Primitive Type str1.0.0 []

String slices.

The str type, also called a 'string slice', is the most primitive string type. It is usually seen in its borrowed form, &str. It is also the type of string literals, &'static str.

Strings slices are always valid UTF-8.

This documentation describes a number of methods and trait implementations on the str type. For technical reasons, there is additional, separate documentation in the std::str module as well.

Examples

String literals are string slices:

let hello = "Hello, world!";

// with an explicit type annotation
let hello: &'static str = "Hello, world!";Run

They are 'static because they're stored directly in the final binary, and so will be valid for the 'static duration.

Representation

A &str is made up of two components: a pointer to some bytes, and a length. You can look at these with the as_ptr and len methods:

use std::slice;
use std::str;

let story = "Once upon a time...";

let ptr = story.as_ptr();
let len = story.len();

// story has nineteen bytes
assert_eq!(19, len);

// We can re-build a str out of ptr and len. This is all unsafe because
// we are responsible for making sure the two components are valid:
let s = unsafe {
    // First, we build a &[u8]...
    let slice = slice::from_raw_parts(ptr, len);

    // ... and then convert that slice into a string slice
    str::from_utf8(slice)
};

assert_eq!(s, Ok(story));Run

Note: This example shows the internals of &str. unsafe should not be used to get a string slice under normal circumstances. Use as_slice instead.

Methods

impl str
[src]

Methods for string slices.

[src]

Returns the length of self.

This length is in bytes, not chars or graphemes. In other words, it may not be what a human considers the length of the string.

Examples

Basic usage:

let len = "foo".len();
assert_eq!(3, len);

let len = "ƒoo".len(); // fancy f!
assert_eq!(4, len);Run

[src]

Returns true if self has a length of zero bytes.

Examples

Basic usage:

let s = "";
assert!(s.is_empty());

let s = "not empty";
assert!(!s.is_empty());Run

1.9.0
[src]

Checks that index-th byte lies at the start and/or end of a UTF-8 code point sequence.

The start and end of the string (when index == self.len()) are considered to be boundaries.

Returns false if index is greater than self.len().

Examples

let s = "Löwe 老虎 Léopard";
assert!(s.is_char_boundary(0));
// start of `老`
assert!(s.is_char_boundary(6));
assert!(s.is_char_boundary(s.len()));

// second byte of `ö`
assert!(!s.is_char_boundary(2));

// third byte of `老`
assert!(!s.is_char_boundary(8));Run

Important traits for &'a [u8]
[src]

Converts a string slice to a byte slice. To convert the byte slice back into a string slice, use the str::from_utf8 function.

Examples

Basic usage:

let bytes = "bors".as_bytes();
assert_eq!(b"bors", bytes);Run

Important traits for &'a [u8]
1.20.0
[src]

Converts a mutable string slice to a mutable byte slice. To convert the mutable byte slice back into a mutable string slice, use the str::from_utf8_mut function.

Examples

Basic usage:

let mut s = String::from("Hello");
let bytes = unsafe { s.as_bytes_mut() };

assert_eq!(b"Hello", bytes);Run

Mutability:

let mut s = String::from("🗻∈🌏");

unsafe {
    let bytes = s.as_bytes_mut();

    bytes[0] = 0xF0;
    bytes[1] = 0x9F;
    bytes[2] = 0x8D;
    bytes[3] = 0x94;
}

assert_eq!("🍔∈🌏", s);Run

[src]

Converts a string slice to a raw pointer.

As string slices are a slice of bytes, the raw pointer points to a u8. This pointer will be pointing to the first byte of the string slice.

Examples

Basic usage:

let s = "Hello";
let ptr = s.as_ptr();Run

1.20.0
[src]

Returns a subslice of str.

This is the non-panicking alternative to indexing the str. Returns None whenever equivalent indexing operation would panic.

Examples

let v = String::from("🗻∈🌏");

assert_eq!(Some("🗻"), v.get(0..4));

// indices not on UTF-8 sequence boundaries
assert!(v.get(1..).is_none());
assert!(v.get(..8).is_none());

// out of bounds
assert!(v.get(..42).is_none());Run

1.20.0
[src]

Returns a mutable subslice of str.

This is the non-panicking alternative to indexing the str. Returns None whenever equivalent indexing operation would panic.

Examples

let mut v = String::from("hello");
// correct length
assert!(v.get_mut(0..5).is_some());
// out of bounds
assert!(v.get_mut(..42).is_none());
assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));

assert_eq!("hello", v);
{
    let s = v.get_mut(0..2);
    let s = s.map(|s| {
        s.make_ascii_uppercase();
        &*s
    });
    assert_eq!(Some("HE"), s);
}
assert_eq!("HEllo", v);Run

1.20.0
[src]

Returns a unchecked subslice of str.

This is the unchecked alternative to indexing the str.

Safety

Callers of this function are responsible that these preconditions are satisfied:

  • The starting index must come before the ending index;
  • Indexes must be within bounds of the original slice;
  • Indexes must lie on UTF-8 sequence boundaries.

