Loading [MathJax]/jax/output/HTML-CSS/jax.js

Ben Lengerich

Word Cloud scraped from Research Papers

Research Interests and Selected Publications

I research machine learning and computational biology, with an aim to bridge the gap between data-driven insights and actionable medical interventions. Ongoing projects include:
  • Context-Adaptive Systems (Meta- and Contextualized Learning): How do we build AI agents that adapt to context?
    Selected Publications
  • Prior Knowledge as Context: Connecting Statistical Inference to Foundation Models
    Selected Publications
  • Interpretable Representations of Complex and Nonlinear Systems: How can we build models that summarize complicated patterns in interpretable ways?
    Selected Publications
  • Clinical Tools for Personalized Medicine: How can we analyze real-world evidence to improve care for every patient?
    Selected Publications
See my group website for more details about my research.

Active Projects

Below are some of my active research projects. Feel free to reach out if you are interested in collaborating.
  • Contextualized Learning
    Details
  • Contextualized Effects of Complex Disease
    Details
  • Connecting Statistical Inference to Foundation Models
    Details
  • Automated analysis of real-world evidence
    Details
  • Clinical Tools
    Details

Full List of Publications

Automatically updated lists available on: Google Scholar, Semantic Scholar, and DBLP.
generated by bibbase.org
  2023 (6)
LLMs Understand Glass-Box Models, Discover Surprises, and Suggest Repairs. Lengerich, B. J.; Bordt, S.; Nori, H.; Nunnally, M. E.; Aphinyanaphongs, Y.; Kellis, M.; and Caruana, R. . 2023.
LLMs Understand Glass-Box Models, Discover Surprises, and Suggest Repairs [link] preprint   link   bibtex   abstract   4 downloads  
Contextualized Policy Recovery: Modeling and Interpreting Medical Decisions with Adaptive Imitation Learning. Deuschel, J.; Ellington, C.; Lengerich, B.; Luo, Y.; Friederich, P.; and Xing, E. . 2023.
Contextualized Policy Recovery: Modeling and Interpreting Medical Decisions with Adaptive Imitation Learning [link] preprint   link   bibtex   abstract  
Contextualized Machine Learning. Lengerich, B.; Ellington, C.; Rubbi, A.; Kellis, M.; and Xing, E. . 2023.
Contextualized Machine Learning [link] preprint   link   bibtex   abstract  
Recent Advances, Applications and Open Challenges in Machine Learning for Health: Reflections from Research Roundtables at ML4H 2022 Symposium. Hegselmann, S.; Zhou, H.; Zhou, Y.; Chien, J.; Nagaraj, S.; Hulkund, N.; Bhave, S.; Oberst, M.; Pai, A.; Ellington, C.; Ikezogwo, W.; Dou, J. X.; Agrawal, M.; Li, C.; Argaw, P.; Biswas, A.; Gupta, M.; Li, X.; Lemanczyk, M.; Zhang, Y.; Garbin, C.; Healey, E.; Kim, H.; Boone, C.; Daneshjou, R.; Shi, S.; Pezzotti, N.; Pfohl, S. R.; Fong, E.; Naik, A.; Lengerich, B.; Xu, Y.; Bidwell, J.; Sendak, M.; Kim, B.; Hendrix, N.; Spathis, D.; Seita, J.; Quast, B.; Coffee, M.; Stultz, C.; Chen, I. Y.; Joshi, S.; and Tadesse, G. A. . May 2023.
Recent Advances, Applications and Open Challenges in Machine Learning for Health: Reflections from Research Roundtables at ML4H 2022 Symposium [link]Paper   doi   link   bibtex  
Interpretable Predictive Models to Understand Risk Factors for Maternal and Fetal Outcomes. Bosschieter, T. M.; Xu, Z.; Lan, H.; Lengerich, B. J.; Nori, H.; Painter, I.; Souter, V.; and Caruana, R. Journal of Healthcare Informatics Research. 2023.
