Primitive Type f641.0.0 [−]
The 64-bit floating point type.
Methods
impl f64
[src]
pub fn is_nan(self) -> bool
[src]
Returns true
if this value is NaN
and false otherwise.
use std::f64; let nan = f64::NAN; let f = 7.0_f64; assert!(nan.is_nan()); assert!(!f.is_nan());Run
pub fn is_infinite(self) -> bool
[src]
Returns true
if this value is positive infinity or negative infinity and
false otherwise.
use std::f64; let f = 7.0f64; let inf = f64::INFINITY; let neg_inf = f64::NEG_INFINITY; let nan = f64::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());Run
pub fn is_finite(self) -> bool
[src]
Returns true
if this number is neither infinite nor NaN
.
use std::f64; let f = 7.0f64; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());Run
pub fn is_normal(self) -> bool
[src]
Returns true
if the number is neither zero, infinite,
subnormal, or NaN
.
use std::f64; let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64 let max = f64::MAX; let lower_than_min = 1.0e-308_f64; let zero = 0.0f64; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f64::NAN.is_normal()); assert!(!f64::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());Run
pub fn classify(self) -> FpCategory
[src]
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use std::num::FpCategory; use std::f64; let num = 12.4_f64; let inf = f64::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);Run
pub fn floor(self) -> f64
[src]
Returns the largest integer less than or equal to a number.
let f = 3.99_f64; let g = 3.0_f64; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0);Run
pub fn ceil(self) -> f64
[src]
Returns the smallest integer greater than or equal to a number.
let f = 3.01_f64; let g = 4.0_f64; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0);Run
pub fn round(self) -> f64
[src]
Returns the nearest integer to a number. Round half-way cases away from
0.0
.
let f = 3.3_f64; let g = -3.3_f64; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0);Run
pub fn trunc(self) -> f64
[src]
Returns the integer part of a number.
let f = 3.3_f64; let g = -3.7_f64; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0);Run
pub fn fract(self) -> f64
[src]
Returns the fractional part of a number.
let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);Run
pub fn abs(self) -> f64
[src]
Computes the absolute value of self
. Returns NAN
if the
number is NAN
.
use std::f64; let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10); assert!(f64::NAN.abs().is_nan());Run
pub fn signum(self) -> f64
[src]
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orINFINITY
-1.0
if the number is negative,-0.0
orNEG_INFINITY
NAN
if the number isNAN
use std::f64; let f = 3.5_f64; assert_eq!(f.signum(), 1.0); assert_eq!(f64::NEG_INFINITY.signum(), -1.0); assert!(f64::NAN.signum().is_nan());Run
pub fn is_sign_positive(self) -> bool
[src]
Returns true
if and only if self
has a positive sign, including +0.0
, NaN
s with
positive sign bit and positive infinity.
let f = 7.0_f64; let g = -7.0_f64; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive());Run
pub fn is_positive(self) -> bool
[src]
: renamed to is_sign_positive
pub fn is_sign_negative(self) -> bool
[src]
Returns true
if and only if self
has a negative sign, including -0.0
, NaN
s with
negative sign bit and negative infinity.
let f = 7.0_f64; let g = -7.0_f64; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative());Run
pub fn is_negative(self) -> bool
[src]
: renamed to is_sign_negative
pub fn mul_add(self, a: f64, b: f64) -> f64
[src]
Fused multiply-add. Computes (self * a) + b
with only one rounding
error. This produces a more accurate result with better performance than
a separate multiplication operation followed by an add.
let m = 10.0_f64; let x = 4.0_f64; let b = 60.0_f64; // 100.0 let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); assert!(abs_difference < 1e-10);Run
pub fn recip(self) -> f64
[src]
Takes the reciprocal (inverse) of a number, 1/x
.
let x = 2.0_f64; let abs_difference = (x.recip() - (1.0/x)).abs(); assert!(abs_difference < 1e-10);Run
pub fn powi(self, n: i32) -> f64
[src]
Raises a number to an integer power.
