatterEnd(osm->restriction[i], osm->lx, osm->x[i], INSERT_VALUES, forward);
493:       } else {
494:         VecZeroEntries(osm->x[i]);
495:       }
496:       VecScatterBegin(osm->restriction[i], x, osm->x[i], ADD_VALUES, forward);
497:       VecScatterEnd(osm->restriction[i], x, osm->x[i], ADD_VALUES, forward);
498:       KSPSolve(osm->ksp[i], osm->x[i], osm->y[i]);
499:       if (osm->localization) {
500:         VecScatterBegin(osm->localization[i], osm->y[i], osm->y_local[i], INSERT_VALUES, forward);
501:         VecScatterEnd(osm->localization[i], osm->y[i], osm->y_local[i], INSERT_VALUES, forward);
502:       }
503:       VecScatterBegin(osm->prolongation[i], osm->y_local[i], y, ADD_VALUES, reverse);
504:       VecScatterEnd(osm->prolongation[i], osm->y_local[i], y, ADD_VALUES, reverse);
505:       if (i < n_local_true-1) {
506:         VecSet(osm->ly, 0.0);
507:         VecScatterBegin(osm->prolongation[i], osm->y_local[i], osm->ly, INSERT_VALUES, reverse);
508:         VecScatterEnd(osm->prolongation[i], osm->y_local[i], osm->ly, INSERT_VALUES, reverse);
509:         VecScale(osm->ly, -1.0);
510:         MatMult(osm->lmats[i+1], osm->ly, osm->y[i+1]);
511:         VecScatterBegin(osm->restriction[i+1], osm->y[i+1], osm->lx, INSERT_VALUES, reverse);
512:         VecScatterEnd(osm->restriction[i+1], osm->y[i+1], osm->lx, INSERT_VALUES, reverse);
513:       }
514:     }
515:     /* handle the rest of the scatters that do not have local solves */
516:     for (i = n_local_true; i < n_local; ++i) {
517:       VecScatterBegin(osm->restriction[i], x, osm->x[i], INSERT_VALUES, forward);
518:       VecScatterEnd(osm->restriction[i], x, osm->x[i], INSERT_VALUES, forward);
519:       VecScatterBegin(osm->prolongation[i], osm->y_local[i], y, ADD_VALUES, reverse);
520:       VecScatterEnd(osm->prolongation[i], osm->y_local[i], y, ADD_VALUES, reverse);
521:     }
522:     break;
523:   default: SETERRQ1(PetscObjectComm((PetscObject) pc), PETSC_ERR_ARG_WRONG, "Invalid local composition type: %s", PCCompositeTypes[osm->loctype]);
524:   }
525:   return(0);
526: }

530: static PetscErrorCode PCApplyTranspose_ASM(PC pc,Vec x,Vec y)
531: {
532:   PC_ASM         *osm = (PC_ASM*)pc->data;
534:   PetscInt       i,n_local = osm->n_local,n_local_true = osm->n_local_true;
535:   ScatterMode    forward = SCATTER_FORWARD,reverse = SCATTER_REVERSE;

538:   /*
539:      Support for limiting the restriction or interpolation to only local
540:      subdomain values (leaving the other values 0).

542:      Note: these are reversed from the PCApply_ASM() because we are applying the
543:      transpose of the three terms
544:   */
545:   if (!(osm->type & PC_ASM_INTERPOLATE)) {
546:     forward = SCATTER_FORWARD_LOCAL;
547:     /* have to zero the work RHS since scatter may leave some slots empty */
548:     for (i=0; i<n_local_true; i++) {
549:       VecZeroEntries(osm->x[i]);
550:     }
551:   }
552:   if (!(osm->type & PC_ASM_RESTRICT)) reverse = SCATTER_REVERSE_LOCAL;

554:   for (i=0; i<n_local; i++) {
555:     VecScatterBegin(osm->restriction[i],x,osm->x[i],INSERT_VALUES,forward);
556:   }
557:   VecZeroEntries(y);
558:   /* do the local solves */
559:   for (i=0; i<n_local_true; i++) {
560:     VecScatterEnd(osm->restriction[i],x,osm->x[i],INSERT_VALUES,forward);
561:     KSPSolveTranspose(osm->ksp[i],osm->x[i],osm->y[i]);
562:     if (osm->localization) {
563:       VecScatterBegin(osm->localization[i],osm->y[i],osm->y_local[i],INSERT_VALUES,forward);
564:       VecScatterEnd(osm->localization[i],osm->y[i],osm->y_local[i],INSERT_VALUES,forward);
565:     }
566:     VecScatterBegin(osm->prolongation[i],osm->y_local[i],y,ADD_VALUES,reverse);
567:   }
568:   /* handle the rest of the scatters that do not have local solves */
569:   for (i=n_local_true; i<n_local; i++) {
570:     VecScatterEnd(osm->restriction[i],x,osm->x[i],INSERT_VALUES,forward);
571:     VecScatterBegin(osm->prolongation[i],osm->y_local[i],y,ADD_VALUES,reverse);
572:   }
573:   for (i=0; i<n_local; i++) {
574:     VecScatterEnd(osm->prolongation[i],osm->y_local[i],y,ADD_VALUES,reverse);
575:   }
576:   return(0);
577: }

581: static PetscErrorCode PCReset_ASM(PC pc)
582: {
583:   PC_ASM         *osm = (PC_ASM*)pc->data;
585:   PetscInt       i;

588:   if (osm->ksp) {
589:     for (i=0; i<osm->n_local_true; i++) {
590:       KSPReset(osm->ksp[i]);
591:     }
592:   }
593:   if (osm->pmat) {
594:     if (osm->n_local_true > 0) {
595:       MatDestroyMatrices(osm->n_local_true,&osm->pmat);
596:     }
597:   }
598:   if (osm->restriction) {
599:     for (i=0; i<osm->n_local; i++) {
600:       VecScatterDestroy(&osm->restriction[i]);
601:       if (osm->localization) {VecScatterDestroy(&osm->localization[i]);}
602:       VecScatterDestroy(&osm->prolongation[i]);
603:       VecDestroy(&osm->x[i]);
604:       VecDestroy(&osm->y[i]);
605:       VecDestroy(&osm->y_local[i]);
606:     }
607:     PetscFree(osm->restriction);
608:     if (osm->localization) {PetscFree(osm->localization);}
609:     PetscFree(osm->prolongation);
610:     PetscFree(osm->x);
611:     PetscFree(osm->y);
612:     PetscFree(osm->y_local);
613:   }
614:   PCASMDestroySubdomains(osm->n_local_true,osm->is,osm->is_local);
615:   if (osm->loctype == PC_COMPOSITE_MULTIPLICATIVE) {
616:     ISDestroy(&osm->lis);
617:     MatDestroyMatrices(osm->n_local_true, &osm->lmats);
618:     VecDestroy(&osm->lx);
619:     VecDestroy(&osm->ly);
620:   }