Interpretable Predictive Models to Understand Risk Factors for Maternal and Fetal Outcomes [link] paper   link   bibtex   abstract  
Data Science with LLMs and Interpretable Models. Bordt, S.; Lengerich, B.; Nori, H.; and Caruana, R. AAAI Explainable AI for Science. 2023.
link   bibtex   abstract  
  2022 (10)
Death by Round Numbers and Sharp Thresholds: Glass-Box Machine Learning Uncovers Biases in Medical Practice. Lengerich, B.; Caruana, R.; Nunnally, M. E.; and Kellis, M. . 2022.
Death by Round Numbers and Sharp Thresholds: Glass-Box Machine Learning Uncovers Biases in Medical Practice [link] preprint   link   bibtex   abstract  
NOTMAD: Estimating Bayesian Networks with Sample-Specific Structures and Parameters. Lengerich, B.; Ellington, C.; Aragam, B.; Xing, E. P.; and Kellis, M. . 2022.
NOTMAD: Estimating Bayesian Networks with Sample-Specific Structures and Parameters [link] preprint   link   bibtex   abstract  
Automated interpretable discovery of heterogeneous treatment effectiveness: A COVID-19 case study. Lengerich, B. J; Nunnally, M. E; Aphinyanaphongs, Y.; Ellington, C.; and Caruana, R. Journal of biomedical informatics, 130: 104086. 2022.
Automated interpretable discovery of heterogeneous treatment effectiveness: A COVID-19 case study [link] paper   Automated interpretable discovery of heterogeneous treatment effectiveness: A COVID-19 case study [link] preprint   link   bibtex   abstract  
Dropout as a Regularizer of Interaction Effects. Lengerich, B.; Xing, E. P.; and Caruana, R. In Proceedings of the Twenty Fifth International Conference on Artificial Intelligence and Statistics, 2022.
Dropout as a Regularizer of Interaction Effects [link] paper   Dropout as a Regularizer of Interaction Effects [link] preprint   link   bibtex   abstract   5 downloads  
Ten quick tips for deep learning in biology. Lee, B. D; Gitter, A.; Greene, C. S; Raschka, S.; Maguire, F.; Titus, A. J; Kessler, M. D; Lee, A. J; Chevrette, M. G; Stewart, P. A.; Britto-Borges, T.; Cofer, E. M. C.; Yu, K.; Carmona, J. J.; Fertig, E. J.; Kalinin, A. A.; Signal, B.; ˘nderlineLengerich, ˘.; Triche, T. J. J.; and Boca, S. M. PLoS computational biology, 18(3): e1009803. 2022.
Ten quick tips for deep learning in biology [link] paper   link   bibtex  
Unique insights into risk factors for antepartum stillbirth using explainable AI. Bosschieter, T.; Xu, Z.; Lan, H.; Lengerich, B.; Nori, H.; Sitcov, K.; Painter, I.; Souter, V.; and Caruana, R. American Journal of Obstetrics & Gynecology. 2022.
Unique insights into risk factors for antepartum stillbirth using explainable AI [link] paper   link   bibtex  
Understanding risk factors for shoulder dystocia using interpretable machine learning. Lan, H.; Xu, Z.; Bosschieter, T.; Lengerich, B.; Nori, H.; Sitcov, K.; Painter, I.; Souter, V.; and Caruana, R. American Journal of Obstetrics & Gynecology. 2022.
Understanding risk factors for shoulder dystocia using interpretable machine learning [link] paper   link   bibtex  
Preterm preeclampsia prediction using intelligible machine learning. Bosschieter, T.; Xu, Z.; Lan, H.; Lengerich, B.; Nori, H.; Sitcov, K.; Painter, I.; Souter, V.; and Caruana, R. American Journal of Obstetrics & Gynecology. 2022.
Preterm preeclampsia prediction using intelligible machine learning [link] paper   link   bibtex  
Predicting severe maternal morbidity at admission for delivery using intelligible machine learning. Xu, Z.; Bosschieter, T.; Lan, H.; Lengerich, B.; Nori, H.; Sitcov, K.; Painter, I.; Souter, V.; and Caruana, R. American Journal of Obstetrics & Gynecology. 2022.