Using this function is generally faster than using powf
let x = 2.0_f64; let abs_difference = (x.powi(2) - x*x).abs(); assert!(abs_difference < 1e-10);Run
pub fn powf(self, n: f64) -> f64
[src]
Raises a number to a floating point power.
let x = 2.0_f64; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference < 1e-10);Run
pub fn sqrt(self) -> f64
[src]
Takes the square root of a number.
Returns NaN if self
is a negative number.
let positive = 4.0_f64; let negative = -4.0_f64; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference < 1e-10); assert!(negative.sqrt().is_nan());Run
pub fn exp(self) -> f64
[src]
Returns e^(self)
, (the exponential function).
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn exp2(self) -> f64
[src]
Returns 2^(self)
.
let f = 2.0_f64; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn ln(self) -> f64
[src]
Returns the natural logarithm of the number.
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn log(self, base: f64) -> f64
[src]
Returns the logarithm of the number with respect to an arbitrary base.
The result may not be correctly rounded owing to implementation details;
self.log2()
can produce more accurate results for base 2, and
self.log10()
can produce more accurate results for base 10.
let five = 5.0_f64; // log5(5) - 1 == 0 let abs_difference = (five.log(5.0) - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn log2(self) -> f64
[src]
Returns the base 2 logarithm of the number.
let two = 2.0_f64; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn log10(self) -> f64
[src]
Returns the base 10 logarithm of the number.
let ten = 10.0_f64; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn to_degrees(self) -> f64
[src]
Converts radians to degrees.
use std::f64::consts; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn to_radians(self) -> f64
[src]
Converts degrees to radians.
use std::f64::consts; let angle = 180.0_f64; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference < 1e-10);Run
pub fn max(self, other: f64) -> f64
[src]
Returns the maximum of the two numbers.
let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.max(y), y);Run
If one of the arguments is NaN, then the other argument is returned.
pub fn min(self, other: f64) -> f64
[src]
Returns the minimum of the two numbers.
let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.min(y), x);Run
If one of the arguments is NaN, then the other argument is returned.
pub fn abs_sub(self, other: f64) -> f64
[src]
: you probably meant (self - other).abs()
: this operation is (self - other).max(0.0)
(also known as fdim
in C). If you truly need the positive difference, consider using that expression or the C function fdim
, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).
The positive difference of two numbers.
- If
self <= other
:0:0
- Else:
self - other
let x = 3.0_f64; let y = -3.0_f64; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);Run
pub fn cbrt(self) -> f64
[src]
Takes the cubic root of a number.
let x = 8.0_f64; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn hypot(self, other: f64) -> f64
[src]
Calculates the length of the hypotenuse of a right-angle triangle given
legs of length x
and y
.
let x = 2.0_f64; let y = 3.0_f64; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference < 1e-10);Run
pub fn sin(self) -> f64
[src]
Computes the sine of a number (in radians).
use std::f64; let x = f64::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn cos(self) -> f64
[src]
Computes the cosine of a number (in radians).
use std::f64; let x = 2.0*f64::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn tan(self) -> f64
[src]
Computes the tangent of a number (in radians).
use std::f64; let x = f64::consts::PI/4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference < 1e-14);Run
pub fn asin(self) -> f64
[src]
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
use std::f64; let f = f64::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn acos(self) -> f64
[src]
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
use std::f64; let f = f64::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn atan(self) -> f64
[src]
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
let f = 1.0_f64; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn atan2(self, other: f64) -> f64
[src]
Computes the four quadrant arctangent of self
(y
) and other
(x
).
x = 0
,y = 0
:0
x >= 0
:arctan(y/x)
->[-pi/2, pi/2]
y >= 0
:arctan(y/x) + pi
->(pi/2, pi]
y < 0
:arctan(y/x) - pi
->(-pi, -pi/2)
use std::f64; let pi = f64::consts::PI; // All angles from horizontal right (+x) // 45 deg counter-clockwise let x1 = 3.0_f64; let y1 = -3.0_f64; // 135 deg clockwise let x2 = -3.0_f64; let y2 = 3.0_f64; let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); assert!(abs_difference_1 < 1e-10); assert!(abs_difference_2 < 1e-10);Run
pub fn sin_cos(self) -> (f64, f64)
[src]
Simultaneously computes the sine and cosine of the number, x
. Returns
(sin(x), cos(x))
.