Failing that, the returned string slice may reference invalid memory or violate the invariants communicated by the str type.

Examples

let v = "🗻∈🌏";
unsafe {
    assert_eq!("🗻", v.get_unchecked(0..4));
    assert_eq!("∈", v.get_unchecked(4..7));
    assert_eq!("🌏", v.get_unchecked(7..11));
}Run

1.20.0
[src]

Returns a mutable, unchecked subslice of str.

This is the unchecked alternative to indexing the str.

Safety

Callers of this function are responsible that these preconditions are satisfied:

  • The starting index must come before the ending index;
  • Indexes must be within bounds of the original slice;
  • Indexes must lie on UTF-8 sequence boundaries.

Failing that, the returned string slice may reference invalid memory or violate the invariants communicated by the str type.

Examples

let mut v = String::from("🗻∈🌏");
unsafe {
    assert_eq!("🗻", v.get_unchecked_mut(0..4));
    assert_eq!("∈", v.get_unchecked_mut(4..7));
    assert_eq!("🌏", v.get_unchecked_mut(7..11));
}Run

[src]

Creates a string slice from another string slice, bypassing safety checks.

This is generally not recommended, use with caution! For a safe alternative see str and Index.

This new slice goes from begin to end, including begin but excluding end.

To get a mutable string slice instead, see the slice_mut_unchecked method.

Safety

Callers of this function are responsible that three preconditions are satisfied:

  • begin must come before end.
  • begin and end must be byte positions within the string slice.
  • begin and end must lie on UTF-8 sequence boundaries.

Examples

Basic usage:

let s = "Löwe 老虎 Léopard";

unsafe {
    assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
}

let s = "Hello, world!";

unsafe {
    assert_eq!("world", s.slice_unchecked(7, 12));
}Run

1.5.0
[src]

Creates a string slice from another string slice, bypassing safety checks. This is generally not recommended, use with caution! For a safe alternative see str and IndexMut.

This new slice goes from begin to end, including begin but excluding end.

To get an immutable string slice instead, see the slice_unchecked method.

Safety

Callers of this function are responsible that three preconditions are satisfied:

  • begin must come before end.
  • begin and end must be byte positions within the string slice.
  • begin and end must lie on UTF-8 sequence boundaries.

1.4.0
[src]

Divide one string slice into two at an index.

The argument, mid, should be a byte offset from the start of the string. It must also be on the boundary of a UTF-8 code point.

The two slices returned go from the start of the string slice to mid, and from mid to the end of the string slice.

To get mutable string slices instead, see the split_at_mut method.

Panics

Panics if mid is not on a UTF-8 code point boundary, or if it is beyond the last code point of the string slice.

Examples

Basic usage:

let s = "Per Martin-Löf";

let (first, last) = s.split_at(3);

assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);Run

1.4.0
[src]

Divide one mutable string slice into two at an index.

The argument, mid, should be a byte offset from the start of the string. It must also be on the boundary of a UTF-8 code point.

The two slices returned go from the start of the string slice to mid, and from mid to the end of the string slice.

To get immutable string slices instead, see the split_at method.

Panics

Panics if mid is not on a UTF-8 code point boundary, or if it is beyond the last code point of the string slice.

Examples

Basic usage:

let mut s = "Per Martin-Löf".to_string();
{
    let (first, last) = s.split_at_mut(3);
    first.make_ascii_uppercase();
    assert_eq!("PER", first);
    assert_eq!(" Martin-Löf", last);
}
assert_eq!("PER Martin-Löf", s);Run

Important traits for Chars<'a>
[src]

Returns an iterator over the chars of a string slice.

As a string slice consists of valid UTF-8, we can iterate through a string slice by char. This method returns such an iterator.

It's important to remember that char represents a Unicode Scalar Value, and may not match your idea of what a 'character' is. Iteration over grapheme clusters may be what you actually want.

Examples

Basic usage:

let word = "goodbye";

let count = word.chars().count();
assert_eq!(7, count);

let mut chars = word.chars();

assert_eq!(Some('g'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('d'), chars.next());
assert_eq!(Some('b'), chars.next());
assert_eq!(Some('y'), chars.next());
assert_eq!(Some('e'), chars.next());

assert_eq!(None, chars.next());Run

Remember, chars may not match your human intuition about characters:

let y = "y̆";

let mut chars = y.chars();

assert_eq!(Some('y'), chars.next()); // not 'y̆'
assert_eq!(Some('\u{0306}'), chars.next());

assert_eq!(None, chars.next());Run

Important traits for CharIndices<'a>
[src]

Returns an iterator over the chars of a string slice, and their positions.

As a string slice consists of valid UTF-8, we can iterate through a string slice by char. This method returns an iterator of both these chars, as well as their byte positions.

The iterator yields tuples. The position is first, the char is second.