622:   osm->is       = 0;
623:   osm->is_local = 0;
624:   return(0);
625: }

629: static PetscErrorCode PCDestroy_ASM(PC pc)
630: {
631:   PC_ASM         *osm = (PC_ASM*)pc->data;
633:   PetscInt       i;

636:   PCReset_ASM(pc);
637:   if (osm->ksp) {
638:     for (i=0; i<osm->n_local_true; i++) {
639:       KSPDestroy(&osm->ksp[i]);
640:     }
641:     PetscFree(osm->ksp);
642:   }
643:   PetscFree(pc->data);
644:   return(0);
645: }

649: static PetscErrorCode PCSetFromOptions_ASM(PetscOptionItems *PetscOptionsObject,PC pc)
650: {
651:   PC_ASM         *osm = (PC_ASM*)pc->data;
653:   PetscInt       blocks,ovl;
654:   PetscBool      symset,flg;
655:   PCASMType      asmtype;
656:   PCCompositeType loctype;

659:   /* set the type to symmetric if matrix is symmetric */
660:   if (!osm->type_set && pc->pmat) {
661:     MatIsSymmetricKnown(pc->pmat,&symset,&flg);
662:     if (symset && flg) osm->type = PC_ASM_BASIC;
663:   }
664:   PetscOptionsHead(PetscOptionsObject,"Additive Schwarz options");
665:   PetscOptionsBool("-pc_asm_dm_subdomains","Use DMCreateDomainDecomposition() to define subdomains","PCASMSetDMSubdomains",osm->dm_subdomains,&osm->dm_subdomains,&flg);
666:   PetscOptionsInt("-pc_asm_blocks","Number of subdomains","PCASMSetTotalSubdomains",osm->n,&blocks,&flg);
667:   if (flg) {
668:     PCASMSetTotalSubdomains(pc,blocks,NULL,NULL);
669:     osm->dm_subdomains = PETSC_FALSE;
670:   }
671:   PetscOptionsInt("-pc_asm_overlap","Number of grid points overlap","PCASMSetOverlap",osm->overlap,&ovl,&flg);
672:   if (flg) {
673:     PCASMSetOverlap(pc,ovl);
674:     osm->dm_subdomains = PETSC_FALSE;
675:   }
676:   flg  = PETSC_FALSE;
677:   PetscOptionsEnum("-pc_asm_type","Type of restriction/extension","PCASMSetType",PCASMTypes,(PetscEnum)osm->type,(PetscEnum*)&asmtype,&flg);
678:   if (flg) {PCASMSetType(pc,asmtype); }
679:   flg  = PETSC_FALSE;
680:   PetscOptionsEnum("-pc_asm_local_type","Type of local solver composition","PCASMSetLocalType",PCCompositeTypes,(PetscEnum)osm->loctype,(PetscEnum*)&loctype,&flg);
681:   if (flg) {PCASMSetLocalType(pc,loctype); }
682:   PetscOptionsTail();
683:   return(0);
684: }

686: /*------------------------------------------------------------------------------------*/

690: static PetscErrorCode  PCASMSetLocalSubdomains_ASM(PC pc,PetscInt n,IS is[],IS is_local[])
691: {
692:   PC_ASM         *osm = (PC_ASM*)pc->data;
694:   PetscInt       i;

697:   if (n < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Each process must have 1 or more blocks, n = %D",n);
698:   if (pc->setupcalled && (n != osm->n_local_true || is)) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_WRONGSTATE,"PCASMSetLocalSubdomains() should be called before calling PCSetUp().");

700:   if (!pc->setupcalled) {
701:     if (is) {
702:       for (i=0; i<n; i++) {PetscObjectReference((PetscObject)is[i]);}
703:     }
704:     if (is_local) {
705:       for (i=0; i<n; i++) {PetscObjectReference((PetscObject)is_local[i]);}
706:     }
707:     PCASMDestroySubdomains(osm->n_local_true,osm->is,osm->is_local);

709:     osm->n_local_true = n;
710:     osm->is           = 0;
711:     osm->is_local     = 0;
712:     if (is) {
713:       PetscMalloc1(n,&osm->is);
714:       for (i=0; i<n; i++) osm->is[i] = is[i];
715:       /* Flag indicating that the user has set overlapping subdomains so PCASM should not increase their size. */
716:       osm->overlap = -1;
717:     }
718:     if (is_local) {
719:       PetscMalloc1(n,&osm->is_local);
720:       for (i=0; i<n; i++) osm->is_local[i] = is_local[i];
721:       if (!is) {
722:         PetscMalloc1(osm->n_local_true,&osm->is);
723:         for (i=0; i<osm->n_local_true; i++) {
724:           if (osm->overlap > 0) { /* With positive overlap, osm->is[i] will be modified */
725:             ISDuplicate(osm->is_local[i],&osm->is[i]);
726:             ISCopy(osm->is_local[i],osm->is[i]);
727:           } else {
728:             PetscObjectReference((PetscObject)osm->is_local[i]);
729:             osm->is[i] = osm->is_local[i];
730:           }
731:         }
732:       }
733:     }
734:   }
735:   return(0);
736: }

740: static PetscErrorCode  PCASMSetTotalSubdomains_ASM(PC pc,PetscInt N,IS *is,IS *is_local)
741: {
742:   PC_ASM         *osm = (PC_ASM*)pc->data;
744:   PetscMPIInt    rank,size;
745:   PetscInt       n;

748:   if (N < 1) SETERRQ1(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_OUTOFRANGE,"Number of total blocks must be > 0, N = %D",N);
749:   if (is || is_local) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_SUP,"Use PCASMSetLocalSubdomains() to set specific index sets\n\they cannot be set globally yet.");

751:   /*
752:      Split the subdomains equally among all processors
753:   */
754:   MPI_Comm_rank(PetscObjectComm((PetscObject)pc),&rank);
755:   MPI_Comm_size(PetscObjectComm((PetscObject)pc),&size);
756:   n    = N/size + ((N % size) > rank);
757:   if (!n) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Process %d must have at least one block: total processors %d total blocks %D",(int)rank,(int)size,N);
758:   if (pc->setupcalled && n != osm->n_local_true) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"PCASMSetTotalSubdomains() should be called before PCSetUp().");
759:   if (!pc->setupcalled) {
760:     PCASMDestroySubdomains(osm->n_local_true,osm->is,osm->is_local);

762:     osm->n_local_true = n;
763:     osm->is           = 0;
764:     osm->is_local     = 0;
765:   }
766:   return(0);
767: }