use std::f64; let x = f64::consts::PI/4.0; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10);Run
pub fn exp_m1(self) -> f64
[src]
Returns e^(self) - 1
in a way that is accurate even if the
number is close to zero.
let x = 7.0_f64; // e^(ln(7)) - 1 let abs_difference = (x.ln().exp_m1() - 6.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn ln_1p(self) -> f64
[src]
Returns ln(1+n)
(natural logarithm) more accurately than if
the operations were performed separately.
use std::f64; let x = f64::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn sinh(self) -> f64
[src]
Hyperbolic sine function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference < 1e-10);Run
pub fn cosh(self) -> f64
[src]
Hyperbolic cosine function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference < 1.0e-10);Run
pub fn tanh(self) -> f64
[src]
Hyperbolic tangent function.
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference < 1.0e-10);Run
pub fn asinh(self) -> f64
[src]
Inverse hyperbolic sine function.
let x = 1.0_f64; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);Run
pub fn acosh(self) -> f64
[src]
Inverse hyperbolic cosine function.
let x = 1.0_f64; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);Run
pub fn atanh(self) -> f64
[src]
Inverse hyperbolic tangent function.
use std::f64; let e = f64::consts::E; let f = e.tanh().atanh(); let abs_difference = (f - e).abs(); assert!(abs_difference < 1.0e-10);Run
pub fn to_bits(self) -> u64
1.20.0[src]
Raw transmutation to u64
.
This is currently identical to transmute::<f64, u64>(self)
on all platforms.
See from_bits
for some discussion of the portability of this operation
(there are almost no issues).
Note that this function is distinct from as
casting, which attempts to
preserve the numeric value, and not the bitwise value.
Examples
assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting! assert_eq!((12.5f64).to_bits(), 0x4029000000000000); Run
pub fn from_bits(v: u64) -> Self
1.20.0[src]
Raw transmutation from u64
.
This is currently identical to transmute::<u64, f64>(v)
on all platforms.
It turns out this is incredibly portable, for two reasons:
- Floats and Ints have the same endianess on all supported platforms.
- IEEE-754 very precisely specifies the bit layout of floats.
However there is one caveat: prior to the 2008 version of IEEE-754, how to interpret the NaN signaling bit wasn't actually specified. Most platforms (notably x86 and ARM) picked the interpretation that was ultimately standardized in 2008, but some didn't (notably MIPS). As a result, all signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
Rather than trying to preserve signaling-ness cross-platform, this implementation favours preserving the exact bits. This means that any payloads encoded in NaNs will be preserved even if the result of this method is sent over the network from an x86 machine to a MIPS one.
If the results of this method are only manipulated by the same architecture that produced them, then there is no portability concern.
If the input isn't NaN, then there is no portability concern.
If you don't care about signalingness (very likely), then there is no portability concern.
Note that this function is distinct from as
casting, which attempts to
preserve the numeric value, and not the bitwise value.
Examples
use std::f64; let v = f64::from_bits(0x4029000000000000); let difference = (v - 12.5).abs(); assert!(difference <= 1e-5);Run
Trait Implementations
impl FromStr for f64
[src]
type Err = ParseFloatError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<f64, ParseFloatError>
[src]
Converts a string in base 10 to a float. Accepts an optional decimal exponent.
This function accepts strings such as
- '3.14'
- '-3.14'
- '2.5E10', or equivalently, '2.5e10'
- '2.5E-10'
- '5.'
- '.5', or, equivalently, '0.5'
- 'inf', '-inf', 'NaN'
Leading and trailing whitespace represent an error.
