next up previous
Next: Solution: Position of the Up: 3.7 - Simple Potential Previous: Solution: 3D dipole at

Stream and source: Rankine half-body

It is the superposition of a uniform stream of constant speed $U$ and a source of strength $m$.


\begin{figure}
\centering\epsfig{file=lfig1015.eps,height=1in,clip=}\end{figure}

2D rankine half-body:


\begin{displaymath}\phi = Ux + \frac{m}{2\pi }\ln\sqrt {x^2 + y^2} \notag
\end{displaymath}  


\begin{figure}
\centering\epsfig{file=lfig1016.eps,height=2.5in,clip=}\end{figure}

3D Rankine half-body:


\begin{displaymath}\phi = Ux - \frac{m}{4\pi \sqrt {x^2 + y^2 + z^2} } \notag
\end{displaymath}  


\begin{figure}
\centering\epsfig{file=lfig1017.eps,height=2in,clip=}\end{figure}

1.
Question: find the position $(x_{s},y_{s})$ of the flow field stagnation point for the 2D Rankine half-body.

(a)
Hint: at the stagnation point $\vec{v} = 0$.
(b)
Hint: obtain the expression for $\vec{v}$ and set it equal to $0$, and solve for $x$ and $y$.

2.
Question: evaluate the width $D$ of the 2D rankine half-body.

(a)
Hint: mass conservation

3.
Question: find the position $(x_{s},y_{s},z_{s})$ of the flow field stagnation point for the 3D Rankine half-body.

(a)
Hint: at the stagnation point $\vec{v} = 0$.
(b)
Hint: obtain the expression for $\vec{v}$ and set it equal to $0$, and solve for $x, y$ and $z$.

4.
Question: evaluate the cross-sectional area $A$ of the 3D rankine half-body.

(a)
Hint: mass conservation

Keyword Search


 
next up previous
Next: Solution: Position of the Up: 3.7 - Simple Potential Previous: Solution: 3D dipole at