771: static PetscErrorCode  PCASMSetOverlap_ASM(PC pc,PetscInt ovl)
772: {
773:   PC_ASM *osm = (PC_ASM*)pc->data;

776:   if (ovl < 0) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_OUTOFRANGE,"Negative overlap value requested");
777:   if (pc->setupcalled && ovl != osm->overlap) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_WRONGSTATE,"PCASMSetOverlap() should be called before PCSetUp().");
778:   if (!pc->setupcalled) osm->overlap = ovl;
779:   return(0);
780: }

784: static PetscErrorCode  PCASMSetType_ASM(PC pc,PCASMType type)
785: {
786:   PC_ASM *osm = (PC_ASM*)pc->data;

789:   osm->type     = type;
790:   osm->type_set = PETSC_TRUE;
791:   return(0);
792: }

796: static PetscErrorCode  PCASMGetType_ASM(PC pc,PCASMType *type)
797: {
798:   PC_ASM *osm = (PC_ASM*)pc->data;

801:   *type = osm->type;
802:   return(0);
803: }

807: static PetscErrorCode  PCASMSetLocalType_ASM(PC pc, PCCompositeType type)
808: {
809:   PC_ASM *osm = (PC_ASM *) pc->data;

812:   osm->loctype = type;
813:   return(0);
814: }

818: static PetscErrorCode  PCASMGetLocalType_ASM(PC pc, PCCompositeType *type)
819: {
820:   PC_ASM *osm = (PC_ASM *) pc->data;

823:   *type = osm->loctype;
824:   return(0);
825: }

829: static PetscErrorCode  PCASMSetSortIndices_ASM(PC pc,PetscBool  doSort)
830: {
831:   PC_ASM *osm = (PC_ASM*)pc->data;

834:   osm->sort_indices = doSort;
835:   return(0);
836: }

840: static PetscErrorCode  PCASMGetSubKSP_ASM(PC pc,PetscInt *n_local,PetscInt *first_local,KSP **ksp)
841: {
842:   PC_ASM         *osm = (PC_ASM*)pc->data;

846:   if (osm->n_local_true < 1) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ORDER,"Need to call PCSetUP() on PC (or KSPSetUp() on the outer KSP object) before calling here");

848:   if (n_local) *n_local = osm->n_local_true;
849:   if (first_local) {
850:     MPI_Scan(&osm->n_local_true,first_local,1,MPIU_INT,MPI_SUM,PetscObjectComm((PetscObject)pc));
851:     *first_local -= osm->n_local_true;
852:   }
853:   if (ksp) {
854:     /* Assume that local solves are now different; not necessarily
855:        true though!  This flag is used only for PCView_ASM() */
856:     *ksp                   = osm->ksp;
857:     osm->same_local_solves = PETSC_FALSE;
858:   }
859:   return(0);
860: }

864: /*@C
865:     PCASMSetLocalSubdomains - Sets the local subdomains (for this processor only) for the additive Schwarz preconditioner.

867:     Collective on PC

869:     Input Parameters:
870: +   pc - the preconditioner context
871: .   n - the number of subdomains for this processor (default value = 1)
872: .   is - the index set that defines the subdomains for this processor
873:          (or NULL for PETSc to determine subdomains)
874: -   is_local - the index sets that define the local part of the subdomains for this processor
875:          (or NULL to use the default of 1 subdomain per process)

877:     Notes:
878:     The IS numbering is in the parallel, global numbering of the vector for both is and is_local

880:     By default the ASM preconditioner uses 1 block per processor.

882:     Use PCASMSetTotalSubdomains() to set the subdomains for all processors.

884:     Level: advanced

886: .keywords: PC, ASM, set, local, subdomains, additive Schwarz

888: .seealso: PCASMSetTotalSubdomains(), PCASMSetOverlap(), PCASMGetSubKSP(),
889:           PCASMCreateSubdomains2D(), PCASMGetLocalSubdomains()
890: @*/
891: PetscErrorCode  PCASMSetLocalSubdomains(PC pc,PetscInt n,IS is[],IS is_local[])
892: {

897:   PetscTryMethod(pc,"PCASMSetLocalSubdomains_C",(PC,PetscInt,IS[],IS[]),(pc,n,is,is_local));
898:   return(0);
899: }

903: /*@C
904:     PCASMSetTotalSubdomains - Sets the subdomains for all processors for the
905:     additive Schwarz preconditioner.  Either all or no processors in the
906:     PC communicator must call this routine, with the same index sets.

908:     Collective on PC

910:     Input Parameters:
911: +   pc - the preconditioner context
912: .   N  - the number of subdomains for all processors
913: .   is - the index sets that define the subdomains for all processors
914:          (or NULL to ask PETSc to compe up with subdomains)
915: -   is_local - the index sets that define the local part of the subdomains for this processor
916:          (or NULL to use the default of 1 subdomain per process)

918:     Options Database Key:
919:     To set the total number of subdomain blocks rather than specify the
920:     index sets, use the option
921: .    -pc_asm_blocks <blks> - Sets total blocks

923:     Notes:
924:     Currently you cannot use this to set the actual subdomains with the argument is.

926:     By default the ASM preconditioner uses 1 block per processor.

928:     These index sets cannot be destroyed until after completion of the
929:     linear solves for which the ASM preconditioner is being used.

931:     Use PCASMSetLocalSubdomains() to set local subdomains.

933:     The IS numbering is in the parallel, global numbering of the vector for both is and is_local

935:     Level: advanced

937: .keywords: PC, ASM, set, total, global, subdomains, additive Schwarz

939: .seealso: PCASMSetLocalSubdomains(), PCASMSetOverlap(), PCASMGetSubKSP(),
940:           PCASMCreateSubdomains2D()
941: @*/
942: PetscErrorCode  PCASMSetTotalSubdomains(PC pc,PetscInt N,IS is[],IS is_local[])
943: {

948:   PetscTryMethod(pc,"PCASMSetTotalSubdomains_C",(PC,PetscInt,IS[],IS[]),(pc,N,is,is_local));
949:   return(0);
950: }

954: /*@
955:     PCASMSetOverlap - Sets the overlap between a pair of subdomains for the
956:     additive Schwarz preconditioner.  Either all or no processors in the
957:     PC communicator must call this routine. If MatIncreaseOverlap is used,
958:     use option -mat_increase_overlap when the problem size large.

960:     Logically Collective on PC

962:     Input Parameters:
963: +   pc  - the preconditioner context
964: -   ovl - the amount of overlap between subdomains (ovl >= 0, default value = 1)

966:     Options Database Key:
967: .   -pc_asm_overlap <ovl> - Sets overlap

969:     Notes:
970:     By default the ASM preconditioner uses 1 block per processor.  To use
971:     multiple blocks per perocessor, see PCASMSetTotalSubdomains() and
972:     PCASMSetLocalSubdomains() (and the option -pc_asm_blocks <blks>).