Arguments
- src - A string
Return value
Err(ParseFloatError)
if the string did not represent a valid
number. Otherwise, Ok(n)
where n
is the floating-point
number represented by src
.
impl Sub<f64> for f64
[src]
type Output = f64
The resulting type after applying the -
operator.
fn sub(self, other: f64) -> f64
[src]
Performs the -
operation.
impl<'a> Sub<f64> for &'a f64
[src]
type Output = <f64 as Sub<f64>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: f64) -> <f64 as Sub<f64>>::Output
[src]
Performs the -
operation.
impl<'a, 'b> Sub<&'a f64> for &'b f64
[src]
type Output = <f64 as Sub<f64>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::Output
[src]
Performs the -
operation.
impl<'a> Sub<&'a f64> for f64
[src]
type Output = <f64 as Sub<f64>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::Output
[src]
Performs the -
operation.
impl Debug for f64
[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
[src]
Formats the value using the given formatter. Read more
impl UpperExp for f64
[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
[src]
Formats the value using the given formatter.
impl<'a> Rem<f64> for &'a f64
[src]
type Output = <f64 as Rem<f64>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: f64) -> <f64 as Rem<f64>>::Output
[src]
Performs the %
operation.
impl Rem<f64> for f64
[src]
type Output = f64
The resulting type after applying the %
operator.
fn rem(self, other: f64) -> f64
[src]
Performs the %
operation.
impl<'a, 'b> Rem<&'a f64> for &'b f64
[src]
type Output = <f64 as Rem<f64>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::Output
[src]
Performs the %
operation.
impl<'a> Rem<&'a f64> for f64
[src]
type Output = <f64 as Rem<f64>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::Output
[src]
Performs the %
operation.
impl Product<f64> for f64
1.12.0[src]
fn product<I>(iter: I) -> f64 where
I: Iterator<Item = f64>,
[src]
I: Iterator<Item = f64>,
Method which takes an iterator and generates Self
from the elements by multiplying the items. Read more
impl<'a> Product<&'a f64> for f64
1.12.0[src]
fn product<I>(iter: I) -> f64 where
I: Iterator<Item = &'a f64>,
[src]
I: Iterator<Item = &'a f64>,
Method which takes an iterator and generates Self
from the elements by multiplying the items. Read more
impl Mul<f64> for f64
[src]
type Output = f64
The resulting type after applying the *
operator.
fn mul(self, other: f64) -> f64
[src]
Performs the *
operation.
impl<'a> Mul<f64> for &'a f64
[src]
type Output = <f64 as Mul<f64>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: f64) -> <f64 as Mul<f64>>::Output
[src]
Performs the *
operation.
impl<'a, 'b> Mul<&'a f64> for &'b f64
[src]
type Output = <f64 as Mul<f64>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::Output
[src]
Performs the *
operation.
impl<'a> Mul<&'a f64> for f64
[src]
type Output = <f64 as Mul<f64>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::Output
[src]
Performs the *
operation.
impl Default for f64
[src]
impl PartialOrd<f64> for f64
[src]
fn partial_cmp(&self, other: &f64) -> Option<Ordering>
[src]
This method returns an ordering between self
and other
values if one exists. Read more
fn lt(&self, other: &f64) -> bool
[src]
This method tests less than (for self
and other
) and is used by the <
operator. Read more
fn le(&self, other: &f64) -> bool
[src]
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
fn ge(&self, other: &f64) -> bool
[src]
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
fn gt(&self, other: &f64) -> bool
[src]
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
impl LowerExp for f64
[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
[src]
Formats the value using the given formatter.
impl<'a> Div<f64> for &'a f64
[src]
type Output = <f64 as Div<f64>>::Output
The resulting type after applying the /
operator.
fn div(self, other: f64) -> <f64 as Div<f64>>::Output
[src]
Performs the /
operation.
impl<'a, 'b> Div<&'a f64> for &'b f64
[src]
type Output = <f64 as Div<f64>>::Output
The resulting type after applying the /
operator.
fn div(self, other: &'a f64) -> <f64 as Div<f64>>::Output
[src]
Performs the /
operation.
impl<'a> Div<&'a f64> for f64
[src]
type Output = <f64 as Div<f64>>::Output
The resulting type after applying the /
operator.
fn div(self, other: &'a f64) -> <f64 as Div<f64>>::Output
[src]
Performs the /
operation.
