20 for(
int i(0);
i<f;
i++){
21 vec[
i][sub] /= Real(sqrt(norm2(vec[
i],sub)));
24 QDPIO::cerr << __func__ <<
": f="<<f<<
" t="<<
t<<
" vec.size()="<<vec.size()<<std::endl;
25 QDPIO::cerr << __func__ <<
": Out of bound!\n";
30 for(
int k(0);
k<
i;
k++){
34 vec[
i][sub] = vec[
i] - cc*vec[
k];
37 vec[
i][sub] *= Real(
in);
51 for(
int i(0);
i<f;
i++){
52 Real
in = Real(1) / Real(sqrt(norm2(vec[
i],sub)));
53 for(
int s=0;
s < vec.size1(); ++
s)
56 if(!(
t<=vec.size2())){
57 QDPIO::cerr << __func__ <<
": f="<<f<<
" t="<<
t<<
" vec.size2()="<<vec.size2()<<std::endl;
58 QDPIO::cerr << __func__ <<
": Out of bound!\n";
63 for(
int k(0);
k<
i;
k++){
67 for(
int s=0;
s < vec.size1(); ++
s)
68 vec[
i][
s][sub] = vec[
i][
s] - cc*vec[
k][
s];
70 Real
in = Real(1.0) / sqrt(norm2(vec[
i],sub));
71 for(
int s=0;
s < vec.size1(); ++
s)
72 vec[
i][
s][sub] *= Real(
in);
85 normGramSchmidt_T<LatticeFermionF>(vec, f,
t, sub);
93 normGramSchmidt_T<LatticeFermionD>(vec, f,
t, sub);
101 normGramSchmidt_T<LatticeStaggeredFermionF>(vec, f,
t, sub);
109 normGramSchmidt_T<LatticeStaggeredFermionD>(vec, f,
t, sub);
void normGramSchmidt_T(multi1d< T > &vec, int f, int t, const Subset &sub)
Gram-Schmidt with normalization.
void normGramSchmidtArray_T(multi2d< T > &vec, int f, int t, const Subset &sub)
Gram-Schmidt with normalization.
void normGramSchmidt(multi1d< LatticeFermionF > &vec, int f, int t, const Subset &sub)
Gram-Schmidt with normalization.
BinaryReturn< C1, C2, FnInnerProduct >::Type_t innerProduct(const QDPSubType< T1, C1 > &s1, const QDPType< T2, C2 > &s2)
Asqtad Staggered-Dirac operator.
static QDP_ColorVector * in
multi1d< LatticeFermion > s(Ncb)
FloatingPoint< double > Double
Gram-Schmidt with normalization.