974:     The overlap defaults to 1, so if one desires that no additional
975:     overlap be computed beyond what may have been set with a call to
976:     PCASMSetTotalSubdomains() or PCASMSetLocalSubdomains(), then ovl
977:     must be set to be 0.  In particular, if one does not explicitly set
978:     the subdomains an application code, then all overlap would be computed
979:     internally by PETSc, and using an overlap of 0 would result in an ASM
980:     variant that is equivalent to the block Jacobi preconditioner.

982:     Note that one can define initial index sets with any overlap via
983:     PCASMSetTotalSubdomains() or PCASMSetLocalSubdomains(); the routine
984:     PCASMSetOverlap() merely allows PETSc to extend that overlap further
985:     if desired.

987:     Level: intermediate

989: .keywords: PC, ASM, set, overlap

991: .seealso: PCASMSetTotalSubdomains(), PCASMSetLocalSubdomains(), PCASMGetSubKSP(),
992:           PCASMCreateSubdomains2D(), PCASMGetLocalSubdomains()
993: @*/
994: PetscErrorCode  PCASMSetOverlap(PC pc,PetscInt ovl)
995: {

1001:   PetscTryMethod(pc,"PCASMSetOverlap_C",(PC,PetscInt),(pc,ovl));
1002:   return(0);
1003: }

1007: /*@
1008:     PCASMSetType - Sets the type of restriction and interpolation used
1009:     for local problems in the additive Schwarz method.

1011:     Logically Collective on PC

1013:     Input Parameters:
1014: +   pc  - the preconditioner context
1015: -   type - variant of ASM, one of
1016: .vb
1017:       PC_ASM_BASIC       - full interpolation and restriction
1018:       PC_ASM_RESTRICT    - full restriction, local processor interpolation
1019:       PC_ASM_INTERPOLATE - full interpolation, local processor restriction
1020:       PC_ASM_NONE        - local processor restriction and interpolation
1021: .ve

1023:     Options Database Key:
1024: .   -pc_asm_type [basic,restrict,interpolate,none] - Sets ASM type

1026:     Level: intermediate

1028: .keywords: PC, ASM, set, type

1030: .seealso: PCASMSetTotalSubdomains(), PCASMSetTotalSubdomains(), PCASMGetSubKSP(),
1031:           PCASMCreateSubdomains2D()
1032: @*/
1033: PetscErrorCode  PCASMSetType(PC pc,PCASMType type)
1034: {

1040:   PetscTryMethod(pc,"PCASMSetType_C",(PC,PCASMType),(pc,type));
1041:   return(0);
1042: }

1046: /*@
1047:     PCASMGetType - Gets the type of restriction and interpolation used
1048:     for local problems in the additive Schwarz method.

1050:     Logically Collective on PC

1052:     Input Parameter:
1053: .   pc  - the preconditioner context

1055:     Output Parameter:
1056: .   type - variant of ASM, one of

1058: .vb
1059:       PC_ASM_BASIC       - full interpolation and restriction
1060:       PC_ASM_RESTRICT    - full restriction, local processor interpolation
1061:       PC_ASM_INTERPOLATE - full interpolation, local processor restriction
1062:       PC_ASM_NONE        - local processor restriction and interpolation
1063: .ve

1065:     Options Database Key:
1066: .   -pc_asm_type [basic,restrict,interpolate,none] - Sets ASM type

1068:     Level: intermediate

1070: .keywords: PC, ASM, set, type

1072: .seealso: PCASMSetTotalSubdomains(), PCASMSetTotalSubdomains(), PCASMGetSubKSP(),
1073:           PCASMCreateSubdomains2D()
1074: @*/
1075: PetscErrorCode  PCASMGetType(PC pc,PCASMType *type)
1076: {

1081:   PetscUseMethod(pc,"PCASMGetType_C",(PC,PCASMType*),(pc,type));
1082:   return(0);
1083: }

1087: /*@
1088:   PCASMSetLocalType - Sets the type of composition used for local problems in the additive Schwarz method.

1090:   Logically Collective on PC

1092:   Input Parameters:
1093: + pc  - the preconditioner context
1094: - type - type of composition, one of
1095: .vb
1096:   PC_COMPOSITE_ADDITIVE       - local additive combination
1097:   PC_COMPOSITE_MULTIPLICATIVE - local multiplicative combination
1098: .ve

1100:   Options Database Key:
1101: . -pc_asm_local_type [additive,multiplicative] - Sets local solver composition type

1103:   Level: intermediate

1105: .seealso: PCASMSetType(), PCASMGetType(), PCASMGetLocalType(), PCASMCreate()
1106: @*/
1107: PetscErrorCode PCASMSetLocalType(PC pc, PCCompositeType type)
1108: {

1114:   PetscTryMethod(pc, "PCASMSetLocalType_C", (PC, PCCompositeType), (pc, type));
1115:   return(0);
1116: }

1120: /*@
1121:   PCASMGetLocalType - Gets the type of composition used for local problems in the additive Schwarz method.

1123:   Logically Collective on PC

1125:   Input Parameter:
1126: . pc  - the preconditioner context

1128:   Output Parameter:
1129: . type - type of composition, one of
1130: .vb
1131:   PC_COMPOSITE_ADDITIVE       - local additive combination
1132:   PC_COMPOSITE_MULTIPLICATIVE - local multiplicative combination
1133: .ve

1135:   Options Database Key:
1136: . -pc_asm_local_type [additive,multiplicative] - Sets local solver composition type

1138:   Level: intermediate

1140: .seealso: PCASMSetType(), PCASMGetType(), PCASMSetLocalType(), PCASMCreate()
1141: @*/
1142: PetscErrorCode PCASMGetLocalType(PC pc, PCCompositeType *type)
1143: {

1149:   PetscUseMethod(pc, "PCASMGetLocalType_C", (PC, PCCompositeType *), (pc, type));
1150:   return(0);
1151: }

1155: /*@
1156:     PCASMSetSortIndices - Determines whether subdomain indices are sorted.

1158:     Logically Collective on PC

1160:     Input Parameters:
1161: +   pc  - the preconditioner context
1162: -   doSort - sort the subdomain indices

1164:     Level: intermediate

1166: .keywords: PC, ASM, set, type

1168: .seealso: PCASMSetLocalSubdomains(), PCASMSetTotalSubdomains(), PCASMGetSubKSP(),
1169:           PCASMCreateSubdomains2D()
1170: @*/
1171: PetscErrorCode  PCASMSetSortIndices(PC pc,PetscBool doSort)
1172: {

1178:   PetscTryMethod(pc,"PCASMSetSortIndices_C",(PC,PetscBool),(pc,doSort));
1179:   return(0);
1180: }

1184: /*@C
1185:    PCASMGetSubKSP - Gets the local KSP contexts for all blocks on
1186:    this processor.