Examples

Basic usage:

let word = "goodbye";

let count = word.char_indices().count();
assert_eq!(7, count);

let mut char_indices = word.char_indices();

assert_eq!(Some((0, 'g')), char_indices.next());
assert_eq!(Some((1, 'o')), char_indices.next());
assert_eq!(Some((2, 'o')), char_indices.next());
assert_eq!(Some((3, 'd')), char_indices.next());
assert_eq!(Some((4, 'b')), char_indices.next());
assert_eq!(Some((5, 'y')), char_indices.next());
assert_eq!(Some((6, 'e')), char_indices.next());

assert_eq!(None, char_indices.next());Run

Remember, chars may not match your human intuition about characters:

let yes = "y̆es";

let mut char_indices = yes.char_indices();

assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
assert_eq!(Some((1, '\u{0306}')), char_indices.next());

// note the 3 here - the last character took up two bytes
assert_eq!(Some((3, 'e')), char_indices.next());
assert_eq!(Some((4, 's')), char_indices.next());

assert_eq!(None, char_indices.next());Run

Important traits for Bytes<'a>
[src]

An iterator over the bytes of a string slice.

As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.

Examples

Basic usage:

let mut bytes = "bors".bytes();

assert_eq!(Some(b'b'), bytes.next());
assert_eq!(Some(b'o'), bytes.next());
assert_eq!(Some(b'r'), bytes.next());
assert_eq!(Some(b's'), bytes.next());

assert_eq!(None, bytes.next());Run

Important traits for SplitWhitespace<'a>
1.1.0
[src]

Split a string slice by whitespace.

The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.

'Whitespace' is defined according to the terms of the Unicode Derived Core Property White_Space.

Examples

Basic usage:

let mut iter = "A few words".split_whitespace();

assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());

assert_eq!(None, iter.next());Run

All kinds of whitespace are considered:

let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());

assert_eq!(None, iter.next());Run

Important traits for Lines<'a>
[src]

An iterator over the lines of a string, as string slices.

Lines are ended with either a newline (\n) or a carriage return with a line feed (\r\n).

The final line ending is optional.

Examples

Basic usage:

let text = "foo\r\nbar\n\nbaz\n";
let mut lines = text.lines();

assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());

assert_eq!(None, lines.next());Run

The final line ending isn't required:

let text = "foo\nbar\n\r\nbaz";
let mut lines = text.lines();

assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());

assert_eq!(None, lines.next());Run

Important traits for LinesAny<'a>
[src]

Deprecated since 1.4.0

: use lines() instead now

An iterator over the lines of a string.

Important traits for EncodeUtf16<'a>
1.8.0
[src]

Returns an iterator of u16 over the string encoded as UTF-16.

Examples

Basic usage:

let text = "Zażółć gęślą jaźń";

let utf8_len = text.len();
let utf16_len = text.encode_utf16().count();

assert!(utf16_len <= utf8_len);Run

[src]

Returns true if the given pattern matches a sub-slice of this string slice.

Returns false if it does not.

Examples

Basic usage:

let bananas = "bananas";

assert!(bananas.contains("nana"));
assert!(!bananas.contains("apples"));Run

[src]

Returns true if the given pattern matches a prefix of this string slice.

Returns false if it does not.

Examples

Basic usage:

let bananas = "bananas";

assert!(bananas.starts_with("bana"));
assert!(!bananas.starts_with("nana"));Run

[src]

Returns true if the given pattern matches a suffix of this string slice.

Returns false if it does not.

Examples

Basic usage:

let bananas = "bananas";

assert!(bananas.ends_with("anas"));
assert!(!bananas.ends_with("nana"));Run

[src]

Returns the byte index of the first character of this string slice that matches the pattern.

Returns None if the pattern doesn't match.

The pattern can be a &str, char, or a closure that determines if a character matches.

Examples

Simple patterns:

let s = "Löwe 老虎 Léopard";

assert_eq!(s.find('L'), Some(0));
assert_eq!(s.find('é'), Some(14));
assert_eq!(s.find("Léopard"), Some(13));Run

More complex patterns using point-free style and closures:

let s = "Löwe 老虎 Léopard";

assert_eq!(s.find(char::is_whitespace), Some(5));
assert_eq!(s.find(char::is_lowercase), Some(1));
assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));Run

Not finding the pattern:

let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];

assert_eq!(s.find(x), None);Run

[src]

Returns the byte index of the last character of this string slice that matches the pattern.

Returns None if the pattern doesn't match.

The pattern can be a &str, char, or a closure that determines if a character matches.

Examples

Simple patterns:

let s = "Löwe 老虎 Léopard";

assert_eq!(s.rfind('L'), Some(13));
assert_eq!(s.rfind('é'), Some(14));Run

More complex patterns with closures:

let s = "Löwe 老虎 Léopard";

assert_eq!(s.rfind(char::is_whitespace), Some(12));
assert_eq!(s.rfind(char::is_lowercase), Some(20));Run

Not finding the pattern:

let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];

assert_eq!(s.rfind(x), None);Run

Important traits for Split<'a, P>
[src]

An iterator over substrings of this string slice, separated by characters matched by a pattern.