impl Div<f64> for f64
[src]
type Output = f64
The resulting type after applying the /
operator.
fn div(self, other: f64) -> f64
[src]
Performs the /
operation.
impl<'a> Sum<&'a f64> for f64
1.12.0[src]
fn sum<I>(iter: I) -> f64 where
I: Iterator<Item = &'a f64>,
[src]
I: Iterator<Item = &'a f64>,
Method which takes an iterator and generates Self
from the elements by "summing up" the items. Read more
impl Sum<f64> for f64
1.12.0[src]
fn sum<I>(iter: I) -> f64 where
I: Iterator<Item = f64>,
[src]
I: Iterator<Item = f64>,
Method which takes an iterator and generates Self
from the elements by "summing up" the items. Read more
impl Display for f64
[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
[src]
Formats the value using the given formatter. Read more
impl PartialEq<f64> for f64
[src]
fn eq(&self, other: &f64) -> bool
[src]
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &f64) -> bool
[src]
This method tests for !=
.
impl<'a, 'b> Add<&'a f64> for &'b f64
[src]
type Output = <f64 as Add<f64>>::Output
The resulting type after applying the +
operator.
fn add(self, other: &'a f64) -> <f64 as Add<f64>>::Output
[src]
Performs the +
operation.
impl<'a> Add<&'a f64> for f64
[src]
type Output = <f64 as Add<f64>>::Output
The resulting type after applying the +
operator.
fn add(self, other: &'a f64) -> <f64 as Add<f64>>::Output
[src]
Performs the +
operation.
impl Add<f64> for f64
[src]
type Output = f64
The resulting type after applying the +
operator.
fn add(self, other: f64) -> f64
[src]
Performs the +
operation.
impl<'a> Add<f64> for &'a f64
[src]
type Output = <f64 as Add<f64>>::Output
The resulting type after applying the +
operator.
fn add(self, other: f64) -> <f64 as Add<f64>>::Output
[src]
Performs the +
operation.
impl From<u8> for f64
1.6.0[src]
impl From<f32> for f64
1.6.0[src]
impl From<u32> for f64
1.6.0[src]
impl From<i8> for f64
1.6.0[src]
impl From<u16> for f64
1.6.0[src]
impl From<i16> for f64
1.6.0[src]
impl From<i32> for f64
1.6.0[src]
impl<'a> RemAssign<&'a f64> for f64
1.22.0[src]
fn rem_assign(&mut self, other: &'a f64)
[src]
Performs the %=
operation.
impl RemAssign<f64> for f64
1.8.0[src]
fn rem_assign(&mut self, other: f64)
[src]
Performs the %=
operation.
impl DivAssign<f64> for f64
1.8.0[src]
fn div_assign(&mut self, other: f64)
[src]
Performs the /=
operation.
impl<'a> DivAssign<&'a f64> for f64
1.22.0[src]
fn div_assign(&mut self, other: &'a f64)
[src]
Performs the /=
operation.
impl MulAssign<f64> for f64
1.8.0[src]
fn mul_assign(&mut self, other: f64)
[src]
Performs the *=
operation.
impl<'a> MulAssign<&'a f64> for f64
1.22.0[src]
fn mul_assign(&mut self, other: &'a f64)
[src]
Performs the *=
operation.
impl<'a> SubAssign<&'a f64> for f64
1.22.0[src]
fn sub_assign(&mut self, other: &'a f64)
[src]
Performs the -=
operation.
impl SubAssign<f64> for f64
1.8.0[src]
fn sub_assign(&mut self, other: f64)
[src]
Performs the -=
operation.
impl AddAssign<f64> for f64
1.8.0[src]
fn add_assign(&mut self, other: f64)
[src]
Performs the +=
operation.
impl<'a> AddAssign<&'a f64> for f64
1.22.0[src]
fn add_assign(&mut self, other: &'a f64)
[src]
Performs the +=
operation.
impl Neg for f64
[src]
type Output = f64
The resulting type after applying the -
operator.
fn neg(self) -> f64
[src]
Performs the unary -
operation.