1188:    Collective on PC iff first_local is requested

1190:    Input Parameter:
1191: .  pc - the preconditioner context

1193:    Output Parameters:
1194: +  n_local - the number of blocks on this processor or NULL
1195: .  first_local - the global number of the first block on this processor or NULL,
1196:                  all processors must request or all must pass NULL
1197: -  ksp - the array of KSP contexts

1199:    Note:
1200:    After PCASMGetSubKSP() the array of KSPes is not to be freed.

1202:    Currently for some matrix implementations only 1 block per processor
1203:    is supported.

1205:    You must call KSPSetUp() before calling PCASMGetSubKSP().

1207:    Fortran note:
1208:    The output argument 'ksp' must be an array of sufficient length or NULL_OBJECT. The latter can be used to learn the necessary length.

1210:    Level: advanced

1212: .keywords: PC, ASM, additive Schwarz, get, sub, KSP, context

1214: .seealso: PCASMSetTotalSubdomains(), PCASMSetTotalSubdomains(), PCASMSetOverlap(),
1215:           PCASMCreateSubdomains2D(),
1216: @*/
1217: PetscErrorCode  PCASMGetSubKSP(PC pc,PetscInt *n_local,PetscInt *first_local,KSP *ksp[])
1218: {

1223:   PetscUseMethod(pc,"PCASMGetSubKSP_C",(PC,PetscInt*,PetscInt*,KSP **),(pc,n_local,first_local,ksp));
1224:   return(0);
1225: }

1227: /* -------------------------------------------------------------------------------------*/
1228: /*MC
1229:    PCASM - Use the (restricted) additive Schwarz method, each block is (approximately) solved with
1230:            its own KSP object.

1232:    Options Database Keys:
1233: +  -pc_asm_blocks <blks> - Sets total blocks
1234: .  -pc_asm_overlap <ovl> - Sets overlap
1235: -  -pc_asm_type [basic,restrict,interpolate,none] - Sets ASM type

1237:      IMPORTANT: If you run with, for example, 3 blocks on 1 processor or 3 blocks on 3 processors you
1238:       will get a different convergence rate due to the default option of -pc_asm_type restrict. Use
1239:       -pc_asm_type basic to use the standard ASM.

1241:    Notes: Each processor can have one or more blocks, but a block cannot be shared by more
1242:      than one processor. Defaults to one block per processor.

1244:      To set options on the solvers for each block append -sub_ to all the KSP, and PC
1245:         options database keys. For example, -sub_pc_type ilu -sub_pc_factor_levels 1 -sub_ksp_type preonly

1247:      To set the options on the solvers separate for each block call PCASMGetSubKSP()
1248:          and set the options directly on the resulting KSP object (you can access its PC
1249:          with KSPGetPC())


1252:    Level: beginner

1254:    Concepts: additive Schwarz method

1256:     References:
1257: +   1. - M Dryja, OB Widlund, An additive variant of the Schwarz alternating method for the case of many subregions
1258:      Courant Institute, New York University Technical report
1259: -   1. - Barry Smith, Petter Bjorstad, and William Gropp, Domain Decompositions: Parallel Multilevel Methods for Elliptic Partial Differential Equations,
1260:     Cambridge University Press.

1262: .seealso:  PCCreate(), PCSetType(), PCType (for list of available types), PC,
1263:            PCBJACOBI, PCASMGetSubKSP(), PCASMSetLocalSubdomains(),
1264:            PCASMSetTotalSubdomains(), PCSetModifySubmatrices(), PCASMSetOverlap(), PCASMSetType()

1266: M*/

1270: PETSC_EXTERN PetscErrorCode PCCreate_ASM(PC pc)
1271: {
1273:   PC_ASM         *osm;

1276:   PetscNewLog(pc,&osm);

1278:   osm->n                 = PETSC_DECIDE;
1279:   osm->n_local           = 0;
1280:   osm->n_local_true      = PETSC_DECIDE;
1281:   osm->overlap           = 1;
1282:   osm->ksp               = 0;
1283:   osm->restriction       = 0;
1284:   osm->localization      = 0;
1285:   osm->prolongation      = 0;
1286:   osm->x                 = 0;
1287:   osm->y                 = 0;
1288:   osm->y_local           = 0;
1289:   osm->is                = 0;
1290:   osm->is_local          = 0;
1291:   osm->mat               = 0;
1292:   osm->pmat              = 0;
1293:   osm->type              = PC_ASM_RESTRICT;
1294:   osm->loctype           = PC_COMPOSITE_ADDITIVE;
1295:   osm->same_local_solves = PETSC_TRUE;
1296:   osm->sort_indices      = PETSC_TRUE;
1297:   osm->dm_subdomains     = PETSC_FALSE;

1299:   pc->data                 = (void*)osm;
1300:   pc->ops->apply           = PCApply_ASM;
1301:   pc->ops->applytranspose  = PCApplyTranspose_ASM;
1302:   pc->ops->setup           = PCSetUp_ASM;
1303:   pc->ops->reset           = PCReset_ASM;
1304:   pc->ops->destroy         = PCDestroy_ASM;
1305:   pc->ops->setfromoptions  = PCSetFromOptions_ASM;
1306:   pc->ops->setuponblocks   = PCSetUpOnBlocks_ASM;
1307:   pc->ops->view            = PCView_ASM;
1308:   pc->ops->applyrichardson = 0;

1310:   PetscObjectComposeFunction((PetscObject)pc,"PCASMSetLocalSubdomains_C",PCASMSetLocalSubdomains_ASM);
1311:   PetscObjectComposeFunction((PetscObject)pc,"PCASMSetTotalSubdomains_C",PCASMSetTotalSubdomains_ASM);
1312:   PetscObjectComposeFunction((PetscObject)pc,"PCASMSetOverlap_C",PCASMSetOverlap_ASM);
1313:   PetscObjectComposeFunction((PetscObject)pc,"PCASMSetType_C",PCASMSetType_ASM);
1314:   PetscObjectComposeFunction((PetscObject)pc,"PCASMGetType_C",PCASMGetType_ASM);
1315:   PetscObjectComposeFunction((PetscObject)pc,"PCASMSetLocalType_C",PCASMSetLocalType_ASM);
1316:   PetscObjectComposeFunction((PetscObject)pc,"PCASMGetLocalType_C",PCASMGetLocalType_ASM);
1317:   PetscObjectComposeFunction((PetscObject)pc,"PCASMSetSortIndices_C",PCASMSetSortIndices_ASM);
1318:   PetscObjectComposeFunction((PetscObject)pc,"PCASMGetSubKSP_C",PCASMGetSubKSP_ASM);
1319:   return(0);
1320: }

1324: /*@C
1325:    PCASMCreateSubdomains - Creates the index sets for the overlapping Schwarz
1326:    preconditioner for a any problem on a general grid.