Predicting severe maternal morbidity at admission for delivery using intelligible machine learning [link] paper   link   bibtex  
Time-Varying Mortality Risk Suggests Increased Impact of Thrombosis in Hospitalized Covid-19 Patients. Lengerich, B. J; Nunnally, M. E; Aphinyanaphongs, Y. J; and Caruana, R. In Machine Learning for Health, 2022.
Time-Varying Mortality Risk Suggests Increased Impact of Thrombosis in Hospitalized Covid-19 Patients [link] preprint   link   bibtex   abstract  
  2021 (6)
Neural Additive Models: Interpretable Machine Learning with Neural Nets. Agarwal, R.; Melnick, L.; Frosst, N.; Zhang, X.; Lengerich, B.; Caruana, R.; and Hinton, G. E Advances in Neural Information Processing Systems, 34: 4699–4711. 2021.
Neural Additive Models: Interpretable Machine Learning with Neural Nets [link] preprint   Neural Additive Models: Interpretable Machine Learning with Neural Nets [link] paper   link   bibtex   abstract  
How Interpretable and Trustworthy are GAMs?. Chang, C.; Tan, S.; Lengerich, B.; Goldenberg, A.; and Caruana, R. In Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2021.
How Interpretable and Trustworthy are GAMs? [link] paper   How Interpretable and Trustworthy are GAMs? [link] preprint   link   bibtex   abstract  
Length of labor and severe maternal morbidity in the NTSV population. Lengerich, B. J.; Caruana, R.; Weeks, W. B; Painter, I.; Spencer, S.; Sitcov, K.; Daly, C.; and Souter, V. American Journal of Obstetrics & Gynecology, 224(2): S33. 2021.
Length of labor and severe maternal morbidity in the NTSV population [link] paper   link   bibtex  
Insights into severe maternal morbidity in the NTSV population. Lengerich, B. J.; Caruana, R.; Weeks, W. B; Painter, I.; Spencer, S.; Sitcov, K.; Daly, C.; and Souter, V. American Journal of Obstetrics & Gynecology, 224(2): S629–S630. 2021.
Insights into severe maternal morbidity in the NTSV population [link] paper   link   bibtex  
Neutrophil Lymphocyte Ratio as a Determinant of Glucocorticoid Effectiveness in Covid-19 Treatment. Lengerich, B.; Caruana, R.; and Aphinyanaphongs, Y. MedRXiv. 2021.
Neutrophil Lymphocyte Ratio as a Determinant of Glucocorticoid Effectiveness in Covid-19 Treatment [link] preprint   link   bibtex   abstract  
Data-Driven Patterns in Protective Effects of Ibuprofen and Ketorolac on Hospitalized Covid-19 Patients. Caruana, R.; Lengerich, B.; and Aphinyanaphongs, Y. In 2021.
Data-Driven Patterns in Protective Effects of Ibuprofen and Ketorolac on Hospitalized Covid-19 Patients [link] preprint   link   bibtex   abstract  
  2020 (3)
Discriminative Subtyping of Lung Cancers from Histopathology Images via Contextual Deep Learning. Lengerich*, B.; Al-Shedivat*, M.; Alavi, A.; Williams, J.; Labakki, S.; and Xing, E. . 2020.
Discriminative Subtyping of Lung Cancers from Histopathology Images via Contextual Deep Learning [link] preprint   link   bibtex   abstract  
Purifying Interaction Effects with the Functional ANOVA: An Efficient Algorithm for Recovering Identifiable Additive Models. Lengerich, B.; Tan, S.; Chang, C.; Hooker, G.; and Caruana, R. In Chiappa, S.; and Calandra, R., editor(s), Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108, of Proceedings of Machine Learning Research, pages 2402–2412, 26–28 Aug 2020. PMLR