The pattern can be a &str, char, or a closure that determines the split.

Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, eg, char but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rsplit method can be used.

Examples

Simple patterns:

let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);

let v: Vec<&str> = "".split('X').collect();
assert_eq!(v, [""]);

let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
assert_eq!(v, ["lion", "", "tiger", "leopard"]);

let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);

let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
assert_eq!(v, ["abc", "def", "ghi"]);

let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);Run

A more complex pattern, using a closure:

let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "def", "ghi"]);Run

If a string contains multiple contiguous separators, you will end up with empty strings in the output:

let x = "||||a||b|c".to_string();
let d: Vec<_> = x.split('|').collect();

assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);Run

Contiguous separators are separated by the empty string.

let x = "(///)".to_string();
let d: Vec<_> = x.split('/').collect();

assert_eq!(d, &["(", "", "", ")"]);Run

Separators at the start or end of a string are neighbored by empty strings.

let d: Vec<_> = "010".split("0").collect();
assert_eq!(d, &["", "1", ""]);Run

When the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.

let f: Vec<_> = "rust".split("").collect();
assert_eq!(f, &["", "r", "u", "s", "t", ""]);Run

Contiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:

let x = "    a  b c".to_string();
let d: Vec<_> = x.split(' ').collect();

assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);Run

It does not give you:

This example is not tested
assert_eq!(d, &["a", "b", "c"]);Run

Use split_whitespace for this behavior.

Important traits for RSplit<'a, P>
[src]

An iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.

The pattern can be a &str, char, or a closure that determines the split.

Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be a DoubleEndedIterator if a forward/reverse search yields the same elements.

For iterating from the front, the split method can be used.

Examples

Simple patterns:

let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);

let v: Vec<&str> = "".rsplit('X').collect();
assert_eq!(v, [""]);

let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
assert_eq!(v, ["leopard", "tiger", "", "lion"]);

let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
assert_eq!(v, ["leopard", "tiger", "lion"]);Run

A more complex pattern, using a closure:

let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "def", "abc"]);Run

Important traits for SplitTerminator<'a, P>
[src]

An iterator over substrings of the given string slice, separated by characters matched by a pattern.

The pattern can be a &str, char, or a closure that determines the split.

Equivalent to split, except that the trailing substring is skipped if empty.

This method can be used for string data that is terminated, rather than separated by a pattern.

Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, eg, char but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rsplit_terminator method can be used.

Examples

Basic usage:

let v: Vec<&str> = "A.B.".split_terminator('.').collect();
assert_eq!(v, ["A", "B"]);

let v: Vec<&str> = "A..B..".split_terminator(".").collect();
assert_eq!(v, ["A", "", "B", ""]);Run

Important traits for RSplitTerminator<'a, P>
[src]

An iterator over substrings of self, separated by characters matched by a pattern and yielded in reverse order.

The pattern can be a simple &str, char, or a closure that determines the split. Additional libraries might provide more complex patterns like regular expressions.

Equivalent to split, except that the trailing substring is skipped if empty.

This method can be used for string data that is terminated, rather than separated by a pattern.

Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.

For iterating from the front, the split_terminator method can be used.

Examples

let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
assert_eq!(v, ["B", "A"]);

let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
assert_eq!(v, ["", "B", "", "A"]);Run

Important traits for SplitN<'a, P>
[src]

An iterator over substrings of the given string slice, separated by a pattern, restricted to returning at most n items.

If n substrings are returned, the last substring (the nth substring) will contain the remainder of the string.

The pattern can be a &str, char, or a closure that determines the split.

Iterator behavior

The returned iterator will not be double ended, because it is not efficient to support.

If the pattern allows a reverse search, the rsplitn method can be used.

Examples

Simple patterns:

let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
assert_eq!(v, ["Mary", "had", "a little lambda"]);

let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
assert_eq!(v, ["lion", "", "tigerXleopard"]);

let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
assert_eq!(v, ["abcXdef"]);

let v: Vec<&str> = "".splitn(1, 'X').collect();
assert_eq!(v, [""]);Run

A more complex pattern, using a closure:

let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "defXghi"]);Run

Important traits for RSplitN<'a, P>
[src]

An iterator over substrings of this string slice, separated by a pattern, starting from the end of the string, restricted to returning at most n items.

If n substrings are returned, the last substring (the nth substring) will contain the remainder of the string.

The pattern can be a &str, char, or a closure that determines the split.

Iterator behavior

The returned iterator will not be double ended, because it is not efficient to support.

For splitting from the front, the splitn method can be used.

Examples

Simple patterns:

let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
assert_eq!(v, ["lamb", "little", "Mary had a"]);

let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
assert_eq!(v, ["leopard", "tiger", "lionX"]);

let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
assert_eq!(v, ["leopard", "lion::tiger"]);Run

A more complex pattern, using a closure:

let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "abc1def"]);Run

Important traits for Matches<'a, P>
1.2.0
[src]

An iterator over the disjoint matches of a pattern within the given string slice.