1328:    Collective

1330:    Input Parameters:
1331: +  A - The global matrix operator
1332: -  n - the number of local blocks

1334:    Output Parameters:
1335: .  outis - the array of index sets defining the subdomains

1337:    Level: advanced

1339:    Note: this generates nonoverlapping subdomains; the PCASM will generate the overlap
1340:     from these if you use PCASMSetLocalSubdomains()

1342:     In the Fortran version you must provide the array outis[] already allocated of length n.

1344: .keywords: PC, ASM, additive Schwarz, create, subdomains, unstructured grid

1346: .seealso: PCASMSetLocalSubdomains(), PCASMDestroySubdomains()
1347: @*/
1348: PetscErrorCode  PCASMCreateSubdomains(Mat A, PetscInt n, IS* outis[])
1349: {
1350:   MatPartitioning mpart;
1351:   const char      *prefix;
1352:   PetscErrorCode  (*f)(Mat,Mat*);
1353:   PetscMPIInt     size;
1354:   PetscInt        i,j,rstart,rend,bs;
1355:   PetscBool       isbaij = PETSC_FALSE,foundpart = PETSC_FALSE;
1356:   Mat             Ad     = NULL, adj;
1357:   IS              ispart,isnumb,*is;
1358:   PetscErrorCode  ierr;

1363:   if (n < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"number of local blocks must be > 0, n = %D",n);

1365:   /* Get prefix, row distribution, and block size */
1366:   MatGetOptionsPrefix(A,&prefix);
1367:   MatGetOwnershipRange(A,&rstart,&rend);
1368:   MatGetBlockSize(A,&bs);
1369:   if (rstart/bs*bs != rstart || rend/bs*bs != rend) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"bad row distribution [%D,%D) for matrix block size %D",rstart,rend,bs);

1371:   /* Get diagonal block from matrix if possible */
1372:   MPI_Comm_size(PetscObjectComm((PetscObject)A),&size);
1373:   PetscObjectQueryFunction((PetscObject)A,"MatGetDiagonalBlock_C",&f);
1374:   if (f) {
1375:     MatGetDiagonalBlock(A,&Ad);
1376:   } else if (size == 1) {
1377:     Ad = A;
1378:   }
1379:   if (Ad) {
1380:     PetscObjectTypeCompare((PetscObject)Ad,MATSEQBAIJ,&isbaij);
1381:     if (!isbaij) {PetscObjectTypeCompare((PetscObject)Ad,MATSEQSBAIJ,&isbaij);}
1382:   }
1383:   if (Ad && n > 1) {
1384:     PetscBool match,done;
1385:     /* Try to setup a good matrix partitioning if available */
1386:     MatPartitioningCreate(PETSC_COMM_SELF,&mpart);
1387:     PetscObjectSetOptionsPrefix((PetscObject)mpart,prefix);
1388:     MatPartitioningSetFromOptions(mpart);
1389:     PetscObjectTypeCompare((PetscObject)mpart,MATPARTITIONINGCURRENT,&match);
1390:     if (!match) {
1391:       PetscObjectTypeCompare((PetscObject)mpart,MATPARTITIONINGSQUARE,&match);
1392:     }
1393:     if (!match) { /* assume a "good" partitioner is available */
1394:       PetscInt       na;
1395:       const PetscInt *ia,*ja;
1396:       MatGetRowIJ(Ad,0,PETSC_TRUE,isbaij,&na,&ia,&ja,&done);
1397:       if (done) {
1398:         /* Build adjacency matrix by hand. Unfortunately a call to
1399:            MatConvert(Ad,MATMPIADJ,MAT_INITIAL_MATRIX,&adj) will
1400:            remove the block-aij structure and we cannot expect
1401:            MatPartitioning to split vertices as we need */
1402:         PetscInt       i,j,len,nnz,cnt,*iia=0,*jja=0;
1403:         const PetscInt *row;
1404:         nnz = 0;
1405:         for (i=0; i<na; i++) { /* count number of nonzeros */
1406:           len = ia[i+1] - ia[i];
1407:           row = ja + ia[i];
1408:           for (j=0; j<len; j++) {
1409:             if (row[j] == i) { /* don't count diagonal */
1410:               len--; break;
1411:             }
1412:           }
1413:           nnz += len;
1414:         }
1415:         PetscMalloc1(na+1,&iia);
1416:         PetscMalloc1(nnz,&jja);
1417:         nnz    = 0;
1418:         iia[0] = 0;
1419:         for (i=0; i<na; i++) { /* fill adjacency */
1420:           cnt = 0;
1421:           len = ia[i+1] - ia[i];
1422:           row = ja + ia[i];
1423:           for (j=0; j<len; j++) {
1424:             if (row[j] != i) { /* if not diagonal */
1425:               jja[nnz+cnt++] = row[j];
1426:             }
1427:           }
1428:           nnz     += cnt;
1429:           iia[i+1] = nnz;
1430:         }
1431:         /* Partitioning of the adjacency matrix */
1432:         MatCreateMPIAdj(PETSC_COMM_SELF,na,na,iia,jja,NULL,&adj);
1433:         MatPartitioningSetAdjacency(mpart,adj);
1434:         MatPartitioningSetNParts(mpart,n);
1435:         MatPartitioningApply(mpart,&ispart);
1436:         ISPartitioningToNumbering(ispart,&isnumb);
1437:         MatDestroy(&adj);
1438:         foundpart = PETSC_TRUE;
1439:       }
1440:       MatRestoreRowIJ(Ad,0,PETSC_TRUE,isbaij,&na,&ia,&ja,&done);
1441:     }
1442:     MatPartitioningDestroy(&mpart);
1443:   }

1445:   PetscMalloc1(n,&is);
1446:   *outis = is;

1448:   if (!foundpart) {

1450:     /* Partitioning by contiguous chunks of rows */

1452:     PetscInt mbs   = (rend-rstart)/bs;
1453:     PetscInt start = rstart;
1454:     for (i=0; i<n; i++) {
1455:       PetscInt count = (mbs/n + ((mbs % n) > i)) * bs;
1456:       ISCreateStride(PETSC_COMM_SELF,count,start,1,&is[i]);
1457:       start += count;
1458:     }