Purifying Interaction Effects with the Functional ANOVA: An Efficient Algorithm for Recovering Identifiable Additive Models [link] paper   Purifying Interaction Effects with the Functional ANOVA: An Efficient Algorithm for Recovering Identifiable Additive Models [link] preprint   link   bibtex   abstract  
Disentangling Increased Testing from Covid-19 Epidemic Spread. Lengerich, B. J.; Neiswanger, W.; Lengerich, E. J.; and Xing, E. P. MedRXiv. 2020.
Disentangling Increased Testing from Covid-19 Epidemic Spread [link] preprint   link   bibtex   abstract  
  2019 (1)
Learning Sample-Specific Models with Low-Rank Personalized Regression. Lengerich, B. J.; Aragam, B.; and Xing, E. P. In Advances in Neural Information Processing Systems (NeurIPS), 2019.
Learning Sample-Specific Models with Low-Rank Personalized Regression [pdf] paper   Learning Sample-Specific Models with Low-Rank Personalized Regression [link] preprint   link   bibtex   abstract   1 download  
  2018 (4)
Precision Lasso: Accounting for Correlations and Linear Dependencies in High-Dimensional Genomic Data. Wang, H.; Lengerich, B. J.; Aragam, B.; and Xing, E. P Bioinformatics, 35(7): 1181–1187. 2018.
Precision Lasso: Accounting for Correlations and Linear Dependencies in High-Dimensional Genomic Data [link] paper   link   bibtex   abstract  
Retrofitting Distributional Embeddings to Knowledge Graphs with Functional Relations. Lengerich, B. J.; Maas, A.; and Potts, C. In Proceedings of the 27th International Conference on Computational Linguistics (COLING), 2018.
Retrofitting Distributional Embeddings to Knowledge Graphs with Functional Relations [link] paper   Retrofitting Distributional Embeddings to Knowledge Graphs with Functional Relations [link] preprint   link   bibtex   abstract  
Personalized Regression Enables Sample-specific Pan-cancer Analysis. Lengerich, B. J.; Aragam, B.; and Xing, E. P Bioinformatics, 34(13): i178-i186. 2018.
Personalized Regression Enables Sample-specific Pan-cancer Analysis [link]Paper   Personalized Regression Enables Sample-specific Pan-cancer Analysis [link] paper   Personalized Regression Enables Sample-specific Pan-cancer Analysis [link] preprint   doi   link   bibtex   abstract  
Opportunities and Obstacles for Deep Learning in Biology and Medicine. Ching, T.; Himmelstein, D. S.; Beaulieu-Jones, B. K.; Kalinin, A. A.; Do, B. T.; Way, G. P.; Ferrero, E.; Agapow, P.; Zietz, M.; Hoffman, M. M.; Xie, W.; Rosen, G. L.; ˘nderlineLengerich, ˘.; Israeli, J.; Lanchantin, J.; Woloszynek, S.; Carpenter, A. E.; Shrikumar, A.; Xu, J.; Cofer, E. M.; Lavender, C. A.; Turaga, S. C.; Alexandari, A. M.; Lu, Z.; Harris, D. J.; DeCaprio, D.; Qi, Y.; Kundaje, A.; Peng, Y.; Wiley, L. K.; Segler, M. H. S.; Boca, S. M.; Swamidass, S. J.; Huang, A.; Gitter, A.; and Greene, C. S. Journal of The Royal Society Interface, 15(141). 2018.
Opportunities and Obstacles for Deep Learning in Biology and Medicine [link]Paper   Opportunities and Obstacles for Deep Learning in Biology and Medicine [pdf] paper   Opportunities and Obstacles for Deep Learning in Biology and Medicine [pdf] preprint   doi   link   bibtex   abstract  
  2014 (1)
Experimental and Computational Mutagenesis to Investigate the Positioning of a General Base Within an Enzyme Active Site. Schwans, J. P; Hanoian, P.; ˘nderlineLengerich, ˘.; Sunden, F.; Gonzalez, A.; Tsai, Y.; Hammes-Schiffer, S.; and Herschlag, D. Biochemistry, 53(15): 2541–2555. 2014.
Experimental and Computational Mutagenesis to Investigate the Positioning of a General Base Within an Enzyme Active Site [link] paper   link   bibtex   abstract