Enabling radio communication in living cells – fundamental challenges and the way forward

14th December 2022

Timing : 1 pm EST

Please use this zoom link for joining the webinar

Note: Registration is Required. Register here

For a list of all talks at the NanoBio seminar Series Fall'22, see here

An intracellular antenna can enable wireless sensing, modulation, and power transfer for electronic computation within living cells. They could also work in optically opaque environments and in vivo since they communicate using radio frequency waves. However, conventional antennas when miniaturized to sub-mm sizes have very low efficiencies due to ohmic losses and operate at very high frequencies harmful for living systems. Hence, developing an antenna which can fit inside a cell and is suitable for 3D biological systems has remained an unmet challenge. In this talk, I will discuss a new approach to overcome these limitations by using a novel antenna based on magnetostrictive materials. These antennas which we have named ‘Cell Rovers’ can be fabricated in sub-mm size and convert incident magnetic fields to acoustic waves by the principle of magnetostriction thereby reducing their operating frequency to the low MHz range which is ideal for living systems. Also, they operate using near field inductive coupling and have a large detection range suitable for 3D biological systems. We show intracellular wireless operation of Cell Rovers in fully opaque, Stage VI, Xenopus Laevis oocytes for which real time sensing with conventional technologies is difficult. We also demonstrate the possibility of using Cell Rovers for multiplexing applications to communicate with multiple antennas within the same cell or different cells. This technology can help to integrate wireless sensing, modulation and electronic computation within a living cell and can open up variety of pathways for the fundamental understanding of biology and development of therapeutics.