1460:   } else {

1462:     /* Partitioning by adjacency of diagonal block  */

1464:     const PetscInt *numbering;
1465:     PetscInt       *count,nidx,*indices,*newidx,start=0;
1466:     /* Get node count in each partition */
1467:     PetscMalloc1(n,&count);
1468:     ISPartitioningCount(ispart,n,count);
1469:     if (isbaij && bs > 1) { /* adjust for the block-aij case */
1470:       for (i=0; i<n; i++) count[i] *= bs;
1471:     }
1472:     /* Build indices from node numbering */
1473:     ISGetLocalSize(isnumb,&nidx);
1474:     PetscMalloc1(nidx,&indices);
1475:     for (i=0; i<nidx; i++) indices[i] = i; /* needs to be initialized */
1476:     ISGetIndices(isnumb,&numbering);
1477:     PetscSortIntWithPermutation(nidx,numbering,indices);
1478:     ISRestoreIndices(isnumb,&numbering);
1479:     if (isbaij && bs > 1) { /* adjust for the block-aij case */
1480:       PetscMalloc1(nidx*bs,&newidx);
1481:       for (i=0; i<nidx; i++) {
1482:         for (j=0; j<bs; j++) newidx[i*bs+j] = indices[i]*bs + j;
1483:       }
1484:       PetscFree(indices);
1485:       nidx   *= bs;
1486:       indices = newidx;
1487:     }
1488:     /* Shift to get global indices */
1489:     for (i=0; i<nidx; i++) indices[i] += rstart;

1491:     /* Build the index sets for each block */
1492:     for (i=0; i<n; i++) {
1493:       ISCreateGeneral(PETSC_COMM_SELF,count[i],&indices[start],PETSC_COPY_VALUES,&is[i]);
1494:       ISSort(is[i]);
1495:       start += count[i];
1496:     }

1498:     PetscFree(count);
1499:     PetscFree(indices);
1500:     ISDestroy(&isnumb);
1501:     ISDestroy(&ispart);

1503:   }
1504:   return(0);
1505: }

1509: /*@C
1510:    PCASMDestroySubdomains - Destroys the index sets created with
1511:    PCASMCreateSubdomains(). Should be called after setting subdomains
1512:    with PCASMSetLocalSubdomains().

1514:    Collective

1516:    Input Parameters:
1517: +  n - the number of index sets
1518: .  is - the array of index sets
1519: -  is_local - the array of local index sets, can be NULL

1521:    Level: advanced

1523: .keywords: PC, ASM, additive Schwarz, create, subdomains, unstructured grid

1525: .seealso: PCASMCreateSubdomains(), PCASMSetLocalSubdomains()
1526: @*/
1527: PetscErrorCode  PCASMDestroySubdomains(PetscInt n, IS is[], IS is_local[])
1528: {
1529:   PetscInt       i;

1533:   if (n <= 0) return(0);
1534:   if (is) {
1536:     for (i=0; i<n; i++) { ISDestroy(&is[i]); }
1537:     PetscFree(is);
1538:   }
1539:   if (is_local) {
1541:     for (i=0; i<n; i++) { ISDestroy(&is_local[i]); }
1542:     PetscFree(is_local);
1543:   }
1544:   return(0);
1545: }

1549: /*@
1550:    PCASMCreateSubdomains2D - Creates the index sets for the overlapping Schwarz
1551:    preconditioner for a two-dimensional problem on a regular grid.

1553:    Not Collective

1555:    Input Parameters:
1556: +  m, n - the number of mesh points in the x and y directions
1557: .  M, N - the number of subdomains in the x and y directions
1558: .  dof - degrees of freedom per node
1559: -  overlap - overlap in mesh lines

1561:    Output Parameters:
1562: +  Nsub - the number of subdomains created
1563: .  is - array of index sets defining overlapping (if overlap > 0) subdomains
1564: -  is_local - array of index sets defining non-overlapping subdomains

1566:    Note:
1567:    Presently PCAMSCreateSubdomains2d() is valid only for sequential
1568:    preconditioners.  More general related routines are
1569:    PCASMSetTotalSubdomains() and PCASMSetLocalSubdomains().

1571:    Level: advanced

1573: .keywords: PC, ASM, additive Schwarz, create, subdomains, 2D, regular grid

1575: .seealso: PCASMSetTotalSubdomains(), PCASMSetLocalSubdomains(), PCASMGetSubKSP(),
1576:           PCASMSetOverlap()
1577: @*/
1578: PetscErrorCode  PCASMCreateSubdomains2D(PetscInt m,PetscInt n,PetscInt M,PetscInt N,PetscInt dof,PetscInt overlap,PetscInt *Nsub,IS **is,IS **is_local)
1579: {
1580:   PetscInt       i,j,height,width,ystart,xstart,yleft,yright,xleft,xright,loc_outer;
1582:   PetscInt       nidx,*idx,loc,ii,jj,count;

1585:   if (dof != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP," ");

1587:   *Nsub     = N*M;
1588:   PetscMalloc1(*Nsub,is);
1589:   PetscMalloc1(*Nsub,is_local);
1590:   ystart    = 0;
1591:   loc_outer = 0;
1592:   for (i=0; i<N; i++) {
1593:     height = n/N + ((n % N) > i); /* height of subdomain */
1594:     if (height < 2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many N subdomains for mesh dimension n");
1595:     yleft  = ystart - overlap; if (yleft < 0) yleft = 0;
1596:     yright = ystart + height + overlap; if (yright > n) yright = n;
1597:     xstart = 0;
1598:     for (j=0; j<M; j++) {
1599:       width = m/M + ((m % M) > j); /* width of subdomain */
1600:       if (width < 2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many M subdomains for mesh dimension m");
1601:       xleft  = xstart - overlap; if (xleft < 0) xleft = 0;
1602:       xright = xstart + width + overlap; if (xright > m) xright = m;
1603:       nidx   = (xright - xleft)*(yright - yleft);
1604:       PetscMalloc1(nidx,&idx);
1605:       loc    = 0;
1606:       for (ii=yleft; ii<yright; ii++) {
1607:         count = m*ii + xleft;
1608:         for (jj=xleft; jj<xright; jj++) idx[loc++] = count++;
1609:       }
1610:       ISCreateGeneral(PETSC_COMM_SELF,nidx,idx,PETSC_COPY_VALUES,(*is)+loc_outer);
1611:       if (overlap == 0) {
1612:         PetscObjectReference((PetscObject)(*is)[loc_outer]);

1614:         (*is_local)[loc_outer] = (*is)[loc_outer];
1615:       } else {
1616:         for (loc=0,ii=ystart; ii<ystart+height; ii++) {
1617:           for (jj=xstart; jj<xstart+width; jj++) {
1618:             idx[loc++] = m*ii + jj;
1619:           }
1620:         }
1621:         ISCreateGeneral(PETSC_COMM_SELF,loc,idx,PETSC_COPY_VALUES,*is_local+loc_outer);
1622:       }
1623:       PetscFree(idx);
1624:       xstart += width;
1625:       loc_outer++;
1626:     }
1627:     ystart += height;
1628:   }
1629:   for (i=0; i<*Nsub; i++) { ISSort((*is)[i]); }
1630:   return(0);
1631: }

1635: /*@C
1636:     PCASMGetLocalSubdomains - Gets the local subdomains (for this processor
1637:     only) for the additive Schwarz preconditioner.