The pattern can be a &str, char, or a closure that determines if a character matches.

Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, eg, char but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rmatches method can be used.

Examples

Basic usage:

let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);

let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
assert_eq!(v, ["1", "2", "3"]);Run

Important traits for RMatches<'a, P>
1.2.0
[src]

An iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.

The pattern can be a &str, char, or a closure that determines if a character matches.

Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be a DoubleEndedIterator if a forward/reverse search yields the same elements.

For iterating from the front, the matches method can be used.

Examples

Basic usage:

let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);

let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
assert_eq!(v, ["3", "2", "1"]);Run

Important traits for MatchIndices<'a, P>
1.5.0
[src]

An iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.

For matches of pat within self that overlap, only the indices corresponding to the first match are returned.

The pattern can be a &str, char, or a closure that determines if a character matches.

Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, eg, char but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rmatch_indices method can be used.

Examples

Basic usage:

let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);

let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
assert_eq!(v, [(1, "abc"), (4, "abc")]);

let v: Vec<_> = "ababa".match_indices("aba").collect();
assert_eq!(v, [(0, "aba")]); // only the first `aba`Run

Important traits for RMatchIndices<'a, P>
1.5.0
[src]

An iterator over the disjoint matches of a pattern within self, yielded in reverse order along with the index of the match.

For matches of pat within self that overlap, only the indices corresponding to the last match are returned.

The pattern can be a &str, char, or a closure that determines if a character matches.

Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be a DoubleEndedIterator if a forward/reverse search yields the same elements.

For iterating from the front, the match_indices method can be used.

Examples

Basic usage:

let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);

let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
assert_eq!(v, [(4, "abc"), (1, "abc")]);

let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
assert_eq!(v, [(2, "aba")]); // only the last `aba`Run

[src]

Returns a string slice with leading and trailing whitespace removed.

'Whitespace' is defined according to the terms of the Unicode Derived Core Property White_Space.

Examples

Basic usage:

let s = " Hello\tworld\t";

assert_eq!("Hello\tworld", s.trim());Run

[src]

Returns a string slice with leading whitespace removed.

'Whitespace' is defined according to the terms of the Unicode Derived Core Property White_Space.

Text directionality

A string is a sequence of bytes. 'Left' in this context means the first position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the right side, not the left.

Examples

Basic usage:

let s = " Hello\tworld\t";

assert_eq!("Hello\tworld\t", s.trim_left());Run

Directionality:

let s = "  English";
assert!(Some('E') == s.trim_left().chars().next());

let s = "  עברית";
assert!(Some('ע') == s.trim_left().chars().next());Run

[src]

Returns a string slice with trailing whitespace removed.

'Whitespace' is defined according to the terms of the Unicode Derived Core Property White_Space.

Text directionality

A string is a sequence of bytes. 'Right' in this context means the last position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the left side, not the right.

Examples

Basic usage:

let s = " Hello\tworld\t";

assert_eq!(" Hello\tworld", s.trim_right());Run

Directionality:

let s = "English  ";
assert!(Some('h') == s.trim_right().chars().rev().next());

let s = "עברית  ";
assert!(Some('ת') == s.trim_right().chars().rev().next());Run

[src]

Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.

The pattern can be a char or a closure that determines if a character matches.

Examples

Simple patterns:

assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");

let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");Run

A more complex pattern, using a closure:

assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");Run

[src]

Returns a string slice with all prefixes that match a pattern repeatedly removed.

The pattern can be a &str, char, or a closure that determines if a character matches.

Text directionality

A string is a sequence of bytes. 'Left' in this context means the first position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the right side, not the left.

Examples

Basic usage:

assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");

let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");Run

[src]

Returns a string slice with all suffixes that match a pattern repeatedly removed.

The pattern can be a &str, char, or a closure that determines if a character matches.

Text directionality

A string is a sequence of bytes. 'Right' in this context means the last position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the left side, not the right.

Examples

Simple patterns:

assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");

let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");Run

A more complex pattern, using a closure:

assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");Run

[src]

Parses this string slice into another type.

Because parse is so general, it can cause problems with type inference. As such, parse is one of the few times you'll see the syntax affectionately known as the 'turbofish': ::<>. This helps the inference algorithm understand specifically which type you're trying to parse into.

parse can parse any type that implements the FromStr trait.

Errors

Will return Err if it's not possible to parse this string slice into the desired type.

Examples

Basic usage

let four: u32 = "4".parse().unwrap();

assert_eq!(4, four);Run

Using the 'turbofish' instead of annotating four:

let four = "4".parse::<u32>();

assert_eq!(Ok(4), four);Run

Failing to parse:

let nope = "j".parse::<u32>();

assert!(nope.is_err());Run

Important traits for Box<I>
1.20.0
[src]

Converts a Box<str> into a Box<[u8]> without copying or allocating.

