BeeView: Multi-sensor Monitoring of Structure, Measurement, Inference, and Visualization

“Beeview” is an interdisciplinary project to monitor the condition of large-scale infrastructure systems by analyzing motions of the structure using data acquired from multiple sensors deployed throughout the structure. The project has multiple components; three components that constitute the primary thrust areas are: the instrumentation of the sensors, sensor placement planning, and structural analysis from sensor data. A fourth component explores the visualization of structural motions from video data in a technique called motion magnification. BeeView is a joint research project between MIT’s Civil and Environmental Engineering Department (CEE), Computer Science and Artificial Intelligence Lab (CSAIL), Draper Labs, and Shell.

 

Key contributions

Interactive low power wireless sensor system and optimal task allocation for smart sensing

 

 

Motion Magnification: Video-based vibration measurements

 

 

Pairwise Graphical Models for damage detection

 

 

Conditional classifiers and Boosted conditional Gaussian mixture model for novelty detection

 

 

Kernel dependence analysis for novelty detection

 

 

Seismic interferometry-based structural monitoring

 

Media

 

Publications

R. Mohammadi-Ghazi, R.E. Welsch and O. Buyukozturk. Kernel dependence analysis and graph structure morphing for novelty detection with high-dimensional small size dataset. Mechanical Systems and Signal Processing 2020; 143: 106775

J. Long and O. Buyukozturk. Collaborative duty cycling strategies in energy harvesting sensor networks. Computer Aided Civil and Infrastructure Engineering, 2020; 35(6): 534-548.

J. Long and O. Buyukozturk. A power optimised and re-programmable system for smart wireless vibration monitoring. Structural Control and Health Monitoring 2019; 27(2): e2468.

J. G. Chen, T. M. Adams, H. Sun, E. S. Bell and O. Buyukozturk. Camera-based vibration measurement of the Portsmouth, NH WWI Memorial Bridge. Journal of Structural Engineering, ASCE 2018; 144(11); 04018207.

R. Mohammadi-Ghazi, Y. M. Marzouk and O. Buyukozturk. Conditional classifiers and boosted conditional Gaussian mixture model for novelty detection. Pattern Recognition 2018; 81: 601-614.

H. Sun and O. Buyukozturk. The MIT Green Building benchmark problem for structural health monitoring of tall buildings. Structural Control and Health Monitoring 2018; 25(3): e2115.

A. Mordret, H. Sun, G. A. Prieto, M. N. Toksoz and O. Buyukozturk. Continuous monitoring of high-rise buildings using seismic interferometry. Bulletin of the Seismological Society of America 2017; 107(6): 2759-2773.

J. G. Chen and O. Buyukozturk. A symmetry measure for detecting changes in mode shapes. Journal of Sound and Vibration 2017; 408: 123-137.

N. Wadhwa, J. G. Chen, J. B. Sellon, D. Wei, M. Rubinstein, R. Ghaffari, D. M. Freeman, O. Buyukozturk, P. Wang, S. Sun, S. H. Kang, K. Bertoldi, F. Durand and W. T. Freeman. Motion microscopy for visualizing and quantifying small motions. Proceedings of the National Academy of Sciences 2017; 201703715.

Z. Dzunic, J. G. Chen, H. Mobahi, O. Buyukozturk and J. W. Fisher. A Bayesian state-space approach for damage detection and classification. Mechanical Systems and Signal Processing 2017; 96: 239-259.

R. Mohammadi Ghazi, J. G. Chen and O. Buyukozturk. Pairwise graphical models for structural health monitoring with dense sensor arrays. Mechanical Systems and Signal Processing 2017; 93: 578-592.

J. Long and O. Buyukozturk. Decentralised One Class Kernel Classification Based Damage Detection and Localisation. Structural Control and Health Monitoring 2017; 24(6): e1930.

A. Davis, K.L. Bouman, J.G. Chen, M. Rubinstein, O. Buyukozturk, F. Durand and W.T. Freeman. Visual Vibrometry: Estimating Material Properties from Small Motions in Video. IEEE Transactions on Pattern Analysis and Machines Intelligence 2017; 39(4): 732-745.

Y-J. Cha, J. G. Chen and O. Buyukozturk. Output-only computer vision based damage detection using phase-based optical flow and unscented Kalman filters. Engineering Structures 2017; 132, 300-313. <

H. Sun, A. Mordret, G. A. Prieto, N. Toksoz and O. Buyukozturk. Bayesian characterization of buildings using seismic interferometry on ambient vibrations. Mechanical Systems and Signal Processing 2017; 85: 468-486.

J. G. Chen, A. Davis, N. Wadhwa, F. Durand, W. T. Freeman and O. Buyukozturk. Video camera-based vibration measurement for civil infrastructure applications. ASCE Journal of Infrastructure Systems 2016; in press. DOI: 10.1061/(ASCE)IS.1943-555X.0000348

N. Wadhwa, H-Y. Wu, A. Davis, M. Rubinstein, E. Shih, G. J. Mysore, J. G. Chen, O. Buyukozturk, J. V. Guttag, W. T. Freeman and F. Durand. Eulerian video magnification and analysis. Communications of ACM 2016; 60(1): 87-95.

Y-J. Cha, P. Trocha and O. Buyukozturk. Field measurement based system identification and dynamic response prediction of a unique MIT building. Sensors 2016; 16(7): 1016.

J. G. Chen, N. Wadhwa, Y.-J. Cha, F. Durand, W. T. Freeman and O. Buyukozturk. Modal Identification of Simple Structures with High-Speed Video using Motion Magnification. Journal of Sound and Vibration 2015; 345: 58-71.

 

Project Team

PI: Oral Buyukozturk (CEE) and William Freeman (CSAIL)
MIT Civil and Environmental Engineering (CEE)
MIT Computer Science and Artificial Intelligence Laboratory (CSAIL)
Shell TechWorks
  • Jay Petrie
  • Michelle Estaphan Owen
  • Jeff Weeks
  • Hector Padilla
  • Yin-Xiao Liu
Draper Lab
  • Michael Feng
  • Phil Babcock
  • Brianna Klingensmith
  • Pete Sherman
  • Jeff Swidrak
  • Roger Wilmarth

Sponsors

Shell Global through MIT Energy Initiative

 

Back to top