1639:     Not Collective

1641:     Input Parameter:
1642: .   pc - the preconditioner context

1644:     Output Parameters:
1645: +   n - the number of subdomains for this processor (default value = 1)
1646: .   is - the index sets that define the subdomains for this processor
1647: -   is_local - the index sets that define the local part of the subdomains for this processor (can be NULL)


1650:     Notes:
1651:     The IS numbering is in the parallel, global numbering of the vector.

1653:     Level: advanced

1655: .keywords: PC, ASM, set, local, subdomains, additive Schwarz

1657: .seealso: PCASMSetTotalSubdomains(), PCASMSetOverlap(), PCASMGetSubKSP(),
1658:           PCASMCreateSubdomains2D(), PCASMSetLocalSubdomains(), PCASMGetLocalSubmatrices()
1659: @*/
1660: PetscErrorCode  PCASMGetLocalSubdomains(PC pc,PetscInt *n,IS *is[],IS *is_local[])
1661: {
1662:   PC_ASM         *osm;
1664:   PetscBool      match;

1670:   PetscObjectTypeCompare((PetscObject)pc,PCASM,&match);
1671:   if (!match) {
1672:     if (n) *n = 0;
1673:     if (is) *is = NULL;
1674:   } else {
1675:     osm = (PC_ASM*)pc->data;
1676:     if (n) *n = osm->n_local_true;
1677:     if (is) *is = osm->is;
1678:     if (is_local) *is_local = osm->is_local;
1679:   }
1680:   return(0);
1681: }

1685: /*@C
1686:     PCASMGetLocalSubmatrices - Gets the local submatrices (for this processor
1687:     only) for the additive Schwarz preconditioner.

1689:     Not Collective

1691:     Input Parameter:
1692: .   pc - the preconditioner context

1694:     Output Parameters:
1695: +   n - the number of matrices for this processor (default value = 1)
1696: -   mat - the matrices


1699:     Level: advanced

1701:     Notes: Call after PCSetUp() (or KSPSetUp()) but before PCApply() (or KSPApply()) and before PCSetUpOnBlocks())

1703:            Usually one would use PCSetModifySubmatrices() to change the submatrices in building the preconditioner.

1705: .keywords: PC, ASM, set, local, subdomains, additive Schwarz, block Jacobi

1707: .seealso: PCASMSetTotalSubdomains(), PCASMSetOverlap(), PCASMGetSubKSP(),
1708:           PCASMCreateSubdomains2D(), PCASMSetLocalSubdomains(), PCASMGetLocalSubdomains(), PCSetModifySubmatrices()
1709: @*/
1710: PetscErrorCode  PCASMGetLocalSubmatrices(PC pc,PetscInt *n,Mat *mat[])
1711: {
1712:   PC_ASM         *osm;
1714:   PetscBool      match;

1720:   if (!pc->setupcalled) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_WRONGSTATE,"Must call after KSPSetUP() or PCSetUp().");
1721:   PetscObjectTypeCompare((PetscObject)pc,PCASM,&match);
1722:   if (!match) {
1723:     if (n) *n = 0;
1724:     if (mat) *mat = NULL;
1725:   } else {
1726:     osm = (PC_ASM*)pc->data;
1727:     if (n) *n = osm->n_local_true;
1728:     if (mat) *mat = osm->pmat;
1729:   }
1730:   return(0);
1731: }

1735: /*@
1736:     PCASMSetDMSubdomains - Indicates whether to use DMCreateDomainDecomposition() to define the subdomains, whenever possible.
1737:     Logically Collective

1739:     Input Parameter:
1740: +   pc  - the preconditioner
1741: -   flg - boolean indicating whether to use subdomains defined by the DM

1743:     Options Database Key:
1744: .   -pc_asm_dm_subdomains

1746:     Level: intermediate

1748:     Notes:
1749:     PCASMSetTotalSubdomains() and PCASMSetOverlap() take precedence over PCASMSetDMSubdomains(),
1750:     so setting either of the first two effectively turns the latter off.

1752: .keywords: PC, ASM, DM, set, subdomains, additive Schwarz

1754: .seealso: PCASMGetDMSubdomains(), PCASMSetTotalSubdomains(), PCASMSetOverlap()
1755:           PCASMCreateSubdomains2D(), PCASMSetLocalSubdomains(), PCASMGetLocalSubdomains()
1756: @*/
1757: PetscErrorCode  PCASMSetDMSubdomains(PC pc,PetscBool flg)
1758: {
1759:   PC_ASM         *osm = (PC_ASM*)pc->data;
1761:   PetscBool      match;

1766:   if (pc->setupcalled) SETERRQ(((PetscObject)pc)->comm,PETSC_ERR_ARG_WRONGSTATE,"Not for a setup PC.");
1767:   PetscObjectTypeCompare((PetscObject)pc,PCASM,&match);
1768:   if (match) {
1769:     osm->dm_subdomains = flg;
1770:   }
1771:   return(0);
1772: }

1776: /*@
1777:     PCASMGetDMSubdomains - Returns flag indicating whether to use DMCreateDomainDecomposition() to define the subdomains, whenever possible.
1778:     Not Collective

1780:     Input Parameter:
1781: .   pc  - the preconditioner

1783:     Output Parameter:
1784: .   flg - boolean indicating whether to use subdomains defined by the DM

1786:     Level: intermediate

1788: .keywords: PC, ASM, DM, set, subdomains, additive Schwarz

1790: .seealso: PCASMSetDMSubdomains(), PCASMSetTotalSubdomains(), PCASMSetOverlap()
1791:           PCASMCreateSubdomains2D(), PCASMSetLocalSubdomains(), PCASMGetLocalSubdomains()
1792: @*/
1793: PetscErrorCode  PCASMGetDMSubdomains(PC pc,PetscBool* flg)
1794: {
1795:   PC_ASM         *osm = (PC_ASM*)pc->data;
1797:   PetscBool      match;

1802:   PetscObjectTypeCompare((PetscObject)pc,PCASM,&match);
1803:   if (match) {
1804:     if (flg) *flg = osm->dm_subdomains;
1805:   }
1806:   return(0);
1807: }