Examples

Basic usage:

let s = "this is a string";
let boxed_str = s.to_owned().into_boxed_str();
let boxed_bytes = boxed_str.into_boxed_bytes();
assert_eq!(*boxed_bytes, *s.as_bytes());Run

[src]

Replaces all matches of a pattern with another string.

replace creates a new String, and copies the data from this string slice into it. While doing so, it attempts to find matches of a pattern. If it finds any, it replaces them with the replacement string slice.

Examples

Basic usage:

let s = "this is old";

assert_eq!("this is new", s.replace("old", "new"));Run

When the pattern doesn't match:

let s = "this is old";
assert_eq!(s, s.replace("cookie monster", "little lamb"));Run

1.16.0
[src]

Replaces first N matches of a pattern with another string.

replacen creates a new String, and copies the data from this string slice into it. While doing so, it attempts to find matches of a pattern. If it finds any, it replaces them with the replacement string slice at most count times.

Examples

Basic usage:

let s = "foo foo 123 foo";
assert_eq!("new new 123 foo", s.replacen("foo", "new", 2));
assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3));
assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1));Run

When the pattern doesn't match:

let s = "this is old";
assert_eq!(s, s.replacen("cookie monster", "little lamb", 10));Run

1.2.0
[src]

Returns the lowercase equivalent of this string slice, as a new String.

'Lowercase' is defined according to the terms of the Unicode Derived Core Property Lowercase.

Since some characters can expand into multiple characters when changing the case, this function returns a String instead of modifying the parameter in-place.

Examples

Basic usage:

let s = "HELLO";

assert_eq!("hello", s.to_lowercase());Run

A tricky example, with sigma:

let sigma = "Σ";

assert_eq!("σ", sigma.to_lowercase());

// but at the end of a word, it's ς, not σ:
let odysseus = "ὈΔΥΣΣΕΎΣ";

assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());Run

Languages without case are not changed:

let new_year = "农历新年";

assert_eq!(new_year, new_year.to_lowercase());Run

1.2.0
[src]

Returns the uppercase equivalent of this string slice, as a new String.

'Uppercase' is defined according to the terms of the Unicode Derived Core Property Uppercase.

Since some characters can expand into multiple characters when changing the case, this function returns a String instead of modifying the parameter in-place.

Examples

Basic usage:

let s = "hello";

assert_eq!("HELLO", s.to_uppercase());Run

Scripts without case are not changed:

let new_year = "农历新年";

assert_eq!(new_year, new_year.to_uppercase());Run

[src]

🔬 This is a nightly-only experimental API. (str_escape #27791)

return type may change to be an iterator

Escapes each char in s with char::escape_debug.

[src]

🔬 This is a nightly-only experimental API. (str_escape #27791)

return type may change to be an iterator

Escapes each char in s with char::escape_default.

[src]

🔬 This is a nightly-only experimental API. (str_escape #27791)

return type may change to be an iterator

Escapes each char in s with char::escape_unicode.

1.4.0
[src]

Converts a Box<str> into a String without copying or allocating.

Examples

Basic usage:

let string = String::from("birthday gift");
let boxed_str = string.clone().into_boxed_str();

assert_eq!(boxed_str.into_string(), string);Run

1.16.0
[src]

Create a String by repeating a string n times.

Examples

Basic usage:

assert_eq!("abc".repeat(4), String::from("abcabcabcabc"));Run

1.23.0
[src]

Checks if all characters in this string are within the ASCII range.

Examples

let ascii = "hello!\n";
let non_ascii = "Grüße, Jürgen ❤";

assert!(ascii.is_ascii());
assert!(!non_ascii.is_ascii());Run

1.23.0
[src]

Returns a copy of this string where each character is mapped to its ASCII upper case equivalent.

ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.

To uppercase the value in-place, use make_ascii_uppercase.

To uppercase ASCII characters in addition to non-ASCII characters, use to_uppercase.

Examples

let s = "Grüße, Jürgen ❤";

assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());Run

1.23.0
[src]

Returns a copy of this string where each character is mapped to its ASCII lower case equivalent.

ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.

To lowercase the value in-place, use make_ascii_lowercase.

To lowercase ASCII characters in addition to non-ASCII characters, use to_lowercase.

Examples

let s = "Grüße, Jürgen ❤";

assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());Run

1.23.0
[src]

Checks that two strings are an ASCII case-insensitive match.

Same as to_ascii_lowercase(a) == to_ascii_lowercase(b), but without allocating and copying temporaries.

Examples

assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));Run

1.23.0
[src]

Converts this string to its ASCII upper case equivalent in-place.

ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.

To return a new uppercased value without modifying the existing one, use to_ascii_uppercase.

1.23.0
[src]

Converts this string to its ASCII lower case equivalent in-place.

ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.

To return a new lowercased value without modifying the existing one, use to_ascii_lowercase.

Trait Implementations

impl IndexMut<RangeFull> for str
1.3.0
[src]

Implements mutable substring slicing with syntax &mut self[..].

Returns a mutable slice of the whole string. This operation can never panic.

Equivalent to &mut self[0 .. len].

[src]

Performs the mutable indexing (container[index]) operation.

impl IndexMut<RangeInclusive<usize>> for str
[src]

[src]

Performs the mutable indexing (container[index]) operation.

impl IndexMut<RangeToInclusive<usize>> for str
[src]

[src]

Performs the mutable indexing (container[index]) operation.

impl IndexMut<RangeTo<usize>> for str
1.3.0
[src]

Implements mutable substring slicing with syntax &mut self[.. end].

Returns a mutable slice of the string from the beginning to byte offset end.

Equivalent to &mut self[0 .. end].

[src]

Performs the mutable indexing (container[index]) operation.

impl IndexMut<RangeFrom<usize>> for str
1.3.0
[src]

Implements mutable substring slicing with syntax &mut self[begin ..].

Returns a mutable slice of the string from byte offset begin to the end of the string.

Equivalent to &mut self[begin .. len].

[src]

Performs the mutable indexing (container[index]) operation.

impl IndexMut<Range<usize>> for str
1.3.0
[src]

Implements mutable substring slicing with syntax &mut self[begin .. end].

Returns a mutable slice of the given string from the byte range [begin..end).

This operation is O(1).

Panics

Panics if begin or end does not point to the starting byte offset of a character (as defined by is_char_boundary). Requires that begin <= end and end <= len where len is the length of the string.

[src]

Performs the mutable indexing (container[index]) operation.

impl Index<RangeInclusive<usize>> for str
[src]

The returned type after indexing.

[src]

Performs the indexing (container[index]) operation.

impl Index<Range<usize>> for str
[src]

Implements substring slicing with syntax &self[begin .. end].

Returns a slice of the given string from the byte range [begin..end).

This operation is O(1).

Panics

Panics if begin or end does not point to the starting byte offset of a character (as defined by is_char_boundary). Requires that begin <= end and end <= len where len is the length of the string.

Examples

let s = "Löwe 老虎 Léopard";
assert_eq!(&s[0 .. 1], "L");

assert_eq!(&s[1 .. 9], "öwe 老");

// these will panic:
// byte 2 lies within `ö`:
// &s[2 ..3];

// byte 8 lies within `老`
// &s[1 .. 8];

// byte 100 is outside the string
// &s[3 .. 100];Run

The returned type after indexing.

[src]

Performs the indexing (container[index]) operation.

impl Index<RangeTo<usize>> for str
[src]

Implements substring slicing with syntax &self[.. end].

Returns a slice of the string from the beginning to byte offset end.

Equivalent to &self[0 .. end].

The returned type after indexing.

[src]

Performs the indexing (container[index]) operation.

impl Index<RangeFull> for str
[src]

Implements substring slicing with syntax &self[..].

Returns a slice of the whole string. This operation can never panic.

Equivalent to &self[0 .. len].

The returned type after indexing.

[src]

Performs the indexing (container[index]) operation.

impl Index<RangeToInclusive<usize>> for str
[src]

The returned type after indexing.

[src]

Performs the indexing (container[index]) operation.

impl Index<RangeFrom<usize>> for str
[src]

Implements substring slicing with syntax &self[begin ..].

Returns a slice of the string from byte offset begin to the end of the string.

Equivalent to &self[begin .. len].

The returned type after indexing.

[src]

Performs the indexing (container[index]) operation.

impl Debug for str
[src]

[src]

Formats the value using the given formatter. Read more

impl Hash for str
[src]

[src]

Feeds this value into the given [Hasher]. Read more

1.3.0
[src]

Feeds a slice of this type into the given [Hasher]. Read more

impl<'a> Default for &'a str
[src]

[src]

Creates an empty str

impl PartialOrd<str> for str
[src]

Implements comparison operations on strings.

Strings are compared lexicographically by their byte values. This compares Unicode code points based on their positions in the code charts. This is not necessarily the same as "alphabetical" order, which varies by language and locale. Comparing strings according to culturally-accepted standards requires locale-specific data that is outside the scope of the str type.

[src]

This method returns an ordering between self and other values if one exists. Read more

[src]

This method tests less than (for self and other) and is used by the < operator. Read more

[src]

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

[src]

This method tests greater than (for self and other) and is used by the > operator. Read more

[src]

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

impl Ord for str
[src]

Implements ordering of strings.

Strings are ordered lexicographically by their byte values. This orders Unicode code points based on their positions in the code charts. This is not necessarily the same as "alphabetical" order, which varies by language and locale. Sorting strings according to culturally-accepted standards requires locale-specific data that is outside the scope of the str type.

[src]

This method returns an Ordering between self and other. Read more

1.21.0
[src]

Compares and returns the maximum of two values. Read more

1.21.0
[src]

Compares and returns the minimum of two values. Read more

impl Display for str
[src]

[src]

Formats the value using the given formatter. Read more

impl Eq for str
[src]

impl PartialEq<str> for str
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl AsRef<[u8]> for str
[src]

Important traits for &'a [u8]
[src]

Performs the conversion.

impl AsRef<str> for str
[src]

[src]

Performs the conversion.

impl<'a, 'b> Pattern<'a> for &'b str
[src]

Non-allocating substring search.

Will handle the pattern "" as returning empty matches at each character boundary.

🔬 This is a nightly-only experimental API. (pattern #27721)

API not fully fleshed out and ready to be stabilized

Associated searcher for this pattern

[src]

🔬 This is a nightly-only experimental API. (pattern #27721)

API not fully fleshed out and ready to be stabilized

Constructs the associated searcher from self and the haystack to search in. Read more

[src]

🔬 This is a nightly-only experimental API. (pattern #27721)

API not fully fleshed out and ready to be stabilized

Checks whether the pattern matches at the front of the haystack

[src]

🔬 This is a nightly-only experimental API. (pattern #27721)

API not fully fleshed out and ready to be stabilized

Checks whether the pattern matches at the back of the haystack

[src]

🔬 This is a nightly-only experimental API. (pattern #27721)

API not fully fleshed out and ready to be stabilized

Checks whether the pattern matches anywhere in the haystack

impl ToOwned for str
[src]

[src]

Creates owned data from borrowed data, usually by cloning. Read more

[src]

🔬 This is a nightly-only experimental API. (toowned_clone_into #41263)

recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

impl ToString for str
1.9.0
[src]

[src]

Converts the given value to a String. Read more

impl<'a, 'b> PartialEq<String> for &'a str
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl<'a, 'b> PartialEq<Cow<'a, str>> for str
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl<'a, 'b> PartialEq<String> for str
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl<'a, 'b> PartialEq<Cow<'a, str>> for &'b str
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl UnicodeStr for str
[src]

Important traits for SplitWhitespace<'a>
[src]

🔬 This is a nightly-only experimental API. (unicode #27783)

[src]

🔬 This is a nightly-only experimental API. (unicode #27783)

[src]

🔬 This is a nightly-only experimental API. (unicode #27783)

[src]

🔬 This is a nightly-only experimental API. (unicode #27783)

[src]

🔬 This is a nightly-only experimental API. (unicode #27783)

[src]

🔬 This is a nightly-only experimental API. (unicode #27783)

impl AsciiExt for str
[src]

Container type for copied ASCII characters.

[src]

Checks if the value is within the ASCII range. Read more

[src]

Makes a copy of the value in its ASCII upper case equivalent. Read more

[src]

Makes a copy of the value in its ASCII lower case equivalent. Read more

[src]

Checks that two values are an ASCII case-insensitive match. Read more

[src]

Converts this type to its ASCII upper case equivalent in-place. Read more

[src]

Converts this type to its ASCII lower case equivalent in-place. Read more

[src]

🔬 This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII alphabetic character: U+0041 'A' ... U+005A 'Z' or U+0061 'a' ... U+007A 'z'. For strings, true if all characters in the string are ASCII alphabetic. Read more

[src]

🔬 This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII uppercase character: U+0041 'A' ... U+005A 'Z'. For strings, true if all characters in the string are ASCII uppercase. Read more

[src]

🔬 This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII lowercase character: U+0061 'a' ... U+007A 'z'. For strings, true if all characters in the string are ASCII lowercase. Read more

[src]

🔬 This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII alphanumeric character: U+0041 'A' ... U+005A 'Z', U+0061 'a' ... U+007A 'z', or U+0030 '0' ... U+0039 '9'. For strings, true if all characters in the string are ASCII alphanumeric. Read more

[src]

🔬 This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII decimal digit: U+0030 '0' ... U+0039 '9'. For strings, true if all characters in the string are ASCII digits. Read more

[src]

🔬 This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII hexadecimal digit: U+0030 '0' ... U+0039 '9', U+0041 'A' ... U+0046 'F', or U+0061 'a' ... U+0066 'f'. For strings, true if all characters in the string are ASCII hex digits. Read more

[src]

🔬 This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII punctuation character: Read more

[src]

🔬 This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII graphic character: U+0021 '@' ... U+007E '~'. For strings, true if all characters in the string are ASCII graphic characters. Read more

[src]

🔬 This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII whitespace character: U+0020 SPACE, U+0009 HORIZONTAL TAB, U+000A LINE FEED, U+000C FORM FEED, or U+000D CARRIAGE RETURN. For strings, true if all characters in the string are ASCII whitespace. Read more

[src]

🔬 This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII control character: U+0000 NUL ... U+001F UNIT SEPARATOR, or U+007F DELETE. Note that most ASCII whitespace characters are control characters, but SPACE is not. Read more

impl PartialEq<OsString> for str
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl PartialEq<OsStr> for str
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl AsRef<OsStr> for str
[src]

[src]

Performs the conversion.

impl ToSocketAddrs for str
[src]

Returned iterator over socket addresses which this type may correspond to. Read more

[src]

Converts this object to an iterator of resolved SocketAddrs. Read more

impl AsRef<Path> for str
[src]

[src]

Performs the conversion.