## simulations.objects Class TwoPlanes

```java.lang.Object simulations.objects.BaseObject simulations.objects.TwoPlanes
```

public class TwoPlanes
extends BaseObject

TwoPlanes: This BaseObject calculates the non-relativistic magnetic fields induced by a monopole situated near two thin conducting planes intersecting at right angle. Given the potential we compute the fields using numerical differentiation

 Field Summary ` double` `h` ` double` `k`           monople at (k,0,h) ` double` `offset`           offset is an overall time offset before the image charges start moving ` double` `q0`           q0 is the magnetic charge ` double` `t`           t is the time ` double` `v1`           v1 is the receding velocity associated with x=0 plane ` double` `v2`           v2 is the receding velocity associated with z=0 plane

 Constructor Summary ```TwoPlanes(double k, double h, double q0, double v1, double v2, double t, double offset)```           Constructs an instance of the object using the given parameters.

 Method Summary ` Vec3` ```Bfield(Vec3 x, Vec3 B)```           the magnetic field of a non-relativistic moving magnetic monopole in the upper half plane ` Vec3` ```Efield(Vec3 x, Vec3 E)```           the electric field of a moving monopole, which currently we set to zero ` double` ```Potential1(Vec3 x, double potential)```           the potential in the first quadrant x>0, z>0 ` double` ```Potential2(Vec3 x, double potential)```           the potential in the second quadrant x<0, z>0 ` double` ```Potential3(Vec3 x, double potential)```           the potential in the third quadrant x<0, z<0 ` double` ```Potential4(Vec3 x, double potential)```           the potential in the fourth quadrant x>0, z<0 ` java.lang.String` `toString()`           writes properties of the point charge to a string

 Methods inherited from class simulations.objects.BaseObject `Bfield, Efield, Evolve, Pfield, Pfield`

 Methods inherited from class java.lang.Object `clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait`

 Field Detail

### k

`public double k`
monople at (k,0,h)

### h

`public double h`

### offset

`public double offset`
offset is an overall time offset before the image charges start moving

### q0

`public double q0`
q0 is the magnetic charge

### v1

`public double v1`
v1 is the receding velocity associated with x=0 plane

### v2

`public double v2`
v2 is the receding velocity associated with z=0 plane

### t

`public double t`
t is the time

 Constructor Detail

### TwoPlanes

```public TwoPlanes(double k,
double h,
double q0,
double v1,
double v2,
double t,
double offset)```
Constructs an instance of the object using the given parameters.

Parameters:
`k` - the x component of the monopole
`h` - the y component of the monopole
`offset` - the frame offset before image charges begin moving
`q0` - the magnetic charge
`v1` - the receding velocity associated with x=0 plane
`v2` - the receding velocity associated with z=0 plane
 Method Detail

### Bfield

```public Vec3 Bfield(Vec3 x,
Vec3 B)```
the magnetic field of a non-relativistic moving magnetic monopole in the upper half plane

Specified by:
`Bfield` in class `BaseObject`
Parameters:
`x` - the position of the observer
`B` - the magnetic field at the position of the observer
Returns:
B the magnetic field

### Efield

```public Vec3 Efield(Vec3 x,
Vec3 E)```
the electric field of a moving monopole, which currently we set to zero

Specified by:
`Efield` in class `BaseObject`
Parameters:
`x` - the position of the observer
`E` - the electric field at the observer's position if the monopope is at p (calculated)
Returns:
zero

### Potential1

```public double Potential1(Vec3 x,
double potential)```
the potential in the first quadrant x>0, z>0

### Potential2

```public double Potential2(Vec3 x,
double potential)```
the potential in the second quadrant x<0, z>0

### Potential3

```public double Potential3(Vec3 x,
double potential)```
the potential in the third quadrant x<0, z<0

### Potential4

```public double Potential4(Vec3 x,
double potential)```
the potential in the fourth quadrant x>0, z<0

### toString

`public java.lang.String toString()`
writes properties of the point charge to a string