CHROMA
eoprec_constdet_one_flavor_rat_monomial5d_w.h
Go to the documentation of this file.
1 // -*- C++ -*-
2 /*! @file
3  * @brief One-flavor collection of even-odd preconditioned 5D ferm monomials
4  */
5 
6 #ifndef __prec_one_flavor_rat_monomial5d_w_h__
7 #define __prec_one_flavor_rat_monomial5d_w_h__
8 
12 
13 namespace Chroma
14 {
15 
16  /*! @ingroup monomial */
17  namespace EvenOddPrecConstDetOneFlavorWilsonTypeFermRatMonomial5DEnv
18  {
19  bool registerAll();
20  }
21 
22 
23  //! Wrapper class for 5D 2-flavor even-odd prec ferm monomials
24  /*! @ingroup monomial
25  *
26  * Monomial is expected to be the same for these fermacts
27  */
30  multi1d<LatticeColorMatrix>,
31  multi1d<LatticeColorMatrix>,
32  LatticeFermion>
33  {
34  public:
35  // Typedefs to save typing
36  typedef LatticeFermion T;
37  typedef multi1d<LatticeColorMatrix> P;
38  typedef multi1d<LatticeColorMatrix> Q;
39 
40  // Construct out of a parameter struct. Check against the desired FermAct name
42 
43  //! Even even contribution (eg ln det Clover)
44  Double S_even_even(const AbsFieldState<multi1d<LatticeColorMatrix>,
45  multi1d<LatticeColorMatrix> >& s) {
46  return Double(0);
47  }
48 
49 
50  protected:
51 
53  return *fermact;
54  }
55 
56  //! Get parameters for the inverter
57  const GroupXML_t& getActionInvParams(void) const {
58  return actionInvParam;
59  }
60 
61  //! Get parameters for the inverter
62  const GroupXML_t& getForceInvParams(void) const {
63  return forceInvParam;
64  }
65 
66  //! Accessor for pseudofermion (read only)
67  const multi1d< multi1d<T> >& getPhi(void) const {return phi;}
68 
69  //! mutator for pseudofermion
70  multi1d< multi1d<T> >& getPhi(void) {return phi;}
71 
72  //! Return number of roots in used
73  int getNPF() const {return num_pf;}
74 
75  //! Return the partial fraction expansion for the action calc
76  const RemezCoeff_t& getSPFE() const {return spfe;}
77 
78  //! Return the partial fraction expansion for the heat-bath
79  const RemezCoeff_t& getSIPFE() const {return sipfe;}
80 
81  private:
82 
83  // Hide empty constructor and =
86 
87  // Pseudofermion field phi
88  multi1d< multi1d<T> > phi;
89 
90  // A handle for the EvenOddPrecWilsonFermAct
92 
93  // The parameters for the inversion
96 
97  // Number of nth-roots
98  int num_pf;
99 
100  //! Return the partial fraction expansion for the force calc
101  const RemezCoeff_t& getFPFE() const {return fpfe;}
102  // Coefficients and roots of partial fractions
106  };
107 
108 
109 } //end namespace chroma
110 
111 #endif
Abstract field state.
Definition: field_state.h:27
void operator=(const EvenOddPrecConstDetOneFlavorWilsonTypeFermRatMonomial5D &)
Handle< const EvenOddPrecConstDetWilsonTypeFermAct5D< T, P, Q > > fermact
Double S_even_even(const AbsFieldState< multi1d< LatticeColorMatrix >, multi1d< LatticeColorMatrix > > &s)
Even even contribution (eg ln det Clover)
const GroupXML_t & getActionInvParams(void) const
Get parameters for the inverter.
const GroupXML_t & getForceInvParams(void) const
Get parameters for the inverter.
const RemezCoeff_t & getFPFE() const
Return the partial fraction expansion for the force calc.
const EvenOddPrecConstDetWilsonTypeFermAct5D< T, P, Q > & getFermAct(void) const
Get at fermion action.
const multi1d< multi1d< T > > & getPhi(void) const
Accessor for pseudofermion (read only)
const RemezCoeff_t & getSIPFE() const
Return the partial fraction expansion for the heat-bath.
const RemezCoeff_t & getSPFE() const
Return the partial fraction expansion for the action calc.
Even-odd preconditioned Wilson-like fermion actions including derivatives.
Class for counted reference semantics.
Definition: handle.h:33
Exact 1 flavor even-odd preconditioned fermact monomial living in extra dimensions.
Field state.
Asqtad Staggered-Dirac operator.
Definition: klein_gord.cc:10
multi1d< LatticeFermion > s(Ncb)
FloatingPoint< double > Double
Definition: gtest.h:7351
One flavor monomials using RHMC.
One-flavor monomial params.
Hold group xml and type id.
Convenient structure to package Remez coeffs.
Definition: remez_coeff.h:19