Contact UsMIT MITei

 arrow Research  arrow GIS Modeling

Project: A Systems Perspective for Assessing Carbon Dioxide Capture and Storage Opportunities

Research Team: Nisheeth Singh and Howard Herzog

Sponsors: US Department of Energy Award Number DE-FC26-02NT41622

Year: 2004

Abstract:
Even as the acceptance of the fossil fuel greenhouse effect theory continues to grow amongst academics, statesmen and plebeians alike, the early adopters have already engaged in pre-emptive research activities aimed at mitigating the effects of such greenhouse gases. The focus of one such effort is on the capture and storage of CO2 (carbon dioxide) from anthropogenic fixed source emissions. This effort can be broken down into a few broad categories such as terrestrial, ocean and geologic sequestration. Geologic sequestration refers to all activities geared towards the capture and storage of CO2 under the surface of the earth in diverse 'reservoirs' such as deep saline formations, depleted oil and gas wells and unmineable coal seams to name a few. This investigation develops a systems perspective for assessing carbon dioxide capture and storage (CCS) opportunities within the realm of geologic sequestration.

While multiple concurrent research activities continue to explore CCS opportunities from various perspectives, efforts at a systems analysis of the overall picture are just beginning. A systems view describing methodologies to integrate a variety of CCS data to assess potential sequestration opportunities is at the heart of this study. It is based on research being conducted at the Massachusetts Institute of Technology (MIT) under sponsorship of the United States Department of Energy (DOE). Using a Geographic Information System (GIS) and publicly available data, a detailed characterization of CO2 sources and reservoirs are being developed. A source-reservoir matching process will be implemented which begins with quantifying the 'capturability' of a CO2 source, a function of the purity, volume and several site specific considerations. Next, the potential proximate reservoirs are identified and then ranked based on transport options, type, capacity, cost, regulatory considerations and political sensitivity. All the above criteria will be spatially represented in the GIS and can be overlaid to produce a composite picture identifying the potential areas which would represent the maximum probability of success in sequestration efforts. A rigorous systems engineering approach will be adopted throughout the investigation. Novel tools such as the Object-Process CASE (OPCAT) tool will be used to model the complex and interdisciplinary system. A comprehensive systems modeling and engineering tool, it allows the representation of function, structure and behavior in a single model.

Ultimately, the methodologies developed will be integrated and utilized in a case study to illustrate the methodology of evaluating CCS options for a given set of sources. A region in Mississippi has been identified for this model case-study. The methodology will be applied at a later time to evaluate CCS potential in the South East Regional Carbon Sequestration Partnership (SERCSP) and the West Coast Regional Carbon Sequestration Partnership (WCRCSP).

Publications:
Singh, N., "A Systems Perspective for Assessing Carbon Dioxide Capture and Storage Opportunities," M.I.T. Masters Thesis, June (2004